Extraction of Grape Juice: Impact of Laboratory-Scale Pressing Methods on the Chemical Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Grape Samples
- -
- Tavg—mean yearly temperature;
- -
- HD—number of hot days (Tmax > 32 °C);
- -
- Ptot—total yearly precipitation and number of rainy days;
- -
- Pgs—precipitation in the growing season (April–August);
- -
- RDtot—yearly rainy days;
- -
- RDgs—rainy days along the growing season (April–August).
2.3. Lab-Made Juice Samples
2.4. Assessment of Total and Extractable Flavonoids in Grape Samples
2.5. Chemical Characterization of Lab-Made Juice Samples
2.5.1. General Chemical Parameters
2.5.2. Total Flavonoids in Lab-Made Juice Samples
2.5.3. Total Phenolic Index
2.5.4. Color Index
2.5.5. Turbidity (NTU)
2.5.6. Polyphenol Oxidase Activity
2.5.7. Antioxidant Activity
2.6. Raman Spectroscopy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Grape Samples
3.2. Lab-Made Juice Samples: Comparison of the Methods Assayed
3.3. Lab-Made Juice Samples: Classification of the Pressing Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Río Segade, S.; Orriols, I.; Giacosa, S.; Rolle, L. Instrumental texture analysis parameters as winegrapes varietal markers and ripenes predictors. Int. J. Food Prop. 2011, 14, 1318–1329. [Google Scholar] [CrossRef]
- Liu, P.H.; Vrigneau, C.; Salmon, T.; Hoang, D.A.; Boulet, J.C.; Jégou, S.; Marchal, R. Influence of grape berry maturity on juice and base wine composition and foaming properties of sparkling wines from the Champagne region. Molecules 2018, 23, 1372. [Google Scholar] [CrossRef]
- Shanshiashvili, G.; Baviera, M.; Fracassetti, D. Exploring grape pressing for sparkling wine production: A comprehensive literature review on physicochemical parameters and technological applications. Appl. Food Res. 2024, 4, 100454. [Google Scholar] [CrossRef]
- Dumas, V.; Saurin, N.; Destrac Irvine, A.; Dedet, S.; Veyret, M.; Marchal, C.; Ojeda, H.; Van Leeuwen, C.; Duchêne, E. Influence of grape juice extraction methods on basic analytical parameters. Vitis 2020, 59, 77–83. [Google Scholar] [CrossRef]
- Aerny, J.; Dupraz, P.; Brückner, D. Influence du mode d’extraction du moût sur sa composition lors des contrôles de maturité du raisin. Rev. Suisse Vitic. Arboric. 2000, 32, 239–243. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D.; Towey, J. Organic acids in wine. In Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 3rd ed.; John Wiley & Sons, The Atrium, Southern Gate: Chichester, UK, 2021; Volume 2, p. 3. [Google Scholar]
- Huglin, M.P. Nouveau mode d’évaluation des possibilites héliothermiques d’un milieu viticole. Comptes Rendus L’académie D’agriculture Fr. 1978, 64, 1117–1126. [Google Scholar]
- Balotti, A.; Tscholl, S.; Vigl, L.E. Linking viticultural climatic indices to grape phenology in the South Tyrolean Alps. E3S Web Conf. 2018, 50, 01031. [Google Scholar] [CrossRef]
- Veronesi, V.; Schiavello, M. Ca′ del Bosco. In The Evolution of Made in Italy: Case Studies on the Italian Food and Beverage Industry, 1st ed.; Palgrave Macmillan: London, UK, 2023; Volume 1, pp. 73–85. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Quénol, H.; Grosset, M.; Barbeau, G.; Van Leeuwen, K.; Hofmann, M.; Foss, C.; Irimia, L.; Rochard, J.; Boulanger, J.P.; Tissot, C.; et al. Adaptation of viticulture to climate change: High resolution observations of adaptation scenario for viticulture: The adviclim european project. Bull. De L’oiv 2014, 87, 395–406. [Google Scholar]
- Di Stefano, R.; Guidoni, S. La determinazione dei polifenoli totali nei mosti e nei vini. Vignevini 1989, 1, 47–52. [Google Scholar]
- Di Stefano, R.; Cravero, M.C. Metodo per lo studio dei polifenoli dell’uva. Riv. Vitic. Enol. 1991, 2, 37–45. [Google Scholar]
- Corona, O.; Squadrito, M.; Vento, G.; Tirelli, A.; Di Stefano, R. Over-evaluation of total flavonoids in grape skin extracts containing sulfur dioxide. Food Chem. 2015, 172, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Fracassetti, D.; Gabrielli, M.; Corona, O.; Tirelli, A. Characterisation of Vernaccia Nera (Vitis vinifera L.) Grapes and Wine. S. Afr. J. Enol. Vitic. 2017, 38, 72–81. [Google Scholar] [CrossRef]
- OIV. Available online: https://www.oiv.int/it/standards/annex-a-methods-of-analysis-of-wines-and-musts/section-3-chemical-analysis/section-3-1-organic-compounds/section-3-1-3-acids/total-acidity-%28type-i%29 (accessed on 10 November 2024).
- Fracassetti, D.; Pozzoli, C.; Vitalini, S.; Tomás-Barberán, F.A.; Tirelli, A.; Iriti, M. Impact of cooking on bioactive compounds and antioxidant activity of pigmented rice cultivars. Foods 2020, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Goodner, K.L. Estimating Turbidity (NTU) from Absorption Data; Sensus Technical Note (SEN-TN-0010); Synergy Flavors: Wauconda, IL, USA, 2009; Volume 1, pp. 1–4. Available online: https://www.synergytaste.com/wp-content/uploads/sites/2/2022/05/Estimating-Turbidity-NTU-From-Absorption-Data.pdf (accessed on 10 November 2024).
- Fracassetti, D.; Vigentini, I.; Marai, S.; Ferrari, E.; Tirelli, A.; Foschino, R.; Guidetti, R. Suitability of ultraviolet-C irradiation for white grape must. Aust. J. Grape Wine Res. 2019, 25, 224–232. [Google Scholar] [CrossRef]
- Falguera, V.; Pagán, J.; Ibarz, I. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT—Food Sci. Technol. 2011, 44, 115–119. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Fracassetti, D.; Gabrielli, M.; Costa, C.; Tomás-Barberán, F.A.; Tirelli, A. Characterization and suitability of polyphenols-based formulas to replace sulfur dioxide for storage of sparkling white wine. Food Control 2016, 60, 606–614. [Google Scholar] [CrossRef]
- Piva, G.; Fracassetti, D.; Tirelli, A.; Mascheroni, E.; Musatti, A.; Inglese, P.; Piergiovanni, L.; Rollini, M. Evaluation of the antioxidant/antimicrobial performance of Posidonia oceanica in comparison with three commercial natural extracts and as a treatment on fresh-cut peaches (Prunus persica Batsch). Postharvest Biol. Technol. 2017, 124, 54–61. [Google Scholar] [CrossRef]
- Yang, D.; Ying, Y. Applications of Raman spectroscopy in agricultural products and food analysis: A review. Appl. Spectrosc. Rev. 2011, 46, 539–560. [Google Scholar] [CrossRef]
- Dhanoa, M.S.; Lister, S.J.; Sanderson, R.; Barnes, R.J. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J. Near Infrared Spectrosc. 1994, 2, 43–47. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Trégoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillère, J.P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Boss, P.K. Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229. [Google Scholar] [CrossRef]
- Río Segade, S.; Giacosa, S.; Gerbi, V.; Rolle, L. Berry skin thickness as main texture parameter to predict anthocyanin extractability in winegrapes. LWT Food Sci. Technol. 2011, 44, 392–398. [Google Scholar] [CrossRef]
- Battista, F.; Tomas, D.; Porro, D.; Caicci, F.; Giacosa, S.; Rolle, L. Winegrape berry skin thickness determination comparison between histological observation and texture analysis determination. Ital. J. Food Sci. 2015, 27, 136–141. [Google Scholar] [CrossRef]
- Du Toit, W.J.; Marais, J.; Pretorius, I.S.; Du Toit, M. Oxygen in must and wine: A review. S. Afr. J. Enol. Vitic. 2006, 27, 76–94. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic Compounds. In Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 4th ed.; John Wiley & Sons, The Atrium, Southern Gate: Chichester, UK, 2018; Volume 2, pp. 141–203. [Google Scholar]
- Yokotsuka, K. Effect of press design and pressing pressures on grape juice components. J. Ferment. Bioeng. 1990, 70, 15–21. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E. Changes in skin cell wall composition during the maturation of four premium wine grape varieties. J. Sci. Food Agric. 2008, 88, 420–428. [Google Scholar] [CrossRef]
- Junges, C.H.; Guerra, C.C.; Gomes, A.A.; Ferrão, M.F. Green analytical methodology for grape juice classification using FTIR spectroscopy combined with chemometrics. Talanta Open 2022, 6, 100168. [Google Scholar] [CrossRef]
- Junges, C.H.; Guerra, C.C.; Reis, N.A.; Gomes, A.A.; Diogo, F.S.; Ferrão, M.F. Grape juice classification with respect agricultural production system by means of visible spectroscopy chemometrics assisted. J. Food Compos. Anal. 2022, 114, 104793. [Google Scholar] [CrossRef]
- Zielinski, A.A.; Haminiuk, C.W.; Nunes, C.A.; Schnitzler, E.; van Ruth, S.M.; Granato, D. Chemical composition, sensory properties, provenance, and bioactivity of fruit juices as assessed by chemometrics: A critical review and guideline. Compr. Rev. Food Sci. 2014, 13, 300–316. [Google Scholar] [CrossRef]
Pressing Method | Grape Weight (g) | Pressing Conditions | Juice Production 1 | Average Processing Time (min) |
---|---|---|---|---|
Manual pressing | 500 | Under air | Hand-crushing | 5 |
Vacuum pressing | 500 | Under vacuum | Pressed in plastic bags under a vacuum machine; transfer juice into a container under nitrogen | 10 |
Juicer | 500 | Under air | Automatically separates juice from skins and seeds | 5 |
Small screw press | 2000 | Under air | Juice obtained from the screw device; pressure applied manually | 15 |
Tavg | HD | Ptot | Pgs | RDtot | RDgs | ||
---|---|---|---|---|---|---|---|
1997–2023 | Avg − SD | 14.0 | 16.3 | 870.7 | 392.7 | 69.9 | 34.3 |
Avg | 14.6 | 32.0 | 1140.0 | 551.5 | 87.3 | 40.8 | |
Avg + SD | 14.0 | 16.3 | 870.7 | 392.7 | 69.9 | 34.3 | |
2022 | 15.3 | 51.0 | 770.2 | 340.4 | 71.0 | 37.0 | |
2023 | 15.3 | 31.0 | 1247.6 | 807.0 | 86.0 | 49.0 |
Samples | Total Flavonoids (FLVs) (g/L of Catechin eq.) | Extractable Flavonoids (Extractable FLVs) (g/L of Catechin eq.) | Extractability (%) | |||
---|---|---|---|---|---|---|
Vintage 2022 | Vintage 2023 | Vintage 2022 | Vintage 2023 | Vintage 2022 | Vintage 2023 | |
Chardonnay 1 | 2.33 ± 0.17 a | 2.62 ± 0.08 a | 0.84 ± 0.01 a | 0.81 ± 0.01 a | 36.0 | 31.0 |
Chardonnay 2 | 3.10 ± 0.11 b | 2.63 ± 0.02 a | 1.14 ± 0.01 b | 0.80 ± 0.02 a | 36.9 | 30.4 |
Chardonnay 3 | 2.51 ± 0.08 a | 1.17 ± 0.01 b | 0.88 ± 0.03 a | 0.75 ± 0.03 b | 35.1 | 64.1 |
Chardonnay 4 | 6.00 ± 0.04 c | 5.03 ± 0.17 c | 1.14 ± 0.01 b | 0.88 ± 0.02 a | 19.0 | 17.5 |
Chardonnay 5 | 2.75 ± 0.05 a | 3.41 ± 0.07 d | 0.69 ± 0.01 a | 0.92 ± 0.01 c | 25.0 | 26.9 |
Chardonnay 6 | 2.54 ± 0.01 a | 3.94 ± 0.03 d | 1.11 ± 0.04 b | 0.80 ± 0.01 a | 43.8 | 20.1 |
Average | 3.20 ± 1.27 a | 3.13 ± 1.20 a | 0.97 ± 0.17 b | 0.82 ± 0.15 a | 32.6 ± 8.2 a | 31.7 ± 15.6 a |
Pinot blanc 1 | 3.3 ± 0.05 a | 4.4 ± 0.07 a | 1.45 ± 0.02 a | 1.80 ± 0.50 a | 43.9 | 40.9 |
Pinot blanc 2 | 4.4 ± 0.20 b | 4.3 ± 0.15 a | 1.70 ± 0.02 a | 2.07 ± 0.15 b | 38.6 | 48.1 |
Average | 3.85 ± 0.55 a | 4.35 ± 0.14 b | 1.57 ± 0.12 a | 1.93 ± 0.14 b | 41.3 ± 2.7 a | 44.5 ± 3.6 a |
Samples | Vintage | Sugars (g/L) | pH | Titratable Acidity (TA) (g/L of Tartaric Acid) | Total Phenol Index (TPI) (mg/L Gallic Acid eq.) | Total Flavonoids (FLVs) (mg/L of Catechin eq.) | Antioxidant Capacity (AC) (mmol Trolox eq./L) | Color (ABS 420 nm) | NTU | PPO Activity (unit/mL) |
---|---|---|---|---|---|---|---|---|---|---|
Manual pressing | 2022 | 197 ± 2 aA | 3.31 ± 0.70 bA | 5.7 ± 0.6 aB | 641 ± 50 bA | 144 ± 57 bcA | 3.04 ± 0.54 bA | 0.55 ± 0.13 aA | 4902 ± 346 aA | 44 ± 23 aA |
2023 | 196 ± 8 aA | 3.19 ± 0.18 aA | 8.0 ± 1.0 aA | 186 ± 20 cB | 95 ± 23 aB | 1.55 ± 0.69 aB | 0.50 ± 0.24 abA | 3173 ± 159 bB | 46 ± 60 aA | |
Vacuum pressing | 2022 | 189 ± 2 aA | 3.36 ± 0.89 bA | 6.0 ± 0.6 aB | 727 ± 200 bA | 202 ± 80 bA | 3.55 ± 0.57 aB | 0.56 ± 0.10 bA | 4703 ± 276 aB | 120 ± 205 aA |
2023 | 189 ± 4 aA | 3.16 ± 0.21 aB | 8.2 ± 1.5 aA | 197 ± 12 aB | 86 ± 18 aB | 1.50 ± 0.85 bA | 0.62 ± 0.24 aB | 3091 ± 179 bA | 12 ± 10 aA | |
Small screw press | 2022 | 182 ± 2 aA | 3.31 ± 0.12 bA | 5.8 ± 0.4 aB | 219 ± 64 bA | 75 ± 27 cA | 2.55 ± 0.67 bA | 0.50 ± 0.01 bA | 1514 ± 277 bA | 33 ± 30 aA |
2023 | 197 ± 3 aA | 3.15 ± 0.23 aB | 8.6 ± 1.4 aA | 150 ± 7 aB | 74 ± 18 aA | 1.50 ± 0.83 aB | 0.35 ± 0.06 bB | 1921 ± 84 aA | 11 ± 18 aA |
Samples | Vintage | Sugars (g/L) | pH | Titratable Acidity (TA) (g/L of Tartaric Acid) | Total Phenol Index (TPI) (mg/L Gallic Acid eq.) | Total Flavonoids (FLVs) (mg/L of Catechin eq.) | Antioxidant Capacity (AC) (mmol Trolox eq./L) | Color (ABS 420 nm) | NTU | PPO Activity (unit/mL) |
---|---|---|---|---|---|---|---|---|---|---|
Manual pressing | 2022 | 181 ± 1 aA | 3.22 ± 0.08 aA | 5.7 ± 0.0 aA | 303 ± 55 aA | 79 ± 11 aA | 2.90 ± 0.1 aA | 0.52 ± 0.07 aA | 4759 ± 560 aB | 34 ± 19 aA |
2023 | 178 ± 3 aA | 3.10 ± 0.01 bA | 7.9 ± 0.1 bB | 225 ± 8 bB | 50 ± 11 bB | 1.49 ± 0.6 bB | 0.58 ± 0.06 aA | 3079 ± 280 bA | 39 ± 22 aA | |
Vacuum pressing | 2022 | 179 ± 1 aA | 3.31 ± 0.05 aA | 5.3 ± 0.0 aB | 537 ± 30 bB | 128 ± 4 bB | 3.9 ± 0.3 aA | 0.60 ± 0.04 abB | 4041 ± 154 aB | 91 ± 65 aA |
2023 | 177 ± 2 aA | 2.99 ± 0.03 bB | 8.7 ± 0.1 bB | 155 ± 7 aA | 52 ± 3 aA | 2.13 ± 0.1 bB | 0.58 ± 0.03 aB | 2527 ± 178 aA | 6 ± 11 aA | |
Small screw press | 2022 | 182 ± 1 aA | 3.21 ± 0.06 aB | 5.4 ± 0.0 aA | 145 ± 8 aA | 61 ± 7 aA | 1.79 ± 0.1 aB | 0.21 ± 0.03 aA | 1858 ± 177 bA | 15 ± 11 aA |
2023 | 178 ± 3 aA | 3.05 ± 0.01 bB | 8.4 ± 0.1 bB | 115 ± 19 aB | 59 ± 19 bB | 2.45 ± 0.1 bA | 0.23 ± 0.01 aA | 1267 ± 100 aB | 8 ± 11 aA |
Training Set | Test Set | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2022—From Physicochemistry Data | ||||||||||
Prediction | Manual Press | Small Press | Vacuum Press | Juicer | Accuracy | Manual Press | Small Press | Vacuum Press | Juicer | Accuracy |
Manual press | 15 | 0 | 0 | 0 | 1.00 | 1 | 0 | 0 | 0 | 1.00 |
Small press | 0 | 15 | 0 | 0 | 0 | 1 | 0 | 0 | ||
Vacuum press | 0 | 0 | 15 | 0 | 0 | 0 | 1 | 0 | ||
Juicer | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 1 | ||
2023—from physicochemistry data | ||||||||||
Prediction | Manual press | Small press | Vacuum press | accuracy | Manual press | Small press | Vacuum press | accuracy | ||
Manual press | 15 | 0 | 0 | 1.00 | 1 | 0 | 0 | 1.00 | ||
Small press | 0 | 15 | 0 | 0 | 1 | 0 | ||||
Vacuum press | 0 | 0 | 15 | 0 | 0 | 1 | ||||
2022—from Raman spectra data | ||||||||||
Prediction | Manual press | Small press | Vacuum press | Juicer | accuracy | Manual press | Small press | Vacuum press | Juicer | accuracy |
Manual press | 15 | 0 | 0 | 0 | 1.00 | 1 | 0 | 0 | 0 | 1.00 |
Small press | 0 | 15 | 0 | 0 | 0 | 1 | 0 | 0 | ||
Vacuum press | 0 | 0 | 11 | 0 | 0 | 0 | 1 | 0 | ||
Juicer | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1 | ||
2023—from Raman spectra data | ||||||||||
Prediction | Manual press | Small press | Vacuum press | accuracy | Manual press | Small press | Vacuum press | accuracy | ||
Manual press | 13 | 0 | 0 | 1.00 | 1 | 0 | 0 | 1.00 | ||
Small press | 0 | 13 | 0 | 0 | 1 | 0 | ||||
Vacuum press | 0 | 0 | 12 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanshiashvili, G.; Baviera, M.; Ounaissi, D.; Lançon-Verdier, V.; Maury, C.; Cola, G.; Fracassetti, D. Extraction of Grape Juice: Impact of Laboratory-Scale Pressing Methods on the Chemical Composition. Beverages 2025, 11, 23. https://doi.org/10.3390/beverages11010023
Shanshiashvili G, Baviera M, Ounaissi D, Lançon-Verdier V, Maury C, Cola G, Fracassetti D. Extraction of Grape Juice: Impact of Laboratory-Scale Pressing Methods on the Chemical Composition. Beverages. 2025; 11(1):23. https://doi.org/10.3390/beverages11010023
Chicago/Turabian StyleShanshiashvili, Gvantsa, Marta Baviera, Daoud Ounaissi, Vanessa Lançon-Verdier, Chantal Maury, Gabriele Cola, and Daniela Fracassetti. 2025. "Extraction of Grape Juice: Impact of Laboratory-Scale Pressing Methods on the Chemical Composition" Beverages 11, no. 1: 23. https://doi.org/10.3390/beverages11010023
APA StyleShanshiashvili, G., Baviera, M., Ounaissi, D., Lançon-Verdier, V., Maury, C., Cola, G., & Fracassetti, D. (2025). Extraction of Grape Juice: Impact of Laboratory-Scale Pressing Methods on the Chemical Composition. Beverages, 11(1), 23. https://doi.org/10.3390/beverages11010023