Geometry and Wood Origin of Barrel Alternatives: Impact on the Chemical Composition of Aged Tsipouro
Abstract
1. Introduction
2. Materials and Methods
2.1. Tsipouro Samples
2.2. Wooden Fragments
2.3. Toasting
2.4. Determination of Volatile Compounds in Aged Tsipouro by Gas Chromatography–Mass Spectrometry (GC-MS)
2.5. Determination of Total Ellagitannin Concentration in Aged Tsipouro by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Volatile Compounds
3.2. Assessing Total Ellagitannin Levels in Aged Tsipouro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Regulation (EC) 2019/787 of 17 April 2019. Off. J. Eur. Union 2019, L130, 1–54. [Google Scholar]
- Marinaki, M.; Sampsonidis, I.; Nakas, A.; Arapitsas, P.; Assimopoulou, A.N.; Theodoridis, G. Analysis of the Volatile Organic Compound Fingerprint of Greek Grape Marc Spirits of Various Origins and Traditional Production Styles. Beverages 2023, 9, 65. [Google Scholar] [CrossRef]
- aade.gr. Ethyl Alcohol and Alcoholic Beverages. L 2969/2001—FEK 281/A/18-12-2001. Available online: https://www.aade.gr/sites/default/files/2020-03/6%20%CE%A6%CE%95%CE%9A%20281-%CE%91-2001_0.pdf (accessed on 10 September 2025).
- Kourilas, E.L. The Vineyards of Mount Athos. In Athos, Light in Darkness; Athonite Reprints: Mount Athos, Greece, 1993. [Google Scholar]
- Soufleros, E.H.; Rodovitis, B.A. Tsipouro and Tsikoudia: The Greek Grape Mark Distillate; Soufleros Evangelos: Thessaloniki, Greece, 2004. [Google Scholar]
- Data General Chemical State Laboratory (G.C.S.L.). Edit Greek Federation of Spirits Producers (SEAOP). 2023. Available online: https://www.seaop.gr/press-office/press-releases?pageNo=2 (accessed on 20 July 2025).
- Kokoti, K.; Kosma, I.S.; Tataridis, P.; Badeka, A.V.; Kontominas, M.G. Volatile Aroma Compounds of Distilled “Tsipouro” Spirits: Effect of Distillation Technique. Eur. Food Res. Technol. 2023, 249, 1173–1185. [Google Scholar] [CrossRef]
- Karathanos, A.; Soultani, G.; Kontoudakis, N.; Kotseridis, Y. Impact of Different Wood Types on the Chemical Composition and Sensory Profile of Aged Tsipouro: A Comparative Study. Beverages 2024, 10, 76. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Puech, J.L. Extraction and Evolution of Lignin Products in Armagnac Matured in Oak. Am. J. Enol. Vitic. 1981, 32, 111–114. [Google Scholar] [CrossRef]
- Conner, J.M.; Paterson, A.; Piggott, J.R. Changes in Wood Extractives from Oak Cask Staves Through Maturation of Scotch Malt Whisky. J. Sci. Food Agric 1993, 62, 169–174. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdie, D.; Boidron, J.N.; Pons, M. The Origin of Ethylphenols in Wines. J. Sci. Food Agric. 1992, 60, 165–178. [Google Scholar] [CrossRef]
- Giannakourou, M.; Strati, I.F.; Manika, E.-M.; Resiti, V.; Tataridis, P.; Zoumpoulakis, P.; Sinanoglou, V.J. Assessment of Phenolic Content, Antioxidant Activity, Colour and Sensory Attributes of Wood Aged “Tsipouro”. Curr. Res. Nutr. Food Sci. 2018, 6, 318–328. [Google Scholar] [CrossRef]
- Canas, S.; Casanova, V.; Belchior, A.P. Antioxidant Activity and Phenolic Content of Portuguese Wine Aged Brandies. J. Food Compos. Anal. 2008, 21, 626–633. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Ruiz de Mier, M.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of Alternative Wood for the Ageing of Brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef]
- Caldeira, I.; Belchior, A.P.; Clímaco, M.C.; Bruno de Sousa, R. Aroma Profile of Portuguese Brandies Aged in Chestnut and Oak Woods. Anal. Chim. Acta 2002, 458, 55–62. [Google Scholar] [CrossRef]
- Caldeira, I.; Anjos, O.; Portal, V.; Belchior, A.P.; Canas, S. Sensory and Chemical Modifications of Wine-Brandy Aged with Chestnut and Oak Wood Fragments in Comparison to Wooden Barrels. Anal. Chim. Acta 2010, 660, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Jourdes, M.; Michel, J.; Saucier, C.; Quideau, S.; Teissedre, P.-L. Identification, Amounts, and Kinetics of Extraction of C-Glucosidic Ellagitannins during Wine Aging in Oak Barrels or in Stainless Steel Tanks with Oak Chips. Anal. Bioanal. Chem. 2011, 401, 1531–1539. [Google Scholar] [CrossRef]
- Karvela, E.; Makris, D.P.; Kefalas, P.; Moutounet, M. Extraction of Phenolics in Liquid Model Matrices Containing Oak Chips: Kinetics, Liquid Chromatography–Mass Spectroscopy Characterisation and Association with In Vitro Antiradical Activity. Food Chem. 2008, 110, 263–272. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; del Alamo-Sanza, M.; Martínez-Gil, A.M.; Nevares, I. Red Wine Aging by Different Micro-Oxygenation Systems and Oak Wood—Effects on Anthocyanins, Copigmentation and Color Evolution. Processes 2020, 8, 1250. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Moio, L.; Waterhouse, A.L. Cabernet Sauvignon Aging Stability Altered by Microoxygenation. Am. J. Enol. Vitic. 2019, 70, 323. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Capuano, R.; Moio, L.; Gambuti, A. Wood Powders of Different Botanical Origin as an Alternative to Barrel Aging for Red Wine. Eur. Food Res. Technol. 2021, 247, 2309–2320. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) 2165/2005 of 20 December 2005. Off. J. Eur. Union 2005, L345, 1–4. [Google Scholar]
- European Commission. Regulation (EC) 1507/2006 of 11 October 2006. Off. J. Eur. Union 2006, L280, 9–11. [Google Scholar]
- Ivanova, V.; Stefova, M.; Stafilov, T.; Vojnoski, B.; Bíró, I.; Bufa, A.; Kilár, F. Validation of a Method for Analysis of Aroma Compounds in Red Wine Using Liquid–Liquid Extraction and GC–MS. Food Anal. Methods 2012, 5, 1427–1434. [Google Scholar] [CrossRef]
- Chira, K.; Teissedre, P.L. Extraction of Oak Volatiles and Ellagitannins Compounds and Sensory Profile of Wine Aged with French Winewoods Subjected to Different Toasting Methods: Behaviour During Storage. Food Chem. 2013, 140, 168–177. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Ortega-Heras, M.; Pérez-Magariño, S.; González-Huerta, C. Volatile Compounds of Red Wines Macerated with Spanish, American, and French Oak Chips. J. Agric. Food Chem. 2009, 57, 6383–6391. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Franco, E.; Huerta, C.G.; García, J.M.; Cabellos, M.; Suberviola, J.; Orriols, I.; Cacho, J. Criteria to Discriminate Between Wines Aged in Oak Barrels and Macerated with Oak Fragments. Food Res. Int. 2014, 57, 234–241. [Google Scholar] [CrossRef]
- Arapitsas, P.; Antonopoulos, A.; Stefanou, E.; Dourtoglou, V.G. Artificial Aging of Wines Using Oak Chips. Food Chem. 2004, 86, 563–570. [Google Scholar] [CrossRef]
- Juan, F.S.; Cacho, J.; Ferreira, V.; Escudero, A. Aroma Chemical Composition of Red Wines from Different Price Categories and Its Relationship to Quality. J. Agric. Food Chem. 2012, 60, 5045–5056. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Prieto, L.J.; López-Roca, J.M.; Martínez-Cutillas, A.; Pardo Mínguez, F.; Gómez-Plaza, E. Maturing Wines in Oak Barrels: Effects of Origin, Volume, and Age of the Barrel on the Wine Volatile Composition. J. Agric. Food Chem. 2002, 50, 3272–3276. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Maroto, M.C.; Guchu, E.; Castro-Vázquez, L.; de Torres, C.; Pérez-Coello, M.S. Aroma-Active Compounds of American, French, Hungarian and Russian Oak Woods, Studied by GC–MS and GC–O. Flavour Fragr. J. 2008, 23, 93–98. [Google Scholar] [CrossRef]
- Cerdán, T.G.; Rodríguez-Mozaz, S.; Ancín-Azpilicueta, C. Volatile Composition of Aged Wine in Used Barrels of French Oak and of American Oak. Food Res. Int. 2002, 35, 603–610. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Cadahía, E.; Del Álamo, M.; Nevares, I. Volatile Compounds in Acacia, Chestnut, Cherry, Ash and Oak Woods, With a View to Their Use in Cooperage. J. Agric. Food Chem. 2009, 57, 3217–3227. [Google Scholar] [CrossRef]
- Caldeira, I.; Clímaco, M.C.; de Sousa, R.B.; Belchior, A.P. Volatile Composition of Oak and Chestnut Woods Used in Brandy Ageing: Modification Induced by Heat Treatment. J. Food Eng. 2006, 76, 202–211. [Google Scholar] [CrossRef]
- García-Estévez, I.; Alcalde-Eon, C.; Le Grottaglie, L.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Understanding the Ellagitannin Extraction Process from Oak Wood. Tetrahedron 2015, 71, 3089–3094. [Google Scholar] [CrossRef]
- Chira, K.; Anguellu, L.; Da Costa, G.; Richard, T.; Pedrot, E.; Jourdes, M.; Teissedre, P.-L. New C-Glycosidic Ellagitannins Formed upon Oak Wood Toasting, Identification and Sensory Evaluation. Foods 2020, 9, 1477. [Google Scholar] [CrossRef] [PubMed]
- Gadrat, M.; Lavergne, J.; Emo, C.; Teissedre, P.L.; Chira, K. Validation of a Mass Spectrometry Method to Identify and Quantify Ellagitannins in Oak Wood and Cognac During Aging in Oak Barrels. Food Chem. 2021, 342, 128223. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Chira, K.; Teissedre, P.L. Ellagitannin content, volatile composition and sensory profile of wines from different countries matured in oak barrels subjected to different toasting methods. Food Chem. 2016, 210, 500–511. [Google Scholar] [CrossRef]
- Basalekou, M.; Kallithraka, S.; Tarantilis, P.A.; Kotseridis, Y.; Pappas, C. Ellagitannins in Wines: Future Prospects in Methods of Analysis Using FT-IR Spectroscopy. LWT 2019, 101, 48–53. [Google Scholar] [CrossRef]
- Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Hermosín-Gutiérrez, I.; Gordon, M.H.; Pérez-Coello, M.S. Antioxidant Capacity and Phenolic Composition of Different Woods Used in Cooperage. Food Chem. 2011, 129, 1584–1590. [Google Scholar] [CrossRef]




| Acetovanillone | Coniferaldehyde | 4-Methyl-Guaiacol | Guaiacol | Sinapaldehyde | Syringaldehyde | Vanillin | Cis-Whiskey Lactone | Trans-Whiskey Lactone | ||
|---|---|---|---|---|---|---|---|---|---|---|
| French Oak (FO) | Veneers | 0.29 ± 0.03 a,b | 0.52 ± 0.03 b | 0.10 ± 0.00 a | 0.21 ± 0.02 a | 3.00 ± 0.42 a | 12.18 ± 1.25 a | 2.24 ± 0.35 a,b | n.d. | 0.23 ± 0.04 a |
| Particles | 0.30 ± 0.00 a | 0.30 ± 0.01 c | 0.10 ± 0.00 a | 0.19 ± 0.02 a | 1.06 ± 0.10 b | 8.89 ± 0.45 c | 1.73 ± 0.06 b | 0.14 ± 0.01 b | 0.18 ± 0.00 a | |
| Sticks | 0.27 ± 0.00 b | 0.59 ± 0.01 a | 0.10 ± 0.00 a | 0.18 ± 0.00 a | 3.00 ± 0.02 a | 10.51 ± 0.17 b | 2.12 ± 0.02 a | 0.17 ± 0.00 a | 0.20 ± 0.00 a | |
| American Oak (AO) | Veneers | 0.25 ± 0.00 a | n.d. | n.d. | 0.11 ± 0.00 b | 0.49 ± 0.00 b | 4.48 ± 0.12 b | 1.43 ± 0.04 a | 0.10 ± 0.00 b | 0.25 ± 0.00 a |
| Particles | 0.23 ± 0.00 b | n.d. | 0.09 ± 0.02 a | 0.15 ± 0.02 a | 0.42 ± 0.02 c | 4.64 ± 0.02 a | 1.16 ± 0.01 b | 0.35 ± 0.02 a | 0.07 ± 0.03 b | |
| Sticks | 0.28 ± 0.09 a,b | 0.31 ± 0.03 a | 0.10 ± 0.00 a | 0.17 ± 0.05 a,b | 1.00 ± 0.40 a | 6.49 ± 0.23 a,b | 1.48 ± 0.33 a | 0.41 ± 0.05 a | 0.08 ± 0.00 b | |
| Greek Oak (GO) | Veneers | 0.29 ± 0.04 a | 0.24 ± 0.01 a | n.d. | 0.24 ± 0.03 a,b | 0.43 ± 0.0 b | 4.84 ± 0.32 b | 1.22 ± 0.25 a | 0.11 ± 0.01 a | 0.13 ± 0.02 a |
| Particles | 0.28 ± 0.04 a | 0.23 ± 0.05 a | n.d. | 0.24 ± 0.01 a | 0.51 ± 0.05 a,b | 5.33 ± 0.49 a | 1.19 ± 0.25 a | 0.10 ± 0.01 a | 0.13 ± 0.02 a | |
| Sticks | 0.23 ± 0.02 a | n.d. | n.d. | 0.20 ± 0.02 b | 0.52 ± 0.01 a | 5.16 ± 0.50 a | 1.20 ± 0.23 a | 0.08 ± 0.00 b | 0.10 ± 0.01 a | |
| Greek Chestnut (GC) | Veneers | 0.25 ± 0.00 b | n.d. | 0.11 ± 0.00 b | 0.15 ± 0.00 b | 0.28 ± 0.00 a | 3.05 ± 0.01 a | 1.21 ± 0.02 b | n.d. | n.d. |
| Particles | 0.22± 0.00 c | n.d. | n.d. | 0.14 ± 0.02 b | n.d. | 1.68 ± 0.05 b | 0.69 ± 0.01 c | n.d. | n.d. | |
| Sticks | 0.29 ± 0.00 a | n.d. | 0.14 ± 0.01 a | 0.21 ± 0.01 a | 0.28 ± 0.01 a | 3.24 ± 0.25 a | 1.28 ± 0.03 a | n.d. | n.d. | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karathanos, A.; Soultani, G.; Kontoudakis, N.; Ntalos, G.; Kotseridis, Y. Geometry and Wood Origin of Barrel Alternatives: Impact on the Chemical Composition of Aged Tsipouro. Beverages 2025, 11, 174. https://doi.org/10.3390/beverages11060174
Karathanos A, Soultani G, Kontoudakis N, Ntalos G, Kotseridis Y. Geometry and Wood Origin of Barrel Alternatives: Impact on the Chemical Composition of Aged Tsipouro. Beverages. 2025; 11(6):174. https://doi.org/10.3390/beverages11060174
Chicago/Turabian StyleKarathanos, Athanassios, Georgia Soultani, Nikolaos Kontoudakis, Georgios Ntalos, and Yorgos Kotseridis. 2025. "Geometry and Wood Origin of Barrel Alternatives: Impact on the Chemical Composition of Aged Tsipouro" Beverages 11, no. 6: 174. https://doi.org/10.3390/beverages11060174
APA StyleKarathanos, A., Soultani, G., Kontoudakis, N., Ntalos, G., & Kotseridis, Y. (2025). Geometry and Wood Origin of Barrel Alternatives: Impact on the Chemical Composition of Aged Tsipouro. Beverages, 11(6), 174. https://doi.org/10.3390/beverages11060174

