Classification of Autism and Control Gait in Children Using Multisegment Foot Kinematic Features
Abstract
:1. Introduction
Overview of ML Studies for ASD Gait Assessment
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Experimental Protocol
2.4. Biomechanical Data Processing
2.5. Feature Selection
2.6. Classification Models and Model Evaluation
2.7. Model Interpretation
3. Results
3.1. Classification Models and Model Evaluation
3.2. Model Interpretation
4. Discussion
4.1. Classification Evaluation of Autism Gait Patterns
4.2. Feature Rankings and Model Interpretability
4.3. Comparison with Previous Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Provost, B.; Lopez, B.R.; Heimerl, S. A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental concerns. J. Autism Dev. Disord. 2007, 37, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Liu, T. Motor milestone development in young children with autism spectrum disorders: An exploratory study. Educ. Psychol. Pract. 2012, 28, 315–326. [Google Scholar] [CrossRef]
- Ming, X.; Brimacombe, M.; Wagner, G.C. Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 2007, 29, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Vilensky, J.A.; Damasio, A.R.; Maurer, R.G. Gait disturbances in patients with autistic behavior: A preliminary study. Arch. Neurol. 1981, 38, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Perin, C.; Valagussa, G.; Mazzucchelli, M.; Gariboldi, V.; Cerri, C.G.; Meroni, R.; Grossi, E.; Cornaggia, C.M.; Menant, J.; Piscitelli, D. Physiological profile assessment of posture in children and adolescents with autism spectrum disorder and typically developing peers. Brain Sci. 2020, 10, 681. [Google Scholar] [CrossRef]
- Kindregan, D.; Gallagher, L.; Gormley, J. Gait deviations in children with autism spectrum disorders: A review. Autism Res. Treat. 2015, 2015, 741480. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, N.K.; Tahir, N.M.; Jailani, R. Experimental Approach in Gait Analysis and Classification Methods for Autism spectrum Disorder: A Review. Int. J. Emerg. Trends Eng. Res. 2020, 9, 3995–4005. [Google Scholar] [CrossRef]
- Calhoun, M.; Longworth, M.; Chester, V.L. Gait patterns in children with autism. Clin. Biomech. 2011, 26, 200–206. [Google Scholar] [CrossRef]
- Bennett, H.J.; Ringleb, S.I.; Bobzien, J.; Haegele, J.A. Walking lower extremity biomechanics of adolescents with autism spectrum disorder. J. Biomech. 2021, 119, 110332. [Google Scholar] [CrossRef]
- Eggleston, J.D.; Landers, M.R.; Bates, B.T.; Nagelhout, E.; Dufek, J.S. Examination of gait parameters during perturbed over-ground walking in children with autism spectrum disorder. Res. Dev. Disabil. 2018, 74, 50–56. [Google Scholar] [CrossRef]
- Eggleston, J.D.; Harry, J.R.; Hickman, R.A.; Dufek, J.S. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder. Gait Posture 2017, 55, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Nobile, M.; Perego, P.; Piccinini, L.; Mani, E.; Rossi, A.; Bellina, M.; Molteni, M. Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. Autism 2011, 15, 263–283. [Google Scholar] [CrossRef] [PubMed]
- Biffi, E.; Costantini, C.; Ceccarelli, S.B.; Cesareo, A.; Marzocchi, G.M.; Nobile, M.; Molteni, M.; Crippa, A. Gait pattern and motor performance during discrete gait perturbation in children with autism spectrum disorders. Front. Psychol. 2018, 9, 2530. [Google Scholar] [CrossRef] [PubMed]
- Ilias, S.; Tahir, N.M.; Jailani, R.; Hasan, C.Z.C. Classification of autism children gait patterns using neural network and support vector machine. In Proceedings of the 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 30–31 May 2016; pp. 52–56. [Google Scholar]
- Zakaria, N.K.; Tahir, N.M.; Jailani, R. ASD Children gait classification based on principal component analysis and linear discriminant analysis. Int. J. Emerg. Trends Eng. Res. 2020, 8, 2438–2445. [Google Scholar] [CrossRef]
- Zakaria, N.K.; Tahir, N.M.; Jailani, R. A Markerless-based Gait Analysis and Visualization Approach for ASD Children. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 426–432. [Google Scholar] [CrossRef]
- Hasan, C.; Jailani, R.; Tahir, N. Automated classification of gait abnormalities in children with autism spectrum disorders based on kinematic data. Int. J. Psychiatry Psychother. 2017, 2, 10–15. [Google Scholar]
- Hasan, C.Z.C.; Jailani, R.; Tahir, N.M. ANN and SVM classifiers in identifying autism spectrum disorder gait based on three-dimensional ground reaction forces. In Proceedings of the TENCON 2018–2018 IEEE Region 10 Conference, Jeju, Korea, 28–31 October 2018; pp. 2436–2440. [Google Scholar]
- Al-Jubouri, A.A.; Ali, I.H.; Rajihy, Y. Gait and Full Body Movement Dataset of Autistic Children Classified by Rough Set Classifier. J. Phys. Conf. Ser. 2021, 1818, 012201. [Google Scholar] [CrossRef]
- Saboor, A.; Kask, T.; Kuusik, A.; Alam, M.M.; Le Moullec, Y.; Niazi, I.K.; Zoha, A.; Ahmad, R. Latest research trends in gait analysis using wearable sensors and machine learning: A systematic review. IEEE Access 2020, 8, 167830–167864. [Google Scholar] [CrossRef]
- Pradhan, A.; Kuruganti, U.; Chester, V. Biomechanical parameters and clinical assessment scores for identifying elderly fallers based on balance and dynamic tasks. IEEE Access 2020, 8, 193532–193543. [Google Scholar] [CrossRef]
- Anagnostopoulou, P.; Alexandropoulou, V.; Lorentzou, G.; Lykothanasi, A.; Ntaountaki, P.; Drigas, A. Artificial intelligence in autism assessment. Int. J. Emerg. Technol. Learn. 2020, 15, 95–107. [Google Scholar] [CrossRef]
- Chen, C.P.; Keown, C.L.; Jahedi, A.; Nair, A.; Pflieger, M.E.; Bailey, B.A.; Müller, R.-A. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage Clin. 2015, 8, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Kosmicki, J.; Sochat, V.; Duda, M.; Wall, D. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl. Psychiatry 2015, 5, e514. [Google Scholar] [CrossRef] [Green Version]
- Teitelbaum, P.; Teitelbaum, O.; Nye, J.; Fryman, J.; Maurer, R.G. Movement analysis in infancy may be useful for early diagnosis of autism. Proc. Natl. Acad. Sci. USA 1998, 95, 13982–13987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covert, I.; Lundberg, S.M.; Lee, S.-I. Understanding global feature contributions with additive importance measures. Adv. Neural Inf. Process. Syst. 2020, 33, 17212–17223. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Robinson, B.F.; Mervis, C.B.; Robinson, B.W. The roles of verbal short-term memory and working memory in the acquisition of grammar by children with Williams syndrome. Dev. Neuropsychol. 2003, 23, 13–31. [Google Scholar]
- Leardini, A.; Benedetti, M.G.; Berti, L.; Bettinelli, D.; Nativo, R.; Giannini, S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture 2007, 25, 453–462. [Google Scholar] [CrossRef]
- Grant, J.; Chester, V. The effects of walking speed on adult multi-segment foot kinematics. J. Bioeng. Biomed. Sci. 2015, 5, 181–183. [Google Scholar]
- McGranaghan, R.M.; Mannucci, A.J.; Wilson, B.; Mattmann, C.A.; Chadwick, R. New capabilities for prediction of high-latitude ionospheric scintillation: A novel approach with machine learning. Space Weather 2018, 16, 1817–1846. [Google Scholar] [CrossRef] [Green Version]
- Lalkhen, A.G.; McCluskey, A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 221–223. [Google Scholar] [CrossRef] [Green Version]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)-Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Van Rijsbergen, C.J. The Geometry of Information Retrieval; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Hasan, C.Z.C.; Jailani, R.; Tahir, N.M.; Yassin, I.M.; Rizman, Z.I. Automated classification of autism spectrum disorders gait patterns using discriminant analysis based on kinematic and kinetic gait features. J. Appl. Environ. Biol. Sci. 2017, 7, 150–156. [Google Scholar]
Characteristics | Autism (n = 19) | Control (n = 21) |
---|---|---|
Age (years) | 10.47 ± 2.91 | 11.38 ± 2.91 |
Height (m) | 1.42 ± 0.15 | 1.49 ± 0.14 |
Weight (kg) | 41.20 ± 17.00 | 44.33 ± 16.36 |
Gender (#M, #F) | (16 M; 3 F) | (11 M; 10 F) |
Segment | Method | Accuracy | Sensitivity | Specificity | PPV | NPV | F1 | MCC | SR |
---|---|---|---|---|---|---|---|---|---|
Cal-Met + Sha-Cal | RBF | 0.938 | 0.895 | 0.976 | 0.971 | 0.911 | 0.943 | 0.877 | 15 |
Mid-Met + Sha-Cal | RBF | 0.938 | 0.947 | 0.929 | 0.923 | 0.951 | 0.94 | 0.875 | 23 |
Cal-Met + Sha-Foot | Linear | 0.925 | 0.868 | 0.976 | 0.971 | 0.891 | 0.932 | 0.853 | 27 |
Cal-Mid + Mid-Met | RBF | 0.925 | 0.895 | 0.952 | 0.944 | 0.909 | 0.930 | 0.850 | 34 |
Cal-Met + Cal-Mid | Linear | 0.925 | 0.842 | 1 | 1 | 0.875 | 0.933 | 0.858 | 34 |
Sha-Cal + Sha-Foot | RBF | 0.925 | 0.921 | 0.929 | 0.921 | 0.929 | 0.929 | 0.850 | 35 |
Cal-Met + Mid-Met | RBF | 0.912 | 0.868 | 0.952 | 0.943 | 0.889 | 0.920 | 0.826 | 47 |
Cal-Met + Cal-Mid | RBF | 0.912 | 0.921 | 0.905 | 0.897 | 0.927 | 0.916 | 0.825 | 54 |
Cal-Met + Sha-Foot | RBF | 0.900 | 0.868 | 0.929 | 0.917 | 0.886 | 0.907 | 0.800 | 61 |
Cal-Mid + Sha-Cal | RBF | 0.900 | 0.816 | 0.976 | 0.969 | 0.854 | 0.911 | 0.807 | 63 |
Cal-Mid | Linear | 0.887 | 0.868 | 0.905 | 0.892 | 0.884 | 0.894 | 0.774 | 75 |
Cal-Met + Sha-Cal | Linear | 0.887 | 0.868 | 0.905 | 0.892 | 0.884 | 0.894 | 0.774 | 75 |
Mid-Met + Sha-Cal | Linear | 0.875 | 0.842 | 0.905 | 0.889 | 0.864 | 0.884 | 0.750 | 93 |
Cal-Mid + Mid-Met | Linear | 0.850 | 0.763 | 0.929 | 0.906 | 0.812 | 0.867 | 0.705 | 104 |
Cal-Met | Linear | 0.838 | 0.737 | 0.929 | 0.903 | 0.796 | 0.857 | 0.682 | 113 |
Sha-Cal | RBF | 0.838 | 0.868 | 0.810 | 0.805 | 0.872 | 0.840 | 0.677 | 120 |
Sha-Foot | Linear | 0.838 | 0.842 | 0.833 | 0.821 | 0.854 | 0.843 | 0.675 | 120 |
Sha-Foot | RBF | 0.838 | 0.842 | 0.833 | 0.821 | 0.854 | 0.843 | 0.675 | 120 |
Cal-Mid | RBF | 0.838 | 0.763 | 0.905 | 0.879 | 0.809 | 0.854 | 0.678 | 121 |
Cal-Met | RBF | 0.812 | 0.632 | 0.976 | 0.960 | 0.745 | 0.845 | 0.655 | 122 |
Sha-Cal + Sha-Foot | Linear | 0.838 | 0.816 | 0.857 | 0.838 | 0.837 | 0.847 | 0.674 | 125 |
Cal-Met + Mid-Met | Linear | 0.838 | 0.789 | 0.881 | 0.857 | 0.822 | 0.851 | 0.675 | 125 |
Cal-Mid + Sha-Cal | Linear | 0.825 | 0.816 | 0.833 | 0.816 | 0.833 | 0.833 | 0.649 | 145 |
Mid-Met | RBF | 0.775 | 0.816 | 0.738 | 0.738 | 0.816 | 0.775 | 0.554 | 164 |
Mid-Met | Linear | 0.787 | 0.789 | 0.786 | 0.769 | 0.805 | 0.795 | 0.575 | 165 |
Sha-Cal | Linear | 0.762 | 0.658 | 0.857 | 0.806 | 0.735 | 0.791 | 0.528 | 170 |
Segment | Method | Accuracy | Sensitivity | Specificity | PPV | NPV | F1 | MCC | SR |
---|---|---|---|---|---|---|---|---|---|
MSF (combined) | RBF | 0.963 | 0.947 | 0.976 | 0.973 | 0.953 | 0.965 | 0.925 | 15 |
MSF + SSF | RBF | 0.963 | 0.947 | 0.976 | 0.973 | 0.953 | 0.965 | 0.925 | 15 |
Cal-Mid + Mid-Met + Sha-Cal | RBF | 0.963 | 0.974 | 0.952 | 0.949 | 0.976 | 0.964 | 0.925 | 21 |
Cal-Mid + Sha-Cal + Sha-Foot | RBF | 0.963 | 0.974 | 0.952 | 0.949 | 0.976 | 0.964 | 0.925 | 21 |
Cal-Met + Cal-Mid + Sha-Cal | RBF | 0.950 | 0.895 | 1 | 1 | 0.913 | 0.955 | 0.904 | 35 |
Cal-Met + Sha-Cal + Sha-Foot | RBF | 0.950 | 0.895 | 1 | 1 | 0.913 | 0.955 | 0.904 | 35 |
Cal-Met + Cal-Mid + Mid-Met | RBF | 0.950 | 0.921 | 0.976 | 0.972 | 0.932 | 0.953 | 0.901 | 39 |
MSF + SSF | Linear | 0.950 | 0.921 | 0.976 | 0.972 | 0.932 | 0.953 | 0.901 | 39 |
Cal-Met + Cal-Mid + Mid-Met | Linear | 0.938 | 0.921 | 0.952 | 0.946 | 0.930 | 0.941 | 0.875 | 57 |
Cal-Met + Mid-Met + Sha-Cal | RBF | 0.938 | 0.947 | 0.929 | 0.923 | 0.951 | 0.940 | 0.875 | 58 |
Cal-Met + Cal-Mid + Sha-Foot | RBF | 0.912 | 0.895 | 0.929 | 0.919 | 0.907 | 0.918 | 0.825 | 76 |
Cal-Mid + Sha-Cal + Sha-Foot | Linear | 0.912 | 0.895 | 0.929 | 0.919 | 0.907 | 0.918 | 0.825 | 76 |
MSF (combined) | Linear | 0.912 | 0.895 | 0.929 | 0.919 | 0.907 | 0.918 | 0.825 | 76 |
Cal-Met + Cal-Mid + Sha-Foot | Linear | 0.900 | 0.842 | 0.952 | 0.941 | 0.870 | 0.909 | 0.803 | 93 |
Cal-Met + Mid-Met + Sha-Cal | Linear | 0.887 | 0.895 | 0.881 | 0.872 | 0.902 | 0.892 | 0.775 | 103 |
Cal-Met + Sha-Cal + Sha-Foot | Linear | 0.887 | 0.868 | 0.905 | 0.892 | 0.884 | 0.894 | 0.774 | 108 |
Cal-Mid + Mid-Met + Sha-Cal | Linear | 0.875 | 0.816 | 0.929 | 0.912 | 0.848 | 0.886 | 0.752 | 113 |
Cal-Met + Cal-Mid + Sha-Cal | Linear | 0.875 | 0.868 | 0.881 | 0.868 | 0.881 | 0.881 | 0.749 | 119 |
Segment | Method | Accuracy | Sensitivity | Specificity | PPV | NPV | F1 | MCC | SR |
---|---|---|---|---|---|---|---|---|---|
Planar_All | RBF | 0.912 | 0.868 | 0.952 | 0.943 | 0.889 | 0.920 | 0.826 | 7 |
Planar_All | Linear | 0.875 | 0.868 | 0.881 | 0.868 | 0.881 | 0.881 | 0.749 | 21 |
MLA | RBF | 0.762 | 0.553 | 0.952 | 0.913 | 0.702 | 0.808 | 0.557 | 30 |
S2G | RBF | 0.762 | 0.605 | 0.905 | 0.852 | 0.717 | 0.800 | 0.539 | 33 |
V2G | RBF | 0.738 | 0.579 | 0.881 | 0.815 | 0.698 | 0.779 | 0.486 | 46 |
MLA | Linear | 0.738 | 0.526 | 0.929 | 0.870 | 0.684 | 0.788 | 0.502 | 48 |
F2G | RBF | 0.725 | 0.553 | 0.881 | 0.808 | 0.685 | 0.771 | 0.462 | 58 |
S2V | Linear | 0.725 | 0.579 | 0.857 | 0.786 | 0.692 | 0.766 | 0.457 | 62 |
S2G | Linear | 0.700 | 0.421 | 0.952 | 0.889 | 0.645 | 0.769 | 0.447 | 64 |
S2V | RBF | 0.713 | 0.658 | 0.762 | 0.714 | 0.711 | 0.736 | 0.423 | 70 |
F2Ps | Linear | 0.700 | 0.711 | 0.690 | 0.675 | 0.725 | 0.707 | 0.401 | 74 |
F2G | Linear | 0.700 | 0.500 | 0.881 | 0.792 | 0.661 | 0.755 | 0.415 | 76 |
F2Ps | RBF | 0.700 | 0.579 | 0.810 | 0.733 | 0.680 | 0.739 | 0.401 | 80 |
S2F | Linear | 0.662 | 0.395 | 0.905 | 0.789 | 0.623 | 0.738 | 0.351 | 91 |
F2Pt | Linear | 0.662 | 0.684 | 0.643 | 0.634 | 0.692 | 0.667 | 0.327 | 96 |
V2G | Linear | 0.662 | 0.447 | 0.857 | 0.739 | 0.632 | 0.727 | 0.336 | 99 |
F2Pt | RBF | 0.662 | 0.658 | 0.667 | 0.641 | 0.683 | 0.675 | 0.324 | 99 |
S2F | RBF | 0.662 | 0.579 | 0.738 | 0.667 | 0.660 | 0.697 | 0.322 | 102 |
Segment | Method | Accuracy | Sensitivity | Specificity | PPV | NPV | F1 | MCC |
---|---|---|---|---|---|---|---|---|
Cal-Met + Cal-Mid + Mid-Met + Sha-Cal | RBF | 0.963 | 0.947 | 0.976 | 0.973 | 0.953 | 0.965 | 0.925 |
All (MSF + SSF) | RBF | 0.963 | 0.947 | 0.976 | 0.973 | 0.953 | 0.965 | 0.925 |
Cal-Mid + Mid-Met + Sha-Cal | RBF | 0.963 | 0.974 | 0.952 | 0.949 | 0.976 | 0.964 | 0.925 |
Cal-Met + Sha-Cal | RBF | 0.938 | 0.895 | 0.976 | 0.971 | 0.911 | 0.943 | 0.877 |
Mid-Met + Sha-Cal | RBF | 0.938 | 0.947 | 0.929 | 0.923 | 0.951 | 0.94 | 0.875 |
Cal-Met + Sha-Foot | Linear | 0.925 | 0.868 | 0.976 | 0.971 | 0.891 | 0.932 | 0.853 |
Planar-All | RBF | 0.912 | 0.868 | 0.952 | 0.943 | 0.889 | 0.92 | 0.826 |
Planar-All | Linear | 0.875 | 0.868 | 0.881 | 0.868 | 0.881 | 0.881 | 0.749 |
Sha-Foot | RBF | 0.838 | 0.842 | 0.833 | 0.821 | 0.854 | 0.843 | 0.675 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, A.; Chester, V.; Padhiar, K. Classification of Autism and Control Gait in Children Using Multisegment Foot Kinematic Features. Bioengineering 2022, 9, 552. https://doi.org/10.3390/bioengineering9100552
Pradhan A, Chester V, Padhiar K. Classification of Autism and Control Gait in Children Using Multisegment Foot Kinematic Features. Bioengineering. 2022; 9(10):552. https://doi.org/10.3390/bioengineering9100552
Chicago/Turabian StylePradhan, Ashirbad, Victoria Chester, and Karansinh Padhiar. 2022. "Classification of Autism and Control Gait in Children Using Multisegment Foot Kinematic Features" Bioengineering 9, no. 10: 552. https://doi.org/10.3390/bioengineering9100552
APA StylePradhan, A., Chester, V., & Padhiar, K. (2022). Classification of Autism and Control Gait in Children Using Multisegment Foot Kinematic Features. Bioengineering, 9(10), 552. https://doi.org/10.3390/bioengineering9100552