Structures and Applications of Thermoresponsive Hydrogels and Nanocomposite-Hydrogels Based on Copolymers with Poly (Ethylene Glycol) and Poly (Lactide-Co-Glycolide) Blocks
Abstract
:1. Introduction
2. Parameters Affecting Thermoresponsive Gelation
3. Structural Analysis of Hydrogels Composed of Block Copolymers with PEG and PLGA Blocks
4. Applications of Thermoresponsive Hydrogels Using Block Copolymers with PEG and PLGA Blocks
5. Thermoresponsive Nanocomposite Hydrogels Composed of Laponite and Block Copolymer with PEG and PLGA Blocks
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeong, B.; Bae, Y.H.; Lee, D.S.; Kim, S.W. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388, 860–862. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Bae, Y.H.; Kim, S.W. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999, 32, 7064–7069. [Google Scholar] [CrossRef]
- Jeong, B.; Bae, Y.H.; Kim, S.W. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloid Surf. B Biointerfaces 1999, 16, 185–193. [Google Scholar] [CrossRef]
- Jeong, B.; Bae, Y.H.; Kim, S.W. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J. Biomed. Mater. Res. 2000, 50, 171–177. [Google Scholar] [CrossRef]
- Lee, D.S.; Shim, M.S.; Kim, S.W.; Lee, H.; Park, I.; Chang, T.Y. Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol. Rapid Commun. 2001, 22, 587–592. [Google Scholar] [CrossRef]
- Shim, M.S.; Lee, H.T.; Shim, W.S.; Park, I.; Lee, H.; Chang, T.; Kim, S.W.; Lee, D.S. Poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (d,l-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. 2002, 61, 188–196. [Google Scholar] [CrossRef]
- Zentner, G.M.; Rathi, R.; Shih, C.; McRea, J.C.; Seo, M.H.; Oh, H.; Rhee, B.G.; Mestecky, J.; Moldoveanu, Z.; Morgan, M.; et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release 2001, 72, 203–215. [Google Scholar] [CrossRef]
- Qiao, M.X.; Chen, D.W.; Ma, X.C.; Liu, Y.J. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int. J. Pharm. 2005, 294, 103–112. [Google Scholar] [CrossRef]
- Qiao, M.X.; Chen, D.W.; Ma, X.C.; Hu, H.Y. Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro. Pharmazie 2006, 61, 199–202. [Google Scholar]
- Yu, L.; Chang, G.T.; Zhang, H.; Ding, J.D. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int. J. Pharm. 2008, 348, 95–106. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, H.; Ding, J.D. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew. Chem. Int. Ed. 2006, 45, 2232–2235. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chang, G.T.; Zhang, H.; Ding, J.D. Temperature-induced spontaneous sol-gel transitions of poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci. Pol. Chem. 2007, 45, 1122–1133. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Z.; Ding, J.D. In vitro degradation and protein release of transparent and opaque physical hydrogels of block copolymers at body temperature. Macromol. Res. 2012, 20, 234–243. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Z.; Zhang, H.; Ding, J.D. Mixing a Sol and a Precipitate of Block Copolymers with Different Block Ratios Leads to an Injectable Hydrogel. Biomacromolecules 2009, 10, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Z.; Zhang, H.A.; Ding, J.D. Biodegradability and Biocompatibility of Thermoreversible Hydrogels Formed from Mixing a Sol and a Precipitate of Block Copolymers in Water. Biomacromolecules 2010, 11, 2169–2178. [Google Scholar] [CrossRef]
- Alexander, A.; Khan, J.; Saraf, S.; Saraf, S. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J. Control. Release 2013, 172, 715–729. [Google Scholar] [CrossRef]
- Zhang, K.R.; Tang, X.; Zhang, J.; Lu, W.; Lin, X.; Zhang, Y.; Tian, B.; Yang, H.; He, H.B. PEG-PLGA copolymers: Their structure and structure-influenced drug delivery applications. J. Control. Release 2014, 183, 77–86. [Google Scholar] [CrossRef]
- Wang, P.X.; Chu, W.; Zhuo, X.Z.; Zhang, Y.; Gou, J.X.; Ren, T.Y.; He, H.B.; Yin, T.; Tang, X. Modified PLGA-PEG-PLGA thermosensitive hydrogels with suitable thermosensitivity and properties for use in a drug delivery system. J. Mater. Chem. B 2017, 5, 1551–1565. [Google Scholar] [CrossRef]
- Li, T.; Ci, T.Y.; Chen, L.; Yu, L.; Ding, J.D. Salt-induced reentrant hydrogel of poly(ethylene glycol)-poly(lactide-co-glycolide) block copolymers. Polym. Chem. 2014, 5, 979–991. [Google Scholar] [CrossRef]
- Chen, L.; Ci, T.Y.; Li, T.; Yu, L.; Ding, J.D. Effects of Molecular Weight Distribution of Amphiphilic Block Copolymers on Their Solubility, Micellization, and Temperature-Induced Sol Gel Transition in Water. Macromolecules 2014, 47, 5895–5903. [Google Scholar] [CrossRef]
- Chen, L.; Ci, T.Y.; Yu, L.; Ding, J.D. Effects of Molecular Weight and Its Distribution of PEG Block on Micellization and Thermogellability of PLGA-PEG-PLGA Copolymer Aqueous Solutions. Macromolecules 2015, 48, 3662–3671. [Google Scholar] [CrossRef]
- Steinman, N.Y.; Haim-Zada, M.; Goldstein, I.A.; Goldberg, A.H.; Haber, T.; Berlin, J.M.; Domb, A.J. Effect of PLGA block molecular weight on gelling temperature of PLGA-PEG-PLGA thermoresponsive copolymers. J. Polym. Sci. Pol. Chem. 2019, 57, 35–39. [Google Scholar] [CrossRef]
- Luan, J.B.; Cui, S.Q.; Wang, J.T.; Shen, W.J.; Yu, L.; Ding, J.D. Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions. Polym. Chem. 2017, 8, 2586–2597. [Google Scholar] [CrossRef]
- Khorshid, N.K.; Zhu, K.Z.; Knudsen, K.D.; Bekhradnia, S.; Sande, S.A.; Nystrom, B. Novel Structural Changes during Temperature-Induced Self-Assembling and Gelation of PLGA-PEG-PLGA Triblock Copolymer in Aqueous Solutions. Macromol. Biosci. 2016, 16, 1838–1852. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.Q.; Yu, L.; Ding, J.D. Semi-bald Micelles and Corresponding Percolated Micelle Networks of Thermogels. Macromolecules 2018, 51, 6405–6420. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, B.C.; Yang, L.C.; Wang, Y.Z.; Singh, G.K. In Vitro Evaluation and Dissipative Particle Dynamics Simulation of PLGA-PEG-PLGA. J. Appl. Polym. Sci. 2015, 132, 8. [Google Scholar] [CrossRef]
- Yang, Z.M.; Yu, S.J.; Li, D.S.; Gong, Y.B.; Zang, J.T.; Liu, J.G.; Chen, X.S. The effect of PLGA-based hydrogel scaffold for improving the drug maximum-tolerated dose for in situ osteosarcoma treatment. Colloid Surf. B Biointerfaces 2018, 172, 387–394. [Google Scholar] [CrossRef]
- Ci, T.Y.; Chen, L.; Yu, L.; Ding, J.D. Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel. Sci. Rep. 2014, 4, 13. [Google Scholar] [CrossRef]
- Chan, P.S.; Xian, J.W.; Li, Q.Q.; Chan, C.W.; Leung, S.S.Y.; To, K.K.W. Biodegradable Thermosensitive PLGA-PEG-PLGA Polymer for Non-irritating and Sustained Ophthalmic Drug Delivery. AAPS J. 2019, 21, 13. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, W.J.; Luan, J.B.; Yang, D.X.; Wei, G.; Yu, L.; Lu, W.Y.; Ding, J.D. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater. 2015, 23, 271–281. [Google Scholar] [CrossRef]
- Sun, J.G.; Liu, X.; Lei, Y.; Tang, M.Y.; Dai, Z.X.; Yang, X.W.; Yu, X.B.; Yu, L.; Sun, X.H.; Ding, J.D. Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery. J. Mater. Chem. B 2017, 5, 6400–6411. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Q.N.; Zhu, Y.Q.; Liu, Y.J.; Xie, X.L.; Li, S.H.; Lin, H.T.; Chen, W.R.; Zhu, F.M. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization. Drug Deliv. 2019, 26, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Sidell, D.; Ward, J.A.; Pordal, A.; Quimby, C.; Nassar, M.; Choo, D.I. Combination therapies using an intratympanic polymer gel delivery system in the guinea pig animal model: A safety study. Int. J. Pediatr. Otorhinolaryngol. 2016, 84, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, F.; Zhang, X.W.; Bhutani, H.; Ye, B. Characterizations and bioactivities of abendazole sulfoxide-loaded thermo-sensitive hydrogel. Parasitol. Res. 2017, 116, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, S.A.; Yaghoubi, S.; Abdollahi, E.; Tekie, F.S.M.; Kamali, H.; Khodaverdi, E.; Hadizadeh, F. In-vivo study of naltrexone hydrochloride release from an in-situ forming PLGA-PEG-PLGA system in the rabbit. J. Drug Deliv. Sci. Technol. 2016, 36, 156–160. [Google Scholar] [CrossRef]
- Fu, X.D.; Zeng, H.L.; Guo, R.P.; Liu, H.; Shi, Z.; Chen, H.H.; Li, D.Z.; Xie, X.Y.; Kuang, C.C. A PLGA-PEG-PLGA Thermosensitive Gel Enabling Sustained Delivery of Ropivacaine Hydrochloride for Postoperative Pain Relief. Chem. Pharm. Bull. 2017, 65, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.B.; Zhang, J.; Xu, W.G.; Xiao, G.; Ding, J.X.; Chen, X.S. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater. 2018, 77, 63–73. [Google Scholar] [CrossRef]
- Cao, D.L.G.; Zhang, X.X.; Akabar, M.; Luo, Y.; Wu, H.; Ke, X.; Ci, T.Y. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif. Cell. Nanomed. Biotechnol. 2019, 47, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jiang, Y.; Cui, Y.T.; Xu, C.S.; Ji, X.Q.; Luan, Y.X. Cytarabine-AOT catanionic vesicle-loaded biodegradable thermosensitive hydrogel as an efficient cytarabine delivery system. Int. J. Pharm. 2014, 473, 560–571. [Google Scholar] [CrossRef]
- Yang, X.X.; Ji, X.Q.; Shi, C.H.; Liu, J.; Wang, H.Y.; Luan, Y.X. Investigation on the ion pair amphiphiles and their in vitro release of amantadine drug based on PLGA-PEG-PLGA gel. J. Nanopart. Res. 2014, 16, 14. [Google Scholar] [CrossRef]
- El-Zaafarany, G.M.; Soliman, M.E.; Mansour, S.; Cespi, M.; Palmieri, G.F.; Illum, L.; Casettari, L.; Awad, G.A.S. A Tailored Thermosensitive PLGA-PEG-PLGA/Emulsomes Composite for Enhanced Oxcarbazepine Brain Delivery via the Nasal Route. Pharmaceutics 2018, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.G.; Lei, Y.; Dai, Z.X.; Liu, X.; Huang, T.M.; Wu, J.H.; Xu, Z.P.; Sun, X.H. Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma. ACS Appl. Mater. Interfaces 2017, 9, 7990–7999. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Patel, K.; Alaie, S.P.; Shmueli, R.B.; Besirli, C.G.; Larson, R.G.; Green, J.J. Injectable drug depot engineered to release multiple ophthalmic therapeutic agents with precise time profiles for postoperative treatment following ocular surgery. Acta Biomater. 2018, 73, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Li, Y.Z.; Shen, W.J.; Li, K.; Yu, L.; Chen, Q.H.; Ding, J.D. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci. Rep. 2016, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Li, X.W.; Zhang, X.; Cheng, Y.Y.; Su, D.; Lu, C.; Fang, X.B.; Ma, Q.; Zhang, D.W.; Yu, H.; et al. Controlled Delivery of Growth-Hormone-Releasing Peptide 6 from the acid) Copolymer and the Effect of a Growth- Hormone- Releasing Peptide 6-Copolymer Hydrogel on the Growth of Rex Rabbits. J. Appl. Polym. Sci. 2014, 131, 8. [Google Scholar] [CrossRef]
- Wang, P.X.; Zhuo, X.Z.; Chu, W.; Tang, X. Exenatide-loaded microsphere/ thermosensitive hydrogel long-acting delivery system with high drug bioactivity. Int. J. Pharm. 2017, 528, 62–75. [Google Scholar] [CrossRef]
- Shang, H.; Chen, X.B.; Liu, Y.P.; Yu, L.; Li, J.S.; Ding, J.D. Cucurbit 7 -assisted sustained release of human calcitonin from thermosensitive block copolymer hydrogel. Int. J. Pharm. 2017, 527, 52–60. [Google Scholar] [CrossRef]
- Liu, Y.P.; Chen, X.B.; Li, S.Y.; Guo, Q.; Xie, J.; Yu, L.; Xu, X.Y.; Ding, C.M.; Li, J.S.; Ding, J.D. Calcitonin-Loaded Thermosensitive Hydrogel for Long-Term Antiosteopenia Therapy. ACS Appl. Mater. Interfaces 2017, 9, 23428–23440. [Google Scholar] [CrossRef]
- Ma, H.C.; He, C.L.; Cheng, Y.L.; Li, D.S.; Gong, Y.B.; Liu, J.G.; Tian, H.Y.; Chen, X.S. PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials 2014, 35, 8723–8734. [Google Scholar] [CrossRef]
- Yan, Q.; Xiao, L.Q.; Tan, L.; Sun, W.; Wu, T.; Chen, L.W.; Mei, Y.; Shi, B. Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: In vitro and in vivo characteristics. J. Biomed. Mater. Res. Part A 2015, 103, 3580–3589. [Google Scholar] [CrossRef]
- Chamradova, I.; Vojtova, L.; Castkova, K.; Divis, P.; Peterek, M.; Jancar, J. The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer. Colloid Polym. Sci. 2017, 295, 107–115. [Google Scholar] [CrossRef]
- Peng, K.T.; Hsieh, M.Y.; Lin, C.T.; Chen, C.F.; Lee, M.S.; Huang, Y.Y.; Chang, P.J. Treatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEG-PLGA biodegradable thermosensitive hydrogel. BMC Musculoskelet. Disord. 2016, 17, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, J.; Chang, F.; Xu, W.G.; Ding, J.X. Repair of full-thickness articular cartilage defect using stem cell encapsulated thermogel, Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 88, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xu, W.; Shen, W.J.; Cao, L.P.; Liu, Y.; Li, Z.S.; Ding, J.D. Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection. Acta Biomater. 2014, 10, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.P.; Li, Q.L.; Zhang, C.; Wu, H.C.; Yao, L.Q.; Xu, M.D.; Yu, L.; Ding, J.D. Safe and Efficient Colonic Endoscopic Submucosal Dissection Using an Injectable Hydrogel. ACS Biomater. Sci. Eng. 2016, 2, 393–402. [Google Scholar] [CrossRef]
- Yu, L.; Hu, H.T.; Chen, L.; Bao, X.G.; Li, Y.Z.; Chen, L.; Xu, G.H.; Ye, X.J.; Ding, J.D. Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms. Biomater. Sci. 2014, 2, 1100–1109. [Google Scholar] [CrossRef]
- Xu, W.K.; Tang, J.Y.; Yuan, Z.; Cai, C.Y.; Chen, X.B.; Cui, S.Q.; Liu, P.; Yu, L.; Cai, K.Y.; Ding, J.D. Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing. Chin. J. Polym. Sci. 2019, 37, 548–559. [Google Scholar] [CrossRef]
- Thompson, D.W.; Butterworth, J.T. The nature of laponite and its aqueous dispersions. J. Colloid Interface Sci. 1992, 151, 236–243. [Google Scholar] [CrossRef]
- Nicolai, T.; Cocard, S. Structure of gels and aggregates of disk-like colloids. Eur. Phys. J. E 2001, 5, 221–227. [Google Scholar] [CrossRef]
- Mongondry, P.; Tassin, J.F.; Nicolai, T. Revised state diagram of Laponite dispersions. J. Colloid Interface Sci. 2005, 283, 397–405. [Google Scholar] [CrossRef]
- Dawson, J.I.; Kanczler, J.M.; Yang, X.B.B.; Attard, G.S.; Oreffo, R.O.C. Clay Gels For the Delivery of Regenerative Microenvironments. Adv. Mater. 2011, 23, 3304. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.S.; Raghavan, S.R. Thermogelling Aqueous Fluids Containing Low Concentrations of Pluronic F127 and Laponite Nanoparticle. Langmuir 2010, 26, 8015–8020. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.Y.; Cosimbescu, L.; Karin, N.J.; Tarasevich, B.J. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: Preparation, characterization and in vitro release behavior. Biomed. Mater. 2012, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Oyama, N.; Minami, H.; Kawano, D.; Miyazaki, M.; Maeda, T.; Toma, K.; Hotta, A.; Nagahama, K. A nanocomposite approach to develop biodegradable thermogels exhibiting excellent cell-compatibility for injectable cell delivery. Biomater. Sci. 2014, 2, 1057–1062. [Google Scholar] [CrossRef]
- Nagahama, K.; Kawano, D.; Oyama, N.; Takemoto, A.; Kumano, T.; Kawakami, J. Self-Assembling Polymer Micelle/Clay Nanodisk/Doxorubicin Hybrid Injectable Gels for Safe and Efficient Focal Treatment of Cancer. Biomacromolecules 2015, 16, 880–889. [Google Scholar] [CrossRef]
- Miyazaki, M.; Maeda, T.; Hirashima, K.; Kurokawa, N.; Nagahama, K.; Hotta, A. PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polymer 2017, 115, 246–254. [Google Scholar] [CrossRef]
- Kitagawa, M.; Maeda, T.; Hotta, A. PEG-based nanocomposite hydrogel: Thermo-responsive sol-gel transition and degradation behavior controlled by the LA/GA ratio of PLGA-PEG-PLGA. Polym. Degrad. Stabil. 2018, 147, 222–228. [Google Scholar] [CrossRef]
- Nagahama, K.; Oyama, N.; Ono, K.; Hotta, A.; Kawauchi, K.; Nishikata, T. Nanocomposite injectable gels capable of self-replenishing regenerative extracellular microenvironments for in vivo tissue engineering. Biomater. Sci. 2018, 6, 550–561. [Google Scholar] [CrossRef]
- Maeda, T.; Kitagawa, M.; Hotta, A.; Koizumi, S. Thermo-Responsive Nanocomposite Hydrogels Based on PEG-b-PLGA Diblock Copolymer and Laponite. Polymers 2019, 11, 13. [Google Scholar] [CrossRef] [Green Version]
Parameter | Findings | Ref. |
---|---|---|
Salt concentration | Re-entrant Tgel decreased as salt concentration increased | [19] |
Type of ion | Re-entrant Tgel decreased as salting-out ability increased according to Hofmeister series | [19] |
MWD under similar Mw or Mn | Solubility increased as Mw/Mn increased | [20] |
CMC increased as Mw/Mn increased | ||
CGC increased with increased Mw/Mn under both given Mw and given Mn | ||
Tgel increased with increased Mw/Mn under both given Mw and given Mn | ||
MWD of PEG block | Gel-to-sol or sol-to-gel transition only with appropriate Mw and MWD | [21] |
Wider Mw/Mn of PEG block sometimes led to the coexistence of sol-to-gel transition upon cooling and upon heating | ||
PLGA/PEG ratio | Linear relation between Tgel and PLGA/PEG ratio | [22] |
PEG molecular weight | Tgel dependency on PLGA/PEG ratio became less obvious as PEG molecular weight increased | [22] |
Positional isomer of coupling agent | o-PC had smaller coil size compared to m-PC and p-PC | [23] |
o-PC exhibited lower Tgel and higher modulus compared to m-PC and p-PC |
Method | Analytical Target | Ref. |
---|---|---|
SANS | Micellar structure and network structures composed of micelles | [24] |
3D DLS | Rh in concentrated solution/turbid system | [25] |
FRET | Nanoscale distance | [25] |
DPD simulation | Morphology of copolymers in water | [26] |
Monte Carlo simulation | Phases and condensed-state structures | [23,25] |
Used for | Drug/Cell | Dosage from | Ref. |
---|---|---|---|
Cancer treatment (osteosarcoma) | DOX | Hydrogel | [27] |
Cancer treatment | Irinotecan | Hydrogel | [28] |
Ophthalmic treatment | Model drug | Hydrogel | [29] |
Treatment of posterior segment eye disease | Dexamethasone | Hydrogel | [30] |
Treatment of glaucoma | Cyclosporine | Hydrogel | [31] |
Corneal neovascularization | Metformin Levofloxacin HCl | Hydrogel | [32] |
Treatment of congenital sensorineural hearing loss | Cidofovir/ganciclovir Dexamethasone | Hydrogel | [33] |
Helminth emesis | Albendazole sulfoxide | Hydrogel | [34] |
Treatment of opioid and alcohol addiction | Naltrexone HCl | Hydrogel | [35] |
Postoperative pain relief | Ropivacaine HCl | Hydrogel | [36] |
Cancer treatment (Hepatoma) | DOX (polymer conjugate) DTX | Hydrogel | [37] |
Cancer treatment (Breast) | DOX | Liposome in hydrogel | [38] |
Cancer treatment | Cytarabine HCl (complex with AOT) | Hydrogel | [39] |
Treatment of Parkinson syndrome/cocaine dependence | Amantadine (complex with OA) | Hydrogel | [40] |
Treatment of epilepsy | Oxcarbazepine | Emulsome in hydrogel | [41] |
Treatment of glaucoma | Brimonidine (complex with LDH) | Hydrogel | [42] |
Postoperative treatment after ocular surgery | Moxifloxacin Dexamethasone Levobunolol | MPs in hydrogel | [43] |
Treatment of diabetes | Liraglutide | Hydrogel | [44] |
Growth | Growth hormone–releasing peptide (GHRP-6) | Hydrogel | [45] |
Treatment of diabetes | Exenatide | MPs in hydrogel | [46] |
Inhibition of bone resorption | hCT (complex with CB7) | Hydrogel | [47] |
Anti-osteopenia therapy | Salmon calcitonin (complex with OCA) | Hydrogel | [48] |
Cancer treatment (osteosarcoma) | PLK1shRNA/PEI-Lys DOX | Hydrogel | [49] |
Bone tissue regeneration | Simvastatin | Hydrogel | [50] |
Bone tissue engineering | Calcium cation | HAp in hydrogel | [51] |
Treatment of femoral defects | BMP-2 | Hydrogel | [52] |
Repair of articular cartilage defects | Stem cells (BMMSCs) | – | [53] |
ESD | – | – | [54,55] |
Postoperative adhesion prevention | – | – | [56] |
Cutaneous wound healing | Teicoplanin | Hydrogel | [57] |
Date | Contents | Ref. |
---|---|---|
June 2014 | Proposal of nanocomposite approach to develop thermoresponsive nanocomposite hydrogels Confirmation of excellent cell compatibility | [64] |
February 2015 | Confirmation of sustained release of DOX from thermoresponsive nanocomposite hydrogels Confirmation of antitumor efficacy of DOX-loaded thermoresponsive nanocomposite hydrogels | [65] |
March 2017 | Controlling Tgel by PLGA–PEG–PLGA molecular weight and solute concentration Structural analysis of thermoresponsive nanocomposite hydrogels by Cryo-TEM and small-angle X-ray scattering (SAXS) | [66] |
November 2017 | Controlling degradation behavior by LA/GA ratio of PLGA–PEG–PLGA | [67] |
January 2018 | Confirmation of ECM adsorption within thermoresponsive nanocomposite hydrogels Confirmation of cell viability and proliferation using human cells Confirmation of enhance tissue regeneration and functional recovery though cell transplantation in model mice | [68] |
February 2019 | Utilizing water-soluble PEG–PLGA diblock copolymers to obtain thermoresponsive nanocomposite hydrogels Structural analysis of thermoresponsive nanocomposite hydrogels by SANS | [69] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, T. Structures and Applications of Thermoresponsive Hydrogels and Nanocomposite-Hydrogels Based on Copolymers with Poly (Ethylene Glycol) and Poly (Lactide-Co-Glycolide) Blocks. Bioengineering 2019, 6, 107. https://doi.org/10.3390/bioengineering6040107
Maeda T. Structures and Applications of Thermoresponsive Hydrogels and Nanocomposite-Hydrogels Based on Copolymers with Poly (Ethylene Glycol) and Poly (Lactide-Co-Glycolide) Blocks. Bioengineering. 2019; 6(4):107. https://doi.org/10.3390/bioengineering6040107
Chicago/Turabian StyleMaeda, Tomoki. 2019. "Structures and Applications of Thermoresponsive Hydrogels and Nanocomposite-Hydrogels Based on Copolymers with Poly (Ethylene Glycol) and Poly (Lactide-Co-Glycolide) Blocks" Bioengineering 6, no. 4: 107. https://doi.org/10.3390/bioengineering6040107
APA StyleMaeda, T. (2019). Structures and Applications of Thermoresponsive Hydrogels and Nanocomposite-Hydrogels Based on Copolymers with Poly (Ethylene Glycol) and Poly (Lactide-Co-Glycolide) Blocks. Bioengineering, 6(4), 107. https://doi.org/10.3390/bioengineering6040107