Polyphenol Composition of Skin-Contact Fermented ‘Solaris’ and ‘Zilga’ Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivars and Wine Processing
2.2. Chemical Analyses
2.3. Weather Conditions
2.4. Statistical Analysis
3. Results
3.1. Total Polyphenols and Antioxidant Activity
3.2. Individual Phenolic Compounds
4. Discussion
4.1. Total Polyphenols and Antioxidant Activity
4.2. Individual Phenolic Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salemnia, S.; Garcia-Torres, R.; Herman, D.; Fajardo-Lira, C. Red, White, And…Orange? A New Look into an Old Wine (P20-007-19). Curr. Dev. Nutr. 2019, 3, 1765. [Google Scholar] [CrossRef]
- Bestulić, E.; Rossi, S.; Plavša, T.; Horvat, I.; Lukić, I.; Bubola, M.; Peršurić, A.S.I.; Jeromel, A.; Radeka, S. Comparison of different maceration and non-maceration treatments for enhancement of phenolic composition, colour intensity, and taste attributes of Malvazija istarska (Vitis vinifera L.) white wines. J. Food Compos. Anal. 2022, 109, 104472. [Google Scholar] [CrossRef]
- Beara, I.; Majkić, T.; Milovanović, L.; Svirčev, E.; Torović, L. Polyphenolic profile and in vitro biological activity of Serbian orange (skin fermented white) wines. Food Chem. 2024, 447, 138933. [Google Scholar] [CrossRef]
- Garcia-Torres, R.; Ramírez-Rodrigues, M.M.; Pérez-Alva, A. Polyphenolic Profile of range wines. Curr. Deve. Nutr. 2021, 5, 1158. [Google Scholar] [CrossRef]
- Zhang, S.; Petersen, M.A.; Liu, J.; Toldam-Andersen, T.B. Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris. Molecules 2015, 20, 21609–21625. [Google Scholar] [CrossRef]
- Pedastsaar, P.; Vaher, M.; Helmja, K.; Kulp, M.; Kaljurand, M.; Karp, K.; Raal, A.; Karathanos, V.; Puessa, T. Chemical composition of red wines made from hybrid grape and common grape (Vitis vinifera L.) cultivars. Proc. Est. Acad. Sci. Chem. 2014, 63, 444–453. [Google Scholar] [CrossRef]
- Nixdorf, S.L.; Hermosín-Gutiérrez, I. Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Anal. Chim. Acta 2010, 659, 208–215. [Google Scholar] [CrossRef]
- Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1995, 43, 890–894. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines. I. Monomeric anthocyanins and their color expression. Molecules 2012, 17, 1571. [Google Scholar] [CrossRef]
- Gapinski, A.D.; Horton, A.C.; Watrelot, A.A. Effect of Whole Cluster Fermentation on Phenolics in Cold-Hardy Hybrid Wines. Food Bioprocess. Technol. 2023, 16, 1595–1608. [Google Scholar] [CrossRef]
- Karvonen, J. Vitis cv. Zilga is a vine for the northern temperate climate—Short communication. Hortic. Sci. 2014, 41, 147–151. [Google Scholar] [CrossRef]
- Maante-Kuljus, M.; Rätsep, R.; Mainla, L.; Moor, U.; Starast, M.; Põldma, P.; Karp, K. Technological maturity of hybrid vine (Vitis) fruits under Estonian climate conditions. Acta Agric. Scand. Sect. B Soil. Plant Sci. 2019, 69, 706–714. [Google Scholar] [CrossRef]
- Basler, P.; Pfenninger, H.; Bill, R. Evaluation of German grape varieties Johanniter, Solaris, Bronner and Fr.242-73. Obst-und Weinbau 2002, 138, 442–446. [Google Scholar]
- Waterhouse, A. Folin-Ciocalteau Micro Method for Total Phenol in Wine; Department of Viticulture & Enology University of California: Davis, CA, USA, 2019; Available online: https://waterhouse.ucdavis.edu/folin-ciocalteau-micro-method-total-phenol-wine (accessed on 18 March 2024).
- Mitrevska, K.; Grigorakis, S.; Loupassaki, S.; Calokerinos, A.C. Antioxidant Activity and Polyphenolic Content of North Macedonian Wines. Appl. Sci. 2020, 10, 2010. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of ultrasound-assisted extraction of phloretin and other phenolic compounds from apple tree leaves (Malus domestica Borkh.) and comparison of different cultivars from Estonia. Antioxidants 2021, 10, 189. [Google Scholar] [CrossRef]
- Fernández-Pachón, M.S.; Villaño, D.; Garcia-Parrilla, M.C.; Troncoso, A.M. Antioxidant activity of wines and their polyphenolic composition. Anal. Chim. Acta 2004, 513, 113–118. [Google Scholar] [CrossRef]
- Tekos, F.; Gkasdrogka, M.; Vardakas, P.; Skaperda, Z.; Kouretas, D. Determination of the polyphenolic content and the antioxidant activities of four indigenous Greek red and white wine varieties. Int. J. Funct. Nutr. 2023, 4, 3. [Google Scholar] [CrossRef]
- Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review. Mol. Biol. 2023, 45, 782–798. [Google Scholar] [CrossRef]
- Nikfardjam, M.S.P.; Márk, L.; Avar, P.; Figler, M.; Ohmacht, R. Polyphenols, anthocyanins, and trans-resveratrol in red wines from the Hungarian Villány region. Food Chem. 2006, 98, 453–462. [Google Scholar] [CrossRef]
- Maante-Kuljus, M.; Rätsep, R.; Moor, U.; Mainla, L.; Põldma, P.; Koort, A.; Karp, K. Effect of vintage and viticultural practices on the phenolic content of hybrid winegrapes in very cool climate. Agriculture 2020, 10, 169. [Google Scholar] [CrossRef]
- Aru, V.; Nittnaus, A.P.; Sørensen, K.M.; Toldam-Andersen, T.B.; Engelsen, S.B. Effects of Water Stress, Defoliation and Crop Thinning on Vitis vinifera L. cv. Solaris Must and Wine Part II: 1H NMR Metabolomics. Metabolites 2022, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; He, Y.N.; Yue, T.X.; Wang, J.; Zhang, Z.W. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules 2014, 19, 13683–13703. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Rouxinol, M.I.; Martins, M.R.; Salgueiro, V.; Costa, M.J.; Barroso, J.M.; Rato, A.E. Climate Effect on Morphological Traits and Polyphenolic Composition of Red Wine Grapes of Vitis vinifera. Beverages 2023, 9, 8. [Google Scholar] [CrossRef]
- Fernandes de Oliveira, A.; Mercenaro, L.; Del Caro, A.; Pretti, L.; Nieddu, G. Distinctive anthocyanin accumulation responses to temperature and natural UV radiation of two field-grown (Vitis vinifera L.) cultivars. Molecules 2015, 20, 2061–2080. [Google Scholar] [CrossRef] [PubMed]
- Poudel, R.P.; Mochioka, R.; Beppu, K.; Kataoka, I. Influence of Temperature on Berry Composition of Interspecific Hybrid Wine Grape ‘Kadainou R-1’ (Vitis ficifolia var. ganebu × V. vinifera ‘Muscat of Alexandria’). J. Jpn. Soc. Hort. Sci. 2009, 78, 169–174. [Google Scholar] [CrossRef]
- Blancquaert, E.H.; Oberholster, A.; Ricardo-da-Silva, J.M.; Deloire, A.J. Grape Flavonoid Evolution and Composition Under Altered Light and Temperature Conditions in Cabernet Sauvignon (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1062. [Google Scholar] [CrossRef] [PubMed]
- Buican, B.C.; Colibaba, L.C.; Luchian, C.E.; Kallithraka, S.; Cotea, V.V. “Orange” Wine—The Resurgence of an Ancient Winemaking Technique: A Review. Agriculture 2023, 13, 1750. [Google Scholar] [CrossRef]
- Bene, Z.; Kállay, M. Polyphenol contents of skin-contact fermented white wines. Acta Aliment. 2019, 48, 515–524. [Google Scholar] [CrossRef]
- Nicolle, P.; Marcotte, C.; Angers, P.; Pedneault, K. Co-fermentation of red grapes and white pomace: A natural and economical process to modulate hybrid wine composition. Food Chem. 2018, 242, 481–490. [Google Scholar] [CrossRef]
- Lomolino, G.; Zocca, F.; Spettoli, P.; Zanin, G.; Lante, A. A preliminary study on changes in phenolic content during Bianchetta Trevigiana winemaking. J. Food Compos. Anal. 2010, 23, 575–579. [Google Scholar] [CrossRef]
- Schneider, V.; Chichua, D. Orange wines: Tannin extraction kinetics during maceration of white grapes. J. Vitic. Enol. 2021, 7, 1–9. [Google Scholar]
- Beara, I.; Majkić, T.; Milovanović, L.; Torović, L. In Search of Biological Activity of Orange Wines: Polyphenolic Profile and In Vitro Inhibition of Digestive Enzymes. Proceedings 2023, 91, 351. [Google Scholar] [CrossRef]
- Lapidot, T.; Harel, S.; Akiri, B.; Granit, R.; Kanner, J. PH-dependent forms of red wine anthocyanins as antioxidants. J. Agric. Food Chem. 1999, 47, 67–70. [Google Scholar] [CrossRef]
- Radovanović, B.; Radovanović, A. Free Radical Scavenging Activity and Anthocyanin Profile of Cabernet Sauvignon Wines from the Balkan Region. Molecules 2010, 15, 4213–4226. [Google Scholar] [CrossRef] [PubMed]
- Revilla, E.; García-Beneytez, E.; Cabello, F.; Martín-Ortega, G.; Ryan, J.M. Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them. J. Chromatogr. A 2001, 915, 53–60. [Google Scholar] [CrossRef] [PubMed]
- García-Beneytez, E.; Revilla, E.; Cabell, F. Anthocyanin pattern of several red grape cultivars and wines made from them. Eur. Food Res. Technol. 2002, 215, 32–37. [Google Scholar] [CrossRef]
- Mateus, N.; Silva, A.M.S.; Vercauteren, J.; de Freitas, V. Occurrence of Anthocyanin-Derived Pigments in Red Wines. Agric. Food Chem. 2001, 49, 4836–4840. [Google Scholar] [CrossRef] [PubMed]
- Casavecchia, C.; Magnisi, R.; Pera, L.L.; Maisano, R.; Dugo, G. Classification of Sicilian Red Wines from Autochthonous and Allochthonous Cultivars According to Anthocyanin Pattern. Am. J. Enol. Vitic. 2007, 58, 286–290. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.L.; Liang, N.N.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef]
- Arapitsas, P.; Oliveira, J.; Mattivi, F. Do white grapes really exist? Food Res. Int. 2015, 69, 21–25. [Google Scholar] [CrossRef]
- Niu, S.; Hao, F.; Mo, H.; Jiang, J.; Wang, H.; Liu, C.; Fan, X.; Zhang, Y. Phenol profiles and antioxidant properties of white skinned grapes and their coloured genotypes during growth. Biotechnol. Biotechnol. Equip. 2016, 31, 58–67. [Google Scholar] [CrossRef]
- Gholami, M.; Coombe, B.G. Occurrence of anthocyanin pigments in berries of the white cultivar Muscat Gordo Blanco (Vitis vinifera L.). Aust. J. Grape Wine Res. 1995, 1, 67–70. [Google Scholar] [CrossRef]
- Cosme, F.; Andrea-Silva, J.; Filipe-Ribeiro, L.; Moreira, A.S.P.; Malheiro, A.C.; Coimbra, M.A.; Domingues, M.R.M.; Nunes, F.M. The origin of pinking phenomena in white wines: An Update. BIO Web Conf. 2019, 12, 02013. [Google Scholar] [CrossRef]
ID# | Name | m/z | Retention Time | Detected (d) or Quantified (q) |
---|---|---|---|---|
1 | Protocatechuic acid | 153.2000 > 109.0500 | 2.8 | q |
2 | Procyanidin B1 | 579.0078 > 127.0500 | 4.3 | q |
3 | Catechin | 291.1000 > 139.1000 | 5.8 | q |
4 | Procyanidin B2 | 579.0000 > 127.2000 | 6.7 | q |
5 | Caffeic acid | 179.2000 > 135.1000 | 7 | q |
6 | Syringic acid | 199.0000 > 140.0500 | 8.8 | d, LOQ |
7 | Delphinidin-3-glucoside | UV | 9.2 | q, UV |
8 | Epicatechin | 291.1000 > 139.1000 | 9.6 | q |
9 | Malvidin-diglucoside | UV | 10.1 | q, UV |
10 | Petunidin-3-glucoside | UV | 12.1 | q, UV |
11 | Ferulic acid | 195.1000 > 177.0500 | 12.4 | d, LOQ |
12 | Peonidin-3-glucoside | UV | 13.3 | q, UV |
13 | Malvidin-3-glucoside | UV | 14.2 | q, UV |
14 | Quercetin-3-galactoside | 464.9000 > 303.0500 | 16.9 | q |
15 | Quercetin-3-glucuronide | 478.9500 > 302.9000 | 17.1 | q |
16 | Rutin | 611.2000 > 303.1000 | 17.2 | q |
17 | Quercetin-3-glucoside | 464.9000 > 303.0500 | 17.3 | q |
18 | Kaempferol-3-glucoside | 449.1000 > 286.9500 | 19 | d, LOQ |
19 | Quercitrin | 447.0000 > 300.0500 | 19 | d, LOQ |
20 | Phloretin | 275.0000 > 107.0000 | 19.1 | q |
21 | Isorhamnetin-3-glucoside | 479.0000 > 317.0000 | 19.3 | q |
22 | Isorhamnetin-3-glalactoside | 479.0000 > 317.0000 | 19.3 | q |
23 | Malvidin | 331.0000 > 315.0500 | 19.8 | q |
24 | Quercetin | 303.0000 > 153.0000 | 21.6 | q |
25 | Kaempferol | 287.0000 > 152.9500 | 23.3 | d, LOQ |
26 | Isorhamnetin | 317.0000 > 301.9500 | 23.9 | q |
Groups | Polyphenols, μg L−1 | ‘Solaris’ Wine | ‘Zilga’ Wine |
---|---|---|---|
Phenolic acids | Caffeic acid | 23.0 ± 1.0 | 81.0 ± 2.0 |
Protocatechuic acid | 29.0 ± 2.0 | 48.0 ± 4.0 | |
Sum of phenolic acids | 52.0 ± 1.0 b | 129.0 ± 5.0 a | |
Anthocyanins | Delphinidin-3-glucoside | nd | 1355.3 ± 102.0 |
Malvidin | nd | 215.3 ± 8.4 | |
Malvidin-3-glucoside | nd | 1300.0 ± 68.4 | |
Malvidin-3-diglucoside | nd | 1369.0 ± 143.7 | |
Peonidin-3-glucoside | nd | 78.7 ± 4.5 | |
Petunidin-3-glucoside | nd | 493.7 ± 77.4 | |
Sum of anthocyanins | 4812.0 ± 254.6 | ||
Flavanols | Catechin | 640.7 ± 19.1 | 268.0 ± 7.2 |
Epicatechin | 321.0 ± 6.1 | 146.7 ± 6.1 | |
Procyanidin B1 | 36.3 ± 1.5 | 32.7 ± 0.6 | |
Procyanidin B2 | 64.7 ± 11.6 | 111.0 ± 2.0 | |
Sum of flavanols | 1062.7 ± 35.5 a | 558.4 ± 3.2 b | |
Flavonols | Rutin | 2.5 ± 0.6 | 2.3 ± 0.6 |
Isorhamnetin-3-glucoside+isorhamnetin-3-galactoside | 98.3 ± 9.3 | 241.0 ± 18.7 | |
Phloretin | 30.0 ± 1.7 | 28.7 ± 1.2 | |
Quercetin | nd | 41.3 ± 2.5 | |
Quercetin-3-galactoside | 3.3 ± 1.2 | 4.0 ± 0.0 | |
Quercetin-3-glucoside | 82.3 ± 1.5 | 32.0 ± 1.0 | |
Quercetin-3-glucuronide | 56.3 ± 1.5 | 254.7 ± 1.5 | |
Sum of flavonols | 272.7 ± 12.1 b | 604.0 ± 15.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maante-Kuljus, M.; Karp, K.; Rätsep, R.; Mainla, L.; Koort, A.; Põldma, P.; Kaldmäe, H.; Moor, U. Polyphenol Composition of Skin-Contact Fermented ‘Solaris’ and ‘Zilga’ Wines. Beverages 2024, 10, 59. https://doi.org/10.3390/beverages10030059
Maante-Kuljus M, Karp K, Rätsep R, Mainla L, Koort A, Põldma P, Kaldmäe H, Moor U. Polyphenol Composition of Skin-Contact Fermented ‘Solaris’ and ‘Zilga’ Wines. Beverages. 2024; 10(3):59. https://doi.org/10.3390/beverages10030059
Chicago/Turabian StyleMaante-Kuljus, Mariana, Kadri Karp, Reelika Rätsep, Leila Mainla, Angela Koort, Priit Põldma, Hedi Kaldmäe, and Ulvi Moor. 2024. "Polyphenol Composition of Skin-Contact Fermented ‘Solaris’ and ‘Zilga’ Wines" Beverages 10, no. 3: 59. https://doi.org/10.3390/beverages10030059
APA StyleMaante-Kuljus, M., Karp, K., Rätsep, R., Mainla, L., Koort, A., Põldma, P., Kaldmäe, H., & Moor, U. (2024). Polyphenol Composition of Skin-Contact Fermented ‘Solaris’ and ‘Zilga’ Wines. Beverages, 10(3), 59. https://doi.org/10.3390/beverages10030059