Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFD and OFM Data
2.2. Experimental Data for Validation
2.3. Machine Learning Model
2.3.1. LASSO Regression Model
2.3.2. Multi-Layer Perceptron Model
2.3.3. CNNs for Multi-Output Regression
2.3.4. Long Short-Term Memory (LSTM) Model
2.4. Loss Functions
3. Results and Discussion
4. Conclusions
- (1)
- We have presented an analysis that ML algorithms are able to correct OFM results from projection-based images significantly reducing the error rate.
- (2)
- We have extended the literature by considering the interaction of u- and v-components velocity with the intensity gradients on the image in both x- and y-directions.
- (3)
- We have released the data and code used in this work for reproducibility and further research in this direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The Top 10 Causes of Death. 2020; World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 9 December 2020).
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Yi, H.; Johnson, M.; Bramlage, L.C.; Ludwig, B.; Yang, Z. Effects of Pulsatile Flow Rate and Shunt Ratio in Bifurcated Distal Arteries on Hemodynamic Characteristics Involved in Two Patient-Specific Internal Carotid Artery Sidewall Aneurysms: A Numerical Study. Bioengineering 2022, 9, 326. [Google Scholar] [CrossRef]
- Meng, H.; Wang, Z.; Hoi, Y.; Gao, L.; Metaxa, E.; Swartz, D.D.; Kolega, J. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007, 38, 1924–1931. [Google Scholar] [CrossRef]
- Yi, H.; Yang, Z.; Johnson, M.; Bramlage, L.; Ludwig, B. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues. Phys. Fluids 2022, 34, 103101. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.L.; Rong, J.; Benjamin, E.J.; Larson, M.G.; Levy, D.; Vita, J.A.; Hamburg, N.M.; Vasan, R.S.; Mitchell, G.F. Components of Hemodynamic Load and Cardiovascular Events. Circulation 2015, 131, 354–361. [Google Scholar] [CrossRef]
- Chaichana, T.; Sun, Z.; Jewkes, J. Computation of hemodynamics in the left coronary artery with variable angulations. J. Biomech. 2011, 44, 1869–1878. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.F.; Polacek, D.C.; Shi, C.; Helmke, B.P. The convergence of haemodynamics, genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorheology 2002, 39, 299–306. [Google Scholar]
- Lee, B.K.; Kwon, H.M.; Hong, B.K.; Park, B.E.; Suh, S.H.; Cho, M.T.; Lee, C.S.; Kim, M.C.; Kim, C.J.; Yoo, S.S.; et al. Hemodynamic effects on atherosclerosis-prone coronary artery: Wall shear stress/rate distribution and impedance phase angle in coronary and aortic circulation. Yonsei Med. J. 2001, 42, 375–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.K.; Sun, Z.; Tu, J.; Worthley, S.G.; Mazumdar, J.; Abbott, D. Medical image diagnostics based on computer-aided flow analysis using magnetic resonance images. Comput. Med. Imaging Graph. 2012, 36, 527–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, P.H.; Coskun, A.U.; Kinlay, S.; Clark, M.E.; Sonka, M.; Wahle, A.; Ilegbusi, O.J.; Yeghiazarians, Y.; Popma, J.J.; Orav, J.; et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation 2003, 108, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Stone, P.H.; Coskun, A.U.; Yeghiazarians, Y.; Kinlay, S.; Popma, J.J.; Kuntz, R.E.; Feldman, C.L. Prediction of sites of coronary atherosclerosis progression: In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr. Opin. Cardiol. 2003, 18, 458–470. [Google Scholar] [CrossRef]
- Stone, P.H.; Coskun, A.U.; Kinlay, S.; Popma, J.J.; Sonka, M.; Wahle, A.; Yeghiazarians, Y.; Maynard, C.; Kuntz, R.E.; Feldman, C.L. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: An in vivo serial study. Eur. Heart J. 2007, 28, 705–710. [Google Scholar] [CrossRef]
- Coskun, A.U.; Yeghiazarians, Y.; Kinlay, S.; Clark, M.E.; Ilegbusi, O.J.; Wahle, A.; Sonka, M.; Popma, J.J.; Kuntz, R.E.; Feldman, C.L.; et al. Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans. Catheter. Cardiovasc. Interv. 2003, 60, 67–78. [Google Scholar] [CrossRef]
- Lee, B.K.; Kwon, H.M.; Kim, D.; Yoon, Y.W.; Seo, J.K.; Kim, I.J.; Roh, H.W.; Suh, S.H.; Yoo, S.S.; Kim, H.S. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables. Yonsei Med. J. 1998, 39, 166–174. [Google Scholar] [CrossRef]
- Yang, Z. Optical Flow Method for Blood Flow Velocimetry Based on Digital X-Ray Subtraction Angiography: A Brief Review. Res. Rev. J. Med. Health Sci. 2017, 6, 8–12. [Google Scholar]
- Yang, Z.; Yu, H.; Huang, G.P.; Ludwig, B. Divergence Compensatory Optical Flow Method for Blood Velocimetry. J. Biomech. Eng. 2017, 139, 061005. [Google Scholar] [CrossRef]
- Cornelius, N.; Kanade, T. Adapting optical-flow to measure object motion in reflectance and x-ray image sequences (abstract only). SIGGRAPH Comput. Graph. 1984, 18, 24–25. [Google Scholar] [CrossRef]
- Mongrain, R.; Bertrand, M.; Mailloux, G.E.; Meunier, J.; Bourassa, M.G. Obtaining blood velocity profile from coronary arteriograms via optimally controlled optical flow. In Proceedings of the Computers in Cardiology, Tampere, Finland, 4–7 September 2022; pp. 13–16. [Google Scholar]
- Bonnefous, O.; Pereira, V.M.; Ouared, R.; Brina, O.; Aerts, H.; Hermans, R.; van Nijnatten, F.; Stawiaski, J.; Ruijters, D. Quantification of arterial flow using digital subtraction angiography. Med. Phys. 2012, 39, 6264–6275. [Google Scholar] [CrossRef]
- Yang, Z.; Johnson, M. Velocimetry based on dye visualization for a pulsatile tubing flow measurement. Appl. Opt. 2019, 58, C7–C13. [Google Scholar] [CrossRef]
- Meijering, E.H.W.; Zuiderveld, K.J.; Viergever, M.A. Image Registration for Digital Subtraction Angiography. Int. J. Comput. Vis. 1999, 31, 227–246. [Google Scholar] [CrossRef]
- Brody, W.R. Digital Subtraction Angiography. IEEE Trans. Nucl. Sci. 1982, 29, 1176–1180. [Google Scholar] [CrossRef]
- Kawaji, M. Two-phase flow measurements using a photochromic dye activation technique. Nucl. Eng. Des. 1998, 184, 379–392. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Chowienczyk, P.; Alastruey, J. Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms. PLoS ONE 2021, 16, e0245026. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Stroke Risk Prediction with Machine Learning Techniques. Sensors 2022, 22, 4670. [Google Scholar] [CrossRef]
- Lin, A.; van Diemen, P.; Motwani, M.; McElhinney, P.; Otaki, Y.; Han, D.; Kwan, A.; Tzolos, E.; Klein, E.; Kuronuma, K.; et al. Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Ischemia And Impaired Myocardial Blood Flow. J. Cardiovasc. Comput. Tomogr. 2021, 15, S3–S4. [Google Scholar] [CrossRef]
- Dritsas, E.; Alexiou, S.; Moustakas, K. Cardiovascular Disease Risk Prediction with Supervised Machine Learning Techniques. In Proceedings of the ICT4AWE, Online, 23–25 April 2022; pp. 315–321. [Google Scholar]
- Hu, P.; Cai, C.; Yi, H.; Zhao, J.; Feng, Y.; Wang, Q. Aiding Airway Obstruction Diagnosis With Computational Fluid Dynamics and Convolutional Neural Network: A New Perspective and Numerical Case Study. J. Fluids Eng. 2022, 144, 081206. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, G.Z.; Mao, L.; Li, X.L.; Zhou, C.S.; Xia, S.; Zhang, Y.X.; Zhang, B.; Hu, B.; Lu, G.M.; et al. Machine Learning–Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study. Am. J. Neuroradiol. 2021, 42, 648–654. [Google Scholar] [CrossRef]
- Arzani, A.; Dawson, S.T.M. Data-driven cardiovascular flow modelling: Examples and opportunities. J. R. Soc. Interface 2021, 18, 20200802. [Google Scholar] [CrossRef]
- Swinehart, D.F. The beer-lambert law. J. Chem. Educ. 1962, 39, 333–335. [Google Scholar] [CrossRef]
- Javadi, A.; Karbaschi, M.; Bastani, D.; Ferri, J.; Kovalchuk, V.; Kovalchuk, N.; Javadi, K.; Miller, R. Marangoni instabilities for convective mobile interfaces during drop exchange: Experimental study and CFD simulation. Colloids Surf. A Physicochem. Eng. Asp. 2014, 441, 846–854. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 58, 67–88. [Google Scholar] [CrossRef]
- Ribeiro, M.D.; Rehman, A.; Ahmed, S.; Dengel, A. DeepCFD: Efficient steady-state laminar flow approximation with deep convolutional neural networks. arXiv 2020, arXiv:2004.08826. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Lathuilière, S.; Mesejo, P.; Alameda-Pineda, X.; Horaud, R. A Comprehensive Analysis of Deep Regression. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2065–2081. [Google Scholar] [CrossRef]
- Zhang, J.; Petitjean, C.; Lopez, P.; Ainouz, S. Direct estimation of fetal head circumference from ultrasound images based on regression CNN. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, Montreal, QC, Canada, 6–8 July 2020; pp. 914–922. [Google Scholar]
Locations | 5 mm | 15 mm | 35 mm |
Relative Error (%) | 3.3 | 4.8 | 3.5 |
LASSO | MLP | CNN | LSTM | |
---|---|---|---|---|
Validation with simulated test data | ||||
MAE (m/s) | 2 × 10−4 † | 2 × 10−4 * | 4 × 10−4 * | 4 × 10−4 * |
MSE (m/s) | 3 × 10−8 † | 5 × 10−8 * | 7 × 10−8 † | 8 × 10−8 * |
Validation with in vitro experimental data | ||||
MAE (m/s) | 3 × 10−3 † | 5 × 10−4 * | 6 × 10−4 † | 6 × 10−4 * |
MSE (m/s) | 5 × 10−7 † | 4 × 10−8 * | 5 × 10−8 * | 8 × 10−8 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padhee, S.; Johnson, M.; Yi, H.; Banerjee, T.; Yang, Z. Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography. Bioengineering 2022, 9, 622. https://doi.org/10.3390/bioengineering9110622
Padhee S, Johnson M, Yi H, Banerjee T, Yang Z. Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography. Bioengineering. 2022; 9(11):622. https://doi.org/10.3390/bioengineering9110622
Chicago/Turabian StylePadhee, Swati, Mark Johnson, Hang Yi, Tanvi Banerjee, and Zifeng Yang. 2022. "Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography" Bioengineering 9, no. 11: 622. https://doi.org/10.3390/bioengineering9110622
APA StylePadhee, S., Johnson, M., Yi, H., Banerjee, T., & Yang, Z. (2022). Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography. Bioengineering, 9(11), 622. https://doi.org/10.3390/bioengineering9110622