Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Steensels, J.; Gallone, B.; Voordeckers, K.; Verstrepen, K.J. Domestication of Industrial Microbes. Curr. Biol. 2019, 29, R381–R393. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.G.; Jin, Y.S.; Cha, Y.L.; Seo, J.H. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour. Technol. 2017, 228, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Láinez, M.; Ruiz, H.A.; Arellano-Plaza, M.; Martínez-Hernández, S. Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus. Renew. Energy 2019, 138, 1127–1133. [Google Scholar] [CrossRef]
- Azhar, S.H.M.; Abdulla, R. Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. Biocatal. Agric. Biotechnol. 2018, 14, 457–465. [Google Scholar] [CrossRef]
- Nandy, S.K.; Srivastava, R.K. A review on sustainable yeast biotechnological processes and applications. Microbiol. Res. 2018, 207, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Goffeau, A.; Barrell, B.G.; Bussey, H.; Davis, R.W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq, C.; Johnston, M.; et al. Life with 6000 genes. Science 1996, 274, 546–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saccharomyces Genome Database Home Page. Available online: http://www.yeastgenome.org (accessed on 29 September 2020).
- Hagman, A.; Säll, T.; Compagno, C.; Piskur, J. Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE 2013, 8, e68734. [Google Scholar] [CrossRef]
- Fay, J.C.; Lui, P.; Ong, G.T.; Dunham, M.J.; Cromie, G.A.; Jeffery, E.W.; Ludlow, C.L.; Dudley, A.M. A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLoS Biol. 2019, 17, e3000147. [Google Scholar] [CrossRef] [Green Version]
- Aouizerat, T.; Gutman, I.; Paz, Y.; Maeir, A.M.; Gadot, Y.; Gelman, D.; Szitenberg, A.; Drori, E.; Pinkus, A.; Schoemann, M.; et al. Isolation and characterization of live yeast cells from ancient vessels as a tool in bio-archaeology. mBio. 2019, 10, e00388-19. [Google Scholar] [CrossRef] [Green Version]
- Gallone, B.; Steensels, J.; Mertens, S.; Dzialo, M.C.; Gordon, J.L.; Wauters, R.; Theßeling, F.A.; Bellinazzo, F.; Saels, V.; Herrera-Malaver, B.; et al. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat. Ecol. Evol. 2019, 3, 1562–1575. [Google Scholar] [CrossRef]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Mans, R.; van Rossum, H.M.; Wijsman, M.; Backx, A.; Kuijpers, N.G.; van den Broek, M.; Daran-Lapujade, P.; Pronk, J.T.; van Maris, A.J.; Daran, J.M. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, fov004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertens, S.; Gallone, B.; Steensels, J.; Herrera-Malaver, B.; Cortebeek, J.; Nolmans, R.; Saels, V.; Vyas, V.K.; Verstrepen, K.J. Reducing phenolic off-flavors through CRISPR-based gene editing of the FDC1 gene in Saccharomyces cerevisiae x Saccharomyces eubayanus hybrid lager beer yeasts. PLoS ONE 2019, 14, e0224525. [Google Scholar] [CrossRef]
- Vigentini, I.; Gebbia, M.; Belotti, A.; Foschino, R.; Roth, F.P. CRISPR/Cas9 system as a valuable genome editing tool for wine yeasts with application to decrease urea production. Front. Microbiol. 2017, 8, 2194:1–2194:11. [Google Scholar] [CrossRef]
- Denby, C.M.; Li, R.A.; Vu, V.T.; Costello, Z.; Lin, W.; Chan, L.J.G.; Williams, J.; Donaldson, B.; Bamforth, C.W.; Petzold, C.J.; et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 2018, 9, 965:1–965:10. [Google Scholar] [CrossRef] [PubMed]
- de Vries, G.A.R.; de Groot, P.A.; van den Broek, M.; Daran, J.G. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus. Microb. Cell Fact. 2017, 16, 222:1–222:18. [Google Scholar] [CrossRef]
- Ishii, T.; Araki, M. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food 2017, 8, 44–56. [Google Scholar] [CrossRef] [Green Version]
- YPD media. Cold Spring Harbor Protocols. Available online: http://cshprotocols.cshlp.org/content/2010/9/pdb.rec12315.full (accessed on 29 September 2020).
- Davydenko, S.G.; Yarovoy, B.F.; Stepanova, V.P.; Afonin, D.V.; Batashov, B.E.; Dedegkaev, A.T. A new yeast strain for brewery: Properties and advantages. Russ. J. Genet. 2010, 46, 1295–1305. [Google Scholar] [CrossRef]
- Scientific Center “Kurchatov Institute”—Research Institute for Genetics and Selection of Industrial Microorganism. Available online: https://www.vkpm.genetika.ru (accessed on 29 September 2020).
- Mittenberg, A.G.; Moiseeva, T.N.; Kuzyk, V.O.; Barlev, N.A. Regulation of endoribonuclease activity of alpha-type proteasome subunits in proerythroleukemia K562 upon hemin-induced differentiation. Protein J. 2016, 35, 17–23. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Mittenberg, A.G.; Kuzyk, V.O.; Shabelnikov, S.V.; Gorbach, D.P.; Fedorova, O.A.; Shatrova, A.N.; Barlev, N.A. Combined treatment of human multiple myeloma cells with bortezomib and doxorubicin alters the interactome of 20S proteasomes. Cell Cycle 2018, 17, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- SCIEX Home Page. Available online: https://www.sciex.com (accessed on 29 September 2020).
- Protein Prospector. Available online: http://www.prospector.ucsf.edu/prospector/mshome.htm (accessed on 29 September 2020).
- The Universal Protein Resource (UniProt). Available online: https://www.uniprot.org/statistics/Swiss-Prot (accessed on 29 September 2020).
- Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteom. 2005, 4, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Sohn, J.H.; Warner, J.R. Autoregulation in the biosynthesis of ribosomes. Mol. Cell. Biol. 2003, 23, 699–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Léger-Silvestre, I.; Caffrey, J.M.; Dawaliby, R.; Alvarez-Arias, D.A.; Gas, N.; Bertolone, S.J.; Gleizes, P.E.; Ellis, S.R. Specific role for yeast homologs of the Diamond Blackfan anemia-associated Rps19 protein in ribosome synthesis. J. Biol. Chem. 2005, 280, 38177–38185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.D.; Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 2000, 296, 979–987. [Google Scholar] [CrossRef]
- Lim, C.R.; Kimata, Y.; Ohdate, H.; Kokubo, T.; Kikuchi, N.; Horigome, T.; Kohno, K. The Saccharomyces cerevisiae RuvB-like protein, Tih2p, is required for cell cycle progression and RNA polymerase II-directed transcription. J. Biol. Chem. 2000, 275, 22409–22417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shnyreva, M.G.; Petrova, E.V.; Egorov, S.N.; Hinnen, A. Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition. Microbiol. Res. 1996, 151, 291–300. [Google Scholar] [CrossRef]
- Takahashi, K.; Inuzuka, M.; Ingi, T. Cellular signaling mediated by calphoglin-induced activation of IPP and PGM. Biochem. Biophys. Res. Commun. 2004, 325, 203–214. [Google Scholar] [CrossRef]
- Dickinson, J.R.; Salgado, L.E.J.; Hewlins, M.J. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 8028–8034. [Google Scholar] [CrossRef] [Green Version]
- Hazelwood, L.A.; Daran, J.M.; Van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.S. Zinc-regulated genes in Saccharomyces cerevisiae revealed by transposon tagging. Genetics 2000, 156, 45–58. [Google Scholar] [PubMed]
- Zhao, H.; Eide, D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. USA 1996, 93, 2454–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curwin, A.J.; von Blume, J.; Malhotra, V. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol. Biol. Cell 2012, 23, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Steffan, J.S.; McAlister-Henn, L. Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J. Biol. Chem. 1992, 267, 24708–24715. [Google Scholar] [PubMed]
- Miller, S.M.; Magasanik, B. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol. 1990, 172, 4927–4935. [Google Scholar] [CrossRef] [Green Version]
- Jakovljevic, J.; Ohmayer, U.; Gamalinda, M.; Talkish, J.; Alexander, L.; Linnemann, J.; Milkereit, P.; Woolford, J.L. Ribosomal proteins L7 and L8 function in concert with six A3 assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. RNA 2012, 18, 1805–1822. [Google Scholar] [CrossRef] [Green Version]
- Belyy, A.; Levanova, N.; Tabakova, I.; Rospert, S.; Belyi, Y. Ribosomal protein Rps26 influences 80S ribosome assembly in Saccharomyces cerevisiae. mSphere 2016, 1, e00109-15. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.; Cherest, H.; Surdin-Kerjan, Y. Elements involved in S-adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Mol. Cell. Biol. 1989, 9, 3292–3298. [Google Scholar] [CrossRef]
- Natarajan, K.; Meyer, M.R.; Jackson, B.M.; Slade, D.; Roberts, C.; Hinnebusch, A.G.; Marton, M.J. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 2001, 21, 4347–4368. [Google Scholar] [CrossRef] [Green Version]
- Dorfman, B.Z. The isolation of adenylosuccinate synthetase mutants in yeast by selection for constitutive behavior in pigmented strains. Genetics 1969, 61, 377–389. [Google Scholar] [PubMed]
- Tkach, J.M.; Yimit, A.; Lee, A.Y.; Riffle, M.; Costanzo, M.; Jaschob, D.; Hendry, J.A.; Ou, J.; Moffat, J.; Boone, C.; et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat. Cell Biol. 2012, 14, 966–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunayevich, P.; Baltanás, R.; Clemente, J.A.; Couto, A.; Sapochnik, D.; Vasen, G.; Colman-Lerner, A. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci. Rep. 2018, 8, 15168:1–15168:15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, M.A.; Barbuch, R.; Bard, M. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1999, 1445, 110–122. [Google Scholar] [CrossRef]
- Novick, P.; Field, C.; Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980, 21, 205–215. [Google Scholar] [CrossRef]
- Lee, M.C.; Miller, E.A. Molecular mechanisms of COPII vesicle formation. Semin. Cell Dev. Biol. 2007, 18, 424–434. [Google Scholar] [CrossRef]
- DeLuna, A.; Avendano, A.; Riego, L.; Gonzalez, A. NADP-Glutamate Dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J. Biol. Chem. 2001, 276, 43775–43783. [Google Scholar] [CrossRef] [Green Version]
- Warren, M.J.; Scott, A.I. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem. Sci. 2001, 15, 486–491. [Google Scholar] [CrossRef]
- Walkey, C.J.; Luo, Z.; Borchers, C.H.; Measday, V.; van Vuuren, H.J. The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme. FEMS Yeast Res. 2011, 11, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Graham, L.A.; Hill, K.J.; Stevens, T.H. VMA8 encodes a 32-kDa V1 subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase required for function and assembly of the enzyme complex. J. Biol. Chem. 1995, 270, 15037–15044. [Google Scholar] [CrossRef] [Green Version]
- Firestone, K.; Awonusi, D.; Panfair, D.; Roland, D.; Ramamurthy, A.; Kusmierczyk, A.R. YPL260W, a high-copy suppressor of a copper-sensitive phenotype in yeast, is linked to DNA repair and proteasome function. Plant Gene 2016, 5, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Fortes, P.; Inada, T.; Preiss, T.; Hentze, M.W.; Mattaj, I.W.; Sachs, A.B. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol. Cell 2000, 6, 191–196. [Google Scholar] [CrossRef]
- Payton, M.A.; Rheinnecker, M.; Klig, L.S.; DeTiani, M.; Bowden, E. A novel Saccharomyces cerevisiae secretory mutant possesses a thermolabile phosphomannose isomerase. J. Bacteriol. 1991, 173, 2006–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kambacheld, M.; Augustin, S.; Tatsuta, T.; Müller, S.; Langer, T. Role of the novel metallopeptidase Mop112 and saccharolysin for the complete degradation of proteins residing in different subcompartments of mitochondria. J. Biol. Chem. 2005, 280, 20132–20139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussbaum, R.L.; Caskey, C.T. Purification and characterization of hypoxanthine-guanine phosphoribosyltransferase from Saccharomyces cerevisiae. Biochemistry 1981, 20, 4584–4590. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, F.; Delahodde, A.; Kodadek, T.; Johnston, S.A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 2002, 296, 548–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charizanis, C.; Juhnke, H.; Krems, B.; Entian, K.D. The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol. Gen. Genet. 1999, 262, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, S.; Johnston, M. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 1999, 63, 554–569. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.A.; Murray, A.W.; Verstrepen, K.J. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr. Biol. 2010, 20, 895–903. [Google Scholar] [CrossRef] [Green Version]
Protein Expression | Quantity of Proteins | |||||
---|---|---|---|---|---|---|
Y-3194/LV7 | ER/Y-3194 | ER/LV7 | ||||
n | % | n | % | n | % | |
Induced | 12 | 21 | 27 | 61 | 38 | 40 |
Not changed | 17 | 30 | 10 | 23 | 22 | 23 |
Decreased | 28 | 49 | 7 | 16 | 35 | 37 |
Sum | 57 | 100 | 44 | 100 | 95 | 100 |
Gene | Protein | Protein Expression Induced, Fold |
---|---|---|
The Brewer’s Strain Y-3194 in Relation to the Baker’s Strain LV7 | ||
RPS19A | 40S ribosomal protein | 11.3 |
HHF1 | Histone H4 | 9.28 |
RPS14A | 40S ribosomal protein | 4.49 |
PHO11 | Acid phosphatase PHO11 | 3.27 |
ADH4 | Alcohol dehydrogenase 4 | 3.25 |
RVB1 | Ru VB-like protein 1 | 2.18 |
ZRT1 | Zinc-regulated transporter 1 | 2.07 |
COF1 | Cofilin OS | 1.80 |
MDH3 | Malate dehydrogenase, peroxisomal | 1.62 |
IPP1 | Inorganic pyrophosphatase | 1.46 |
GDH2 | NAD-specific glutamate dehydrogenase | 1.36 |
The Baker’s Strain LV7 in Relation to the Brewer’s Strain Y-3194 | ||
RPL8A | 60S ribosomal protein L8-A p | 5.18 |
HOM2 | Aspartic beta-semialdehyde dehydrogenase | 5.14 |
ADE13 | Aspartic beta-aldehyde dehydrogenase | 4.90 |
RPS26B | 40S ribosomal protein S26-Bp | 4.69 |
RGI1/YER067W | Induced Respiratory Growth | 4.16 |
GRE1 | GRE1p protein | 4.06 |
YCP4 | Flavoprotein-like protein YCP4p | 3.54 |
ERG9 | Squalene synthase | 3.36 |
SEC23 | Transport protein SEC23p | 3.00 |
The Ethanol-Producing Strain ER in Relation to the Brewer’s Y-3194 | ||
GDH3 | NADP-specific glutamate dehydrogenase | 15.5 |
GLO1 | Lactoylglutathione lyase | 3.67 |
HEM2 | The glycogen-splitting enzyme | 3.60 |
GDB1 | 60 Ribosomal protein L24-B | 3.33 |
RPL24B | 60S ribosomal protein L24 | 2.39 |
VMA8 | Type V proton ATPase D Subunit | 2.30 |
RPL4A | 60S ribosomal protein L4 | 2.27 |
YPR127W | Putative pyridoxal reductase | 2.20 |
YNL274C | Putative 2-hydroxy acid dehydrogenase | 2.20 |
NCL1 | RNA (cytosine-5-)-methyltransferase | 2.14 |
The Ethanol-Producing Strain ER in Relation to the Baker’s LV7 | ||
NNR1 | NADHX epimerase | 10.36 |
TIF45 | Eukaryotic translation initiation factor 4E | 5.92 |
PMI40 | Mannose-6-phosphate isomerase | 4.83 |
PRD1 | Zinc metalloendopeptidase | 4.43 |
HPT1 | Hypoxanthine-guanine phosphoribosyltransferase | 3.83 |
CCP1 | Cytochrome C peroxidase, mitochondrial | 3.64 |
unknown | Uncharacterized vacuole membrane protein | 3.13 |
RPT5 | Regulatory subunit of 26S proteasome | 3.08 |
HXT6 | High affinity hexose Transporter | 2.38 |
MAL32 | Alpha-glucosidase | 2.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davydenko, S.; Meledina, T.; Mittenberg, A.; Shabelnikov, S.; Vonsky, M.; Morozov, A. Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production. Bioengineering 2020, 7, 147. https://doi.org/10.3390/bioengineering7040147
Davydenko S, Meledina T, Mittenberg A, Shabelnikov S, Vonsky M, Morozov A. Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production. Bioengineering. 2020; 7(4):147. https://doi.org/10.3390/bioengineering7040147
Chicago/Turabian StyleDavydenko, Svetlana, Tatiana Meledina, Alexey Mittenberg, Sergey Shabelnikov, Maksim Vonsky, and Artyom Morozov. 2020. "Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production" Bioengineering 7, no. 4: 147. https://doi.org/10.3390/bioengineering7040147
APA StyleDavydenko, S., Meledina, T., Mittenberg, A., Shabelnikov, S., Vonsky, M., & Morozov, A. (2020). Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production. Bioengineering, 7(4), 147. https://doi.org/10.3390/bioengineering7040147