Biological Activities of Tea: Benefits, Risks, and Critical Overview of Their Consumption in Children
Abstract
1. Introduction
2. Bioactive Components of Tea and Their General Effects
3. Benefit
3.1. Cognitive and Neurological Benefits
3.2. Cardiovascular and Metabolic Benefits
3.3. Metabolic Benefits, Obesity, and Fat Reduction
3.4. Hepatoprotective Benefits
3.5. Oral Health Benefits
4. Adverse Effects and Precautions
4.1. Impact on Iron Absorption
4.2. Hepatotoxicity from EGCG
4.3. Caffeine-Related Risks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mason, P.; Bond, T. Tea and Wellness throughout Life. Nutr. Food Technol. Open Access 2021, 7, 1–6. [Google Scholar] [CrossRef]
- Rostampour, N.; Kasiri, K.A.; Hashemi-Dehkordi, E.; Taheri, A.M.; Broujeni, A.F.; Rafieian-Kopaei, M. Therapeutic Effects of Green Tea on Nonalcoholic Fatty Liver Disease in 10-16-Year-Old Children. J. Clin. Diagn. Res. 2019, 13, 4. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations (FAO) Intergovernmental Group on Tea. Twenty-Fifth Session. Current Global Market Situation and Medium-Term Outlook; FAO: Rome, Italy, 2024. [Google Scholar]
- Czarniecka-Skubina, E.; Korzeniowska-Ginter, R.; Pielak, M.; Sałek, P.; Owczarek, T.; Kozak, A. Consumer Choices and Habits Related to Tea Consumption by Poles. Foods 2022, 11, 2873. [Google Scholar] [CrossRef]
- De Godoy, R.C.B.; Deliza, R.; Gheno, L.B.; Licodiedoff, S.; Frizon, C.N.T.; Ribani, R.H.; dos Santos, G.G. Consumer Perceptions, Attitudes and Acceptance of New and Traditional Mate Tea Products. Food Res. Int. 2013, 53, 801–807. [Google Scholar] [CrossRef]
- Gawron-Gzella, A.; Chanaj-Kaczmarek, J.; Cielecka-Piontek, J. Yerba Mate—A Long but Current History. Nutrients 2021, 13, 3706. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V. Epidemiological Evidence Linking Tea Consumption to Human Health: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 523–536. [Google Scholar] [CrossRef]
- De Mejía, E.G. El Efecto Quimioprotector Del Té y Sus Compuestos. Arch. Latinoam. Nutr. 2003, 53, 111–118. [Google Scholar]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Duan, C.; Mei, L.; Ge, T.; Jiang, Q. Influence of the Growth and Development Check (Gdc) on Overweight/Obesity of Children under-5 Years in China: A Propensity Score Analysis. Int. J. Environ. Res. Public. Health 2021, 18, 1203. [Google Scholar] [CrossRef]
- Matsuyama, T.; Tanaka, Y.; Kamimaki, I.; Nagao, T.; Tokimitsu, I. Catechin Safely Improved Higher Levels of Fatness, Blood Pressure, and Cholesterol in Children. Obesity 2008, 16, 1338–1348. [Google Scholar] [CrossRef]
- Forshee, R.A.; Storey, M.L. Total Beverage Consumption and Beverage Choices among Children and Adolescents. Int. J. Food Sci. Nutr. 2003, 54, 297–307. [Google Scholar] [CrossRef]
- Rezaee, E.; Mirlohi, M.; Hassanzadeh, A.; Fallah, A. Factors affecting tea consumption pattern in an urban society in Isfahan, Iran. J. Educ. Health Promot. 2016, 5, 13. [Google Scholar] [CrossRef]
- Xu, X.; Piao, W.; Fang, H.; Guo, Q.; Ju, L.; Cai, S.; Li, S.; Cheng, X.; Zhao, L.; Yu, D. Beverage Consumption of Children and Adolescents Aged 6-17 Years—China, 2016-2017. China CDC Wkly. 2021, 3, 279–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tong, O.; Cao, Y.; Song, Y.; Song, J.; Xiao, X.; Yong, L.; Wei, S. Caffeine intake from foods and beverages and trends among Chinese children and adolescents: 2004–2018. Food Chem. Toxicol. 2024, 193, 115025. [Google Scholar] [CrossRef]
- Myszkowska-Ryciak, J.; Harton, A. Do Preschools Offer Healthy Beverages to Children? A Nationwide Study in Poland. Nutrients 2017, 9, 1167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gandy, J.; Martinez, H.; Carmuega, E.; Arredondo, J.L.; Pimentel, C.; Moreno, L.A.; Kavouras, S.A.; Salas-Salvadó, J. Fluid intake of Latin American children and adolescents: Results of four 2016 LIQ.IN7 National Cross-Sectional Surveys. Eur. J. Nutr. 2018, 57 (Suppl. S3), 53–63. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C.H.S. The Suitability of Caffeinated Drinks for Children: A Systematic Review of Randomised Controlled Trials, Observational Studies and Expert Panel Guidelines. J. Hum. Nutr. Diet. 2014, 27, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Moratalla, R. Neurobiología de Las Metilxantinas. Trastor. Adict. 2008, 10, 201–207. [Google Scholar] [CrossRef]
- Tao, W.; Zhou, Z.; Zhao, B.; Wei, T. Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC-MS-MS method. J. Pharm. Biomed. Anal. 2016, 131, 140–145. [Google Scholar] [CrossRef]
- Lin, S.-D.; Udompornmongkol, P.; Yang, J.-H.; Chen, S.-Y.; Mau, J.-L. Quality and antioxidant property of three types of tea infusions: Quality and antioxidant property of tea. J. Food Process. Preserv. 2014, 38, 1401–1408. [Google Scholar] [CrossRef]
- Syu, K.-Y.; Lin, C.-L.; Huang, H.-C.; Lin, J.-K. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography. J. Agric. Food Chem. 2008, 56, 7637–7643. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.M.; Merves, M.L.; Goldberger, B.A.; Sampson-Cone, A.; Cone, E.J. Caffeine content of brewed teas. J. Anal. Toxicol. 2008, 32, 702–704. [Google Scholar] [CrossRef]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 109 Pt 1, 585–648. [Google Scholar] [CrossRef]
- Satoh, E.; Tohyama, N.; Nishimura, M. Comparison of the antioxidant activity of roasted tea with green, oolong, and black teas. Int. J. Food Sci. Nutr. 2005, 56, 551–559. [Google Scholar] [CrossRef]
- Wong, M.; Sirisena, S.; Ng, K. Phytochemical profile of differently processed tea: A review. J. Food Sci. 2022, 87, 1925–1942. [Google Scholar] [CrossRef]
- Smith, J.E.; Rogers, P.J. Theanine, Mood, and Behavior. In Diet, Brain, Behavior: Practical Implications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zhang, L.; Zhang, Z.Z.; Lu, Y.N.; Zhang, J.S.; Preedy, V.R. L-Theanine from Green Tea: Transport and Effects on Health. In Tea in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Lyon, M.R.; Kapoor, M.P.; Juneja, L.R. The Effects of L-Theanine (Suntheanine®) on Objective Sleep Quality in Boys with Attention Deficit Hyperactivity Disorder (ADHD): A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Altern. Med. Rev. 2011, 16, 348. [Google Scholar]
- Giesbrecht, T.; Rycroft, J.A.; Rowson, M.J.; De Bruin, E.A. The Combination of L-Theanine and Caffeine Improves Cognitive Performance and Increases Subjective Alertness. Nutr. Neurosci. 2010, 13, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Owen, G.N.; Parnell, H.; De Bruin, E.A.; Rycroft, J.A. The Combined Effects of L-Theanine and Caffeine on Cognitive Performance and Mood. Nutr. Neurosci. 2008, 11, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.S.; Jung, J.Y.; Jang, I.S.; Jang, K.H.; Kim, S.H.; Ha, J.H.; Suk, K.; Lee, M.G. L-Theanine Partially Counteracts Caffeine-Induced Sleep Disturbances in Rats. Pharmacol. Biochem. Behav. 2012, 101, 217–221. [Google Scholar] [CrossRef]
- Anas Sohail, A.; Ortiz, F.; Varghese, T.; Fabara, S.P.; Batth, A.S.; Sandesara, D.P.; Sabir, A.; Khurana, M.; Datta, S.; Patel, U.K. The Cognitive-Enhancing Outcomes of Caffeine and L-Theanine: A Systematic Review. Cureus 2021, 13, e20828. [Google Scholar] [CrossRef]
- Kahathuduwa, C.N.; Wakefield, S.; West, B.D.; Blume, J.; Dassanayake, T.L.; Weerasinghe, V.S.; Mastergeorge, A. Effects of L-Theanine—Caffeine Combination on Sustained Attention and Inhibitory Control among Children with ADHD: A Proof-of-Concept Neuroimaging RCT. Sci. Rep. 2020, 10, 13072. [Google Scholar] [CrossRef] [PubMed]
- Hannant, P.; Cassidy, S.; Renshaw, D.; Joyce, A. A Double-Blind, Placebo-Controlled, Randomised-Designed GABA Tea Study in Children Diagnosed with Autism Spectrum Conditions: A Feasibility Study Clinical Trial Registration: ISRCTN 72571312. Nutr. Neurosci. 2021, 24, 45–61. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Lejeune, M.P.G.M.; Kovacs, E.M.R. Body Weight Loss and Weight Maintenance in Relation to Habitual Caffeine Intake and Green Tea Supplementation. Obes. Res. 2005, 13, 1195–1204. [Google Scholar] [CrossRef]
- Erba, D.; Riso, P.; Bordoni, A.; Foti, P.; Biagi, P.L.; Testolin, G. Effectiveness of Moderate Green Tea Consumption on Antioxidative Status and Plasma Lipid Profile in Humans. J. Nutr. Biochem. 2005, 16, 144–149. [Google Scholar] [CrossRef]
- Kajimoto, O.; Kajimoto, Y.; Yabune, M.; Nozawa, A.; Nagata, K.; Kakuda, T. Tea Catechins Reduce Serum Cholesterol Levels in Mild and Borderline Hypercholesterolemia Patients. J. Clin. Biochem. Nutr. 2003, 33, 101–111. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Duret, C.; Rohrer, D.; Girardier, L.; Mensi, N.; Fathi, M.; Chantre, P.; Vandermander, J. Efficacy of a Green Tea Extract Rich in Catechin Polyphenols and Caffeine in Increasing 24-h Energy Expenditure and Fat Oxidation in Humans. Am. J. Clin. Nutr. 1999, 70, 1040–1045. [Google Scholar] [CrossRef]
- Benito, S.; Lopez, D.; Sáiz, M.P.; Buxaderas, S.; Sánchez, J.; Puig-Parellada, P.; Mitjavila, M.T. A Flavonoid-Rich Diet Increases Nitric Oxide Production in Rat Aorta. Br. J. Pharmacol. 2002, 135, 910–916. [Google Scholar] [CrossRef]
- Moore, R.J.; Jackson, K.G.; Minihane, A.M. Green Tea (Camellia sinensis) Catechins and Vascular Function. Br. J. Nutr. 2009, 102, 1790–1802. [Google Scholar] [CrossRef]
- Quan, J.; Gerber, D.; Li, A.; Huang, X.; Tian, J. A Green Tea Extract Catechin EGCg: Therapeutic Potential for Pediatric Cardiomyopathies. Pediatr. Discov. 2023, 1, e7. [Google Scholar] [CrossRef] [PubMed]
- Moran-Lev, H.; Cohen, S.; Zelber-Sagi, S.; Mazkeret Mayer, E.; Anafy, A.; Yerushalmy-Feler, A.; Lubetzky, R. Effect of Coffee and Tea Consumption on Adolescent Weight Control: An Interventional Pilot Study. Child. Obes. 2023, 19, 121–129. [Google Scholar] [CrossRef]
- Garner, B.; Van Reyk, D.; Dean, R.T.; Jessup, W. Direct Copper Reduction by Macrophages: Its Role in Low Density Lipoprotein Oxidation. J. Biol. Chem. 1997, 272, 6927–6935. [Google Scholar] [CrossRef]
- De Luis, D.A.; Aller, R. Papel de Los Flavonoides Del Té En La Protección Cardiovascular. In Anales de Medicina Interna; Arán Ediciones, SL.: Madrid, Spain, 2008; Volume 25. [Google Scholar]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef]
- Ostrowska, J.; Skrzydlewska, E. The Comparison of Effect of Catechins and Green Tea Extract on Oxidative Modification of LDL in Vitro. Adv. Med. Sci. 2006, 51, 298–303. [Google Scholar]
- Zhu, N.; Sang, S.; Huang, T.C.; Bai, N.; Yang, C.S.; Ho, C.T. Antioxidant Chemistry of Green Tea Catechins: Oxidation Products of (-)-Epigallocatechin Gallate and (-)-Epigallocatechin with Peroxidase. J. Food Lipids 2000, 7, 275–282. [Google Scholar] [CrossRef]
- Zhu, N.; Huang, T.C.; Yu, Y.; LaVoie, E.J.; Yang, C.S.; Ho, C.T. Identification of Oxidation Products of (-)-Epigallocatechin Gallate and (-)-Epigallocatechin with H2O2. J. Agric. Food Chem. 2000, 48, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Wang, M.; Wei, G.J.; Lin, J.K.; Yang, C.S.; Ho, C.T. Identification of Reaction Products of (-)-Epigallocatechin, (-)-Epigallocatechin Gallate and Pyrogallol with 2,2-Diphenyl-1-Picrylhydrazyl Radical. Food Chem. 2001, 73, 345–349. [Google Scholar] [CrossRef]
- Sang, S.; Cheng, X.; Stark, R.E.; Rosen, R.T.; Yang, C.S.; Ho, C.T. Chemical Studies on Antioxidant Mechanism of Tea Catechins: Analysis of Radical Reaction Products of Catechin and Epicatechin with 2,2-Diphenyl-1-Picrylhydrazyl. Bioorg. Med. Chem. 2002, 10, 2233–2237. [Google Scholar] [CrossRef]
- Raederstorff, D.G.; Schlachter, M.F.; Elste, V.; Weber, P. Effect of EGCG on Lipid Absorption and Plasma Lipid Levels in Rats. J. Nutr. Biochem. 2003, 14, 326–332. [Google Scholar] [CrossRef]
- Hernández Figueroa, T.T.; Rodríguez-Rodríguez, E.; Sánchez-Muniz, F.J. El Té Verde ¿una Buena Elección Para La Prevención de Enfermedades Cardiovasculares? Arch. Latinoam. Nutr. 2004, 54, 380–394. [Google Scholar] [PubMed]
- Luo, K.; Ma, C.; Xing, S.; An, Y.; Feng, J.; Dang, H.; Huang, W.; Qiao, L.; Cheng, J.; Xie, L. White Tea and Its Active Polyphenols Lower Cholesterol through Reduction of Very-Low-Density Lipoprotein Production and Induction of LDLR Expression. Biomed. Pharmacother. 2020, 127, 110146. [Google Scholar] [CrossRef]
- Shende, V.R.; Singh, A.B.; Liu, J. A Novel Peroxisome Proliferator Response Element Modulates Hepatic Low-Density Lipoprotein Receptor Gene Transcription in Response to PPARδ Activation. Biochem. J. 2015, 472, 275–286. [Google Scholar] [CrossRef]
- Cortés, V.; Vásquez, T.; Arteaga, A.; Nervi, F.; Rigotti, A. The Contribution of Goldstein and Brown to the Study of Cholesterol Metabolism. Rev. Med. Chil. 2012, 140, 1053–1059. [Google Scholar] [CrossRef]
- Xie, L.; Tang, Q.; Yao, D.; Gu, Q.; Zheng, H.; Wang, X.; Yu, Z.; Shen, X. Effect of Decaffeinated Green Tea Polyphenols on Body Fat and Precocious Puberty in Obese Girls: A Randomized Controlled Trial. Front. Endocrinol. 2021, 12, 736724. [Google Scholar] [CrossRef]
- Yao, D.; Xie, L.; Du, K.; Yao, X.; Shen, X. Decaffeinated Green Tea Polyphenols Supplementation Had No Adverse Health Effects in Girls with Obesity: A Randomized Controlled Trial. Asia Pac. J. Clin. Nutr. 2024, 33, 111. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Seydoux, J.; Girardier, L.; Chantre, P.; Vandermander, J. Green Tea and Thermogenesis: Interactions between Catechin-Polyphenols, Caffeine and Sympathetic Activity. Int. J. Obes. 2000, 24, 252–258. [Google Scholar] [CrossRef]
- Wang, D.; Gao, Q.; Wang, T.; Kan, Z.; Li, X.; Hu, L.; Peng, C.Y.; Qian, F.; Wang, Y.; Granato, D. Green Tea Polyphenols and Epigallocatechin-3-Gallate Protect against Perfluorodecanoic Acid Induced Liver Damage and Inflammation in Mice by Inhibiting NLRP3 Inflammasome Activation. Food Res. Int. 2020, 127, 108628. [Google Scholar] [CrossRef]
- El-Beshbishy, H.A. Hepatoprotective Effect of Green Tea (Camellia sinensis) Extract against Tamoxifen-Induced Liver Injury in Rats. J. Biochem. Mol. Biol. 2005, 38, 563–570. [Google Scholar] [CrossRef]
- Wang, D.; Gao, Q.; Wang, T.; Qian, F.; Wang, Y. Theanine: The Unique Amino Acid in the Tea Plant as an Oral Hepatoprotective Agent. Asia Pac. J. Clin. Nutr. 2017, 26, 384–391. [Google Scholar] [PubMed]
- Pezeshki, A.; Safi, S.; Feizi, A.; Askari, G.; Karami, F. The Effect of Green Tea Extract Supplementation on Liver Enzymes in Patients with Nonalcoholic Fatty Liver Disease. Int. J. Prev. Med. 2015, 7, 28. [Google Scholar] [CrossRef]
- Hassan, S.A.; Metwalli, N.E.; Ibrahim, G.G.; Aly, M.A. Comparison of the Efficacy of Mouth Rinses Camellia Sinensis Extract, Guava Leaves Extract and Sodium Fluoride Solution, on Streptococcus Mutans and Lactobacillus in Children (an in Vivo Study). Future Dent. J. 2018, 13, 158. [Google Scholar] [CrossRef]
- Hattab, F. Fluoride and Trace Elements in Tea: Oral and General Health. Sci. Dent. J. 2024, 7, 114–119. [Google Scholar]
- Prihastari, L.; Poetra, E.A. Fluoride levels in saliva after chewing black tea candy (Camellia sinensis) in children. Odonto Dent. J. 2021, 8, 67–73. [Google Scholar] [CrossRef]
- Sajadi, F.; Shokrizadeh, M.; Sharifi, M.; Aftabi, R. Evaluating the Effects of Camellia Sinensis (Green Tea) and Teucrium Polium Extracts on Salivary Streptococcus Mutans Levels in Children. J. Dent. 2023, 24, 19. [Google Scholar] [CrossRef]
- Hirasawa, M.; Takada, K.; Otake, S. Inhibition of Acid Production in Dental Plaque Bacteria by Green Tea Catechins. Caries Res. 2006, 40, 265–270. [Google Scholar] [CrossRef]
- González Urrutia, R.N. Biodisponibilidad Del Hierro. Rev. Costarric. Salud Pública 2005, 14, 6–12. [Google Scholar]
- Samman, S.; Sandström, B.; Toft, M.B.; Bukhave, K.; Jensen, M.; Sørensen, S.S.; Hansen, M. Green Tea or Rosemary Extract Added to Foods Reduces Nonheme-Iron Absorption. Am. J. Clin. Nutr. 2001, 73, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, S.; Owusu Apenten, R.K. Iron Binding Characteristics of Phenolic Compounds: Some Tentative Structure-Activity Relations. Food Chem. 2003, 81, 133–140. [Google Scholar] [CrossRef]
- Toxqui, L.; De Piero, A.; Courtois, V.; Bastida, S.; Sánchez-Muniz, F.J.; Vaquero, M.P. Deficiencia y Sobrecarga de Hierro; Implicaciones En El Estado Oxidativo y La Salud Cardiovascular. Nutr. Hosp. 2010, 25, 350–365. [Google Scholar]
- Ahmad Fuzi, S.F.; Koller, D.; Bruggraber, S.; Pereira, D.I.; Dainty, J.R.; Mushtaq, S. A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: A controlled trial in a cohort of healthy UK women using a stable iron isotope. Am. J. Clin. Nutr. 2017, 106, 1413–1421. [Google Scholar] [CrossRef]
- Yang, C.S.; Landau, J.M. Effects of tea consumption on nutrition and health. J. Nutr. 2000, 130, 2409–2412. [Google Scholar] [CrossRef]
- Alemdaroglu, N.C.; Dietz, U.; Wolffram, S.; Spahn-Langguth, H.; Langguth, P. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: Potential risk of diminished folic acid bioavailability. Biopharm. Drug Dispos. 2008, 29, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Breet, P.; Kruger, H.S.; Jerling, J.C.; Oosthuizen, W. Actions of black tea and Rooibos on iron status of primary school children. Nutr. Res. 2005, 25, 983–994. [Google Scholar] [CrossRef]
- Merhav, H.; Amitai, Y.; Palti, H.; Godfrey, S. Tea Drinking and Microcytic Anemia in Infants. Am. J. Clin. Nutr. 1985, 41, 1210–1213. [Google Scholar] [CrossRef] [PubMed]
- Kucera, O.; Mezera, V.; Moravcova, A.; Endlicher, R.; Lotkova, H.; Drahota, Z.; Cervinkova, Z. In Vitro Toxicity of Epigallocatechin Gallate in Rat Liver Mitochondria and Hepatocytes. Oxid. Med. Cell Longev. 2015, 2015, 476180. [Google Scholar] [CrossRef] [PubMed]
- Galati, G.; Lin, A.; Sultan, A.M.; O’Brien, P.J. Cellular and in Vivo Hepatotoxicity Caused by Green Tea Phenolic Acids and Catechins. Free Radic. Biol. Med. 2006, 40, 570–580. [Google Scholar] [CrossRef]
- Oketch-Rabah, H.A.; Roe, A.L.; Rider, C.V.; Bonkovsky, H.L.; Giancaspro, G.I.; Navarro, V.; Paine, M.F.; Betz, J.M.; Marles, R.J.; Casper, S.; et al. United States Pharmacopeia (USP) Comprehensive Review of the Hepatotoxicity of Green Tea Extracts. Toxicol. Rep. 2020, 7, 386–402. [Google Scholar] [CrossRef]
- Chow, H.H.S.; Hakim, I.A.; Vining, D.R.; Crowell, J.A.; Ranger-Moore, J.; Chew, W.M.; Celaya, C.A.; Rodney, S.R.; Hara, Y.; Alberts, D.S. Effects of Dosing Condition on the Oral Bioavailability of Green Tea Catechins after Single-Dose Administration of Polyphenon E in Healthy Individuals. Clin. Cancer Res. 2005, 11, 4627–4633. [Google Scholar] [CrossRef]
- Gobierno de España. Reglamento (UE) 2022/2340 de la Comisión de 30 de Noviembre de 2022 por el que se Modifica el Anexo III del Reglamento (CE) no 1925/2006 del Parlamento Europeo y del Consejo en lo que Respecta a los Extractos de té Verde que Contienen (-) 3-Galato de Epigalocatequina. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2022-81764 (accessed on 10 May 2023).
- D’Agostino, D.; Cavalieri, M.L.; Arcucci, M.S. Hepatitis Grave Producida Por Intoxicación Con Té Verde En Un Niño. Presentación de Un Caso. Arch. Argent. Pediatr. 2019, 117, 655–658. [Google Scholar] [CrossRef]
- Hadjipanayis, A.; Efstathiou, E.; Papaevangelou, V. Hepatotoxicity in an Adolescent with Black Iced Tea Overconsumption. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 387. [Google Scholar] [CrossRef]
- Temple, J.L. Review: Trends, Safety, and Recommendations for Caffeine Use in Children and Adolescents. J. Am. Acad. Child. Adolesc. Psychiatry 2019, 58, 36–45. [Google Scholar]
- Torres-Ugalde, Y.C.; Romero-Palencia, A.; Román-Gutiérrez, A.D.; Ojeda-Ramírez, D.; Guzmán-Saldaña, R.M.E. Caffeine Consumption in Children: Innocuous or Deleterious? A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 2489. [Google Scholar] [CrossRef]
- Zhang, H.; Lee, Z.X.; Qiu, A. Caffeine intake and cognitive functions in children. Psychopharmacology 2020, 237, 3109–3116. [Google Scholar] [CrossRef] [PubMed]
- Watson, E.J.; Banks, S.; Coates, A.M.; Kohler, M.J. The relationship between caffeine, sleep, and behavior in children. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2017, 13, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Jessel, C.D.; Narang, A.; Zuberi, R.; Bousman, C.A. Sleep quality and duration in children that consume caffeine: Impact of dose and genetic variation in ADORA2A and CYP1A. Genes 2023, 14, 289. [Google Scholar] [CrossRef] [PubMed]
Tea Type | EGCG | EGC | ECG | EC | Catechins Total (Sum of 8) | TF Total * | Caffeine | L-Theanine |
---|---|---|---|---|---|---|---|---|
Black (Dianhong) | 0.19–0.61 | 0.25–0.46 | 0.87–2.68 | 0.15–0.40 | 5.53–9.66 | 0.34–0.69 | 43.07 ± 1.48 | 0.94–2.14 |
Green (Xihu Longjing) | 6.07–12.89 | 3.79–4.05 | 1.63–5.98 | 1.32–2.33 | 69.04–50.01 | 0.04–0.05 | 42.43 ± 2.27 | 1.37–6.06 |
Oolong (Anxi Tieguanyin) | 0.02–0.48 | 0.79–1.28 | 0.00–0.01 | 0.15–0.26 | 15.73–12.26 | 0.07–0.17 | 43.13 ± 1.89 | 0.34–2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Ruiz, M.; Espinoza, J.P.; Benavides, L.; Otero, M.C. Biological Activities of Tea: Benefits, Risks, and Critical Overview of Their Consumption in Children. Beverages 2025, 11, 148. https://doi.org/10.3390/beverages11050148
Castillo-Ruiz M, Espinoza JP, Benavides L, Otero MC. Biological Activities of Tea: Benefits, Risks, and Critical Overview of Their Consumption in Children. Beverages. 2025; 11(5):148. https://doi.org/10.3390/beverages11050148
Chicago/Turabian StyleCastillo-Ruiz, Mario, Juan Pablo Espinoza, Lisette Benavides, and María Carolina Otero. 2025. "Biological Activities of Tea: Benefits, Risks, and Critical Overview of Their Consumption in Children" Beverages 11, no. 5: 148. https://doi.org/10.3390/beverages11050148
APA StyleCastillo-Ruiz, M., Espinoza, J. P., Benavides, L., & Otero, M. C. (2025). Biological Activities of Tea: Benefits, Risks, and Critical Overview of Their Consumption in Children. Beverages, 11(5), 148. https://doi.org/10.3390/beverages11050148