Functional Characterization and Genomic Analysis of the Chlorantraniliprole-Degrading Strain Pseudomonas Sp. GW13
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Media
2.2. Screening and Isolation of CAP-Degrading Strain
2.3. Identification of CAP-Degrading Strain GW13
2.4. Biodegradation of CAP of Strain GW13
2.5. Chemical Analysis
2.6. Genome Sequencing, Assembly, and Annotation
3. Results
3.1. Isolation and Characterization of the CAP-Degrading Strain
3.2. Utilization of CAP for Growth by Strain GW13
3.3. Overview of the Pseudomonas Sp. Strain GW13 Genome
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrea, B.; RISON, J.L.; WILES, J.A. Chlorantraniliprole (DPX-E2Y45, Rynaxypyr®, Coragen®), a new diamide insecticide for control of codling moth (Cydia pomonella), Colorado potato beetle (Leptinotarsa decemlineata) and European grapevine moth (Lobesia botrana). In Proceedings of the 9th International Conference on Plant Protection in Slovenia, Nova Gorica, Slovenia, 4–5 March 2009. [Google Scholar]
- IRAC The IRAC Mode of Action Classification. Available online: http://www.irac-online.org/modes-of-action/ (accessed on 19 November 2019).
- Dinter, A.; Brugger, K.E.; Frost, N.M. Chlorantraniliprole (Rynaxypyr): A novel DuPont insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. Julius-Kühn-Archiv 2009, 423, 84–96. [Google Scholar]
- Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorgan. Med. Chem. 2009, 17, 4127–4133. [Google Scholar] [CrossRef] [PubMed]
- Lavtižar, V.; Gestel, C.; Dolenc, D.; Trebse, P. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products. Chemosphere 2014, 95, 408–414. [Google Scholar] [CrossRef] [PubMed]
- USEPA, Pesticide Fact Sheet. 2008; pp. 1–108. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-090100_01-Apr-08.pdf (accessed on 19 November 2019).
- JMPR, Pesticide Residues in Food. FAO Plant Production and Protection Paper. 2008, pp. 353–546. Available online: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/2008_JMPR_Evaluations.pdf (accessed on 19 November 2019).
- Sharma, A.; Zimmerman, W.T.; Koch Singles, S.; Ryan, D.; Swain, R.; Malekani, K.; McCorquodale, G.; Wardrope, L. Photolysis of Chlorantraniliprole and Cyantraniliprole in Water and Soil: Verification of Degradation Pathways via Kinetics Modeling. J. Agric. Food Chem. 2014, 62, 6577–6584. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Zimmerman, W.T.; Lowrie, C.; Chapleo, S. Hydrolysis of Chlorantraniliprole and Cyantraniliprole in Various pH Buffer Solutions. J. Agric. Food Chem. 2014, 62, 3531–3536. [Google Scholar] [CrossRef]
- Singh, B.; Walker, A.; Wright, D. Bioremedial Potential of Fenamiphos and Chlorpyrifos Degrading Isolates: Influence of Different Environmental Conditions. Soil Biol. Biochem. 2006, 38, 2682–2693. [Google Scholar] [CrossRef]
- Jin, D.; Kong, X.; Liu, H.; Wang, X.; Deng, Y.; Jia, M.; Yu, X. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12. Int. J. Mol. Sci. 2016, 17, 1012. [Google Scholar] [CrossRef]
- Gupta, M.; Mathur, S.; Sharma, T.; Rana, M.; Gairola, A.; Navani, N.; Pathania, R. A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J. Hazard. Mater. 2015, 301, 250–258. [Google Scholar] [CrossRef]
- Arp, D.J.; Yeager, C.M.; Hyman, M.R. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 2001, 12, 81–103. [Google Scholar] [CrossRef]
- Yoon, S.; Ha, S.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 2016, 67, 1613. [Google Scholar]
- Larkin, M.A.; Blackshields, G.; Brown, N.; Chenna, R.; McGettigan, P.; Mcwilliam, H.; Valentin, F.; Wallace, I.M.W.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2958. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2015, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short Oligonucleotide Alignment Program. Bioinformatics 2008, 24, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome. Res. 2009, 20, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 2006, 34, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG Resource for Deciphering the Genome. Nucleic Acids Res. 2004, 32, 277–280. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Abrams, N.; Jackson, J.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG Database: An Updated Version Includes Eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef]
- Gao, J.F.; Ellis, L.; Wackett, L.P. The University of Minnesota Biocatalysis/Biodegradation Database: Improving public access. Nucleic Acids Res. 2010, 381, 488–491. [Google Scholar] [CrossRef]
- Chen, K.; Liu, X.; Li, R.; Liu, Y.; Hu, H.; Li, S.; Jiang, J. Isolation of a buprofezin co-metabolizing strain of Pseudomonas sp. DFS35-4 and identification of the buprofezin transformation pathway. Biodegradation 2011, 22, 1135–1142. [Google Scholar] [CrossRef]
- Dong, X.; Hong, Q.; He, L.; Jiang, X.; Li, S. Characterization of phenol-degrading bacterial strains isolated from natural soil. Int. Biodeterior. Biodegrad. 2008, 62, 257–262. [Google Scholar] [CrossRef]
- Yu, F.; Shen, B.; Li, S. Isolation and Characterization of Pseudomonas sp. Strain ONBA-17 Degrading o-Nitriobenzaldehyde. Curr. Microbiol. 2007, 53, 457–461. [Google Scholar]
- Huang, X.; Pan, J.; Liang, B.; Sun, J.; Zhao, Y.; Li, S. Isolation, Characterization of a Strain Capable of Degrading Imazethapyr and Its Use in Degradation of the Herbicide in Soil. Curr. Microbiol. 2009, 59, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Jiang, J.; Li, X.; Shinawar, A.; Li, S. Biodegradation of Ethametsulfuron-Methyl by Pseudomonas sp. SW4 Isolated from Contaminated Soil. Curr. Microbiol. 2007, 55, 420–426. [Google Scholar]
- Wang, G.; Rong, L.; Li, S.; Jiang, J. A Novel Hydrolytic Dehalogenase for the Chlorinated Aromatic Compound Chlorothalonil. J. Bacteriol. 2010, 192, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Urase, T.; Hao Ngo, H.; Hu, J.; Ong, S. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour. Technol. 2013, 146, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Nzila, A. Update on the cometabolism of organic pollutants by bacteria. Environ. Pollut. 2013, 178, 474–482. [Google Scholar] [CrossRef]
- Zhong, Y.; Luan, T.; Wang, X.; Lan, C.; Tam, N.F.Y. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl. Microbiol. Biot. 2007, 75, 175–186. [Google Scholar] [CrossRef]
Index | Name | Reaction | Index | Name | Reaction |
---|---|---|---|---|---|
PyrA | Pyrrolidinyl arylamine | − | dTRE | d-trehalose | − |
IARL | l-arabitol | − | CIT | Citrate | + |
dCEL | d-cellobiose | − | MNT | Malonate | − |
BGAL | Beta-galactosidase | − | 5 KG | 5-keto-glucoside | − |
H2S | H2S production | − | ILATk | l-LACTA TE alkalinisation | + |
BNAG | β-N-acetylglucosidase | − | AGLU | Alpha-glucose | − |
AGLTp | Glutamine arylamine | − | SUCT | Succinate alkali | + |
dGLU | d-glucose | + | NAGA | Beta-N-Acetyl-Galactosaminidase | − |
GGT | Y-glutamine transferase | + | AGAL | Alphagalactosidase | − |
OFF | Fermente glucose | − | PHOS | Phosphatase | − |
BGLU | Beta-glucosidase | − | GlyA | Glycine arylamine | − |
dMAL | d-maltose | − | ODC | Ornithine decarboxylase | − |
dMAN | d-mannitol | − | LDC | Lysine decarboxylase | − |
dMNE | d-mannose | − | IHISa | Histidine assimilation | − |
BXYL | Beta-xylosidase | − | CMT | COURMARATE | − |
BAlap | Beta-alanine arylamine pNA | + | BGUR | Beta-glucuronidase | − |
ProA | l-valine arylamine | + | O129R | O/129 resistance | + |
LIP | Esterase | − | GGAA | Glutamate-glycine-arginine arylamine | − |
PLE | PALATINOSE | − | IMLTa | l-malate assimilation | − |
TyrA | Tyrosine arylamine | + | ELLM | ELLMAN | − |
URE | Urease | + | ILATa | l-lactate assimilation | − |
dSOR | d-sorbitol | − |
Strain | Genome Size (bp) | CDSs | rRNA Genes | tRNA Genes | GC % | ANIm % | Aligned % |
---|---|---|---|---|---|---|---|
GW13 | 5,687,221 | 5071 | 7 | 67 | 63.9 | - | - |
Pseudomonas entomophila L48 | 5,888,780 | 5073 | 23 | 78 | 64.2 | 89.06 | 73.03 |
Pseudomonas putida GB-1 | 6,078,430 | 5446 | 23 | 74 | 61.9 | 87.15 | 62.95 |
Pseudomonas putida NBRC 14164 | 6,156,701 | 5436 | 23 | 75 | 62.3 | 87.37 | 62.08 |
Pseudomonas putida S16 | 5,984,790 | 5467 | 20 | 67 | 62.3 | 87.66 | 62.30 |
Pseudomonas putida KT2440 | 6,181,873 | 5583 | 23 | 74 | 61.5 | 87.15 | 59.13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Li, D.; You, H. Functional Characterization and Genomic Analysis of the Chlorantraniliprole-Degrading Strain Pseudomonas Sp. GW13. Bioengineering 2019, 6, 106. https://doi.org/10.3390/bioengineering6040106
Gao W, Li D, You H. Functional Characterization and Genomic Analysis of the Chlorantraniliprole-Degrading Strain Pseudomonas Sp. GW13. Bioengineering. 2019; 6(4):106. https://doi.org/10.3390/bioengineering6040106
Chicago/Turabian StyleGao, Wa, Dongyang Li, and Hong You. 2019. "Functional Characterization and Genomic Analysis of the Chlorantraniliprole-Degrading Strain Pseudomonas Sp. GW13" Bioengineering 6, no. 4: 106. https://doi.org/10.3390/bioengineering6040106
APA StyleGao, W., Li, D., & You, H. (2019). Functional Characterization and Genomic Analysis of the Chlorantraniliprole-Degrading Strain Pseudomonas Sp. GW13. Bioengineering, 6(4), 106. https://doi.org/10.3390/bioengineering6040106