Noble Metal Nanoparticles Applications: Recent Trends in Food Control
Abstract
:1. Introduction
2. Contaminants Determination
2.1. Mycotoxins
2.2. Drug Residues and Allergens
2.3. Probable Carcinogenic Compounds
2.4. Pesticides
2.5. Bacteria
3. Nutrients and Bioactive Compounds
3.1. Amino Acids
3.2. Gluten
3.3. Antioxidants
4. Conclusions
Funding
Conflicts of Interest
References
- Fratoddi, I.; Matassa, R.; Fontana, L.; Venditti, I.; Familiari, G.; Battocchio, C.; Magnano, E.; Nappini, S.; Leahu, G.; Belardini, A.; et al. Electronic Properties of a Functionalized Noble Metal Nanoparticles Covalent Network. J. Phys. Chem. C 2017, 121, 18110–18119. [Google Scholar] [CrossRef]
- Rapa, M.; Vinci, G. Nanotecnologie nel settore alimentare: Regolamento CE 2283/2015 e la sua applicazione. Ind. Alim. 2018, 587, 11–17. [Google Scholar]
- Venditti, I.; Testa, G.; Sciubba, F.; Carlini, L.; Porcaro, F.; Meneghini, C.; Fratoddi, I. Hydrophilic Metal Nanoparticles Functionalized by fr2- Diethylaminoethane Thiol: A Close Look on the Metal- ligand Interaction and Interface Chemical Structure. J. Phys. Chem. C 2017, 121, 8002–8013. [Google Scholar] [CrossRef]
- Carlini, L.; Fasolato, C.; Postorino, P.; Fratoddi, I.; Venditti, I.; Testa, G.; Battocchio, C. Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities. Colloids Surf. A 2017, 532, 183–188. [Google Scholar] [CrossRef]
- Venditti, I.; Cartoni, A.; Fontana, L.; Testa, G.; Scaramuzzo, F.A.; Faccini, R.; Terracciano, C.M.; Camillocci, E.S.; Morganti, S.; Giordano, A.; et al. Y3+ embedded in polymeric nanoparticles: Morphology, dimension and stability of composite colloidal system. Colloids Surf. A 2017, 532, 125–131. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Lu, Y.; Zhang, D.; Liu, J.; Zhu, L.; Li, C.; Hu, L.; Li, J.; Liu, Q. Gold Nanoparticles on Graphene Oxide Substrate as Sensitive Nanoprobes for Rapid L-Cysteine Detection through Smartphone-Based Multimode Analysis. ChemistrySelect 2018, 3, 10002–10009. [Google Scholar] [CrossRef]
- Fratoddi, I. Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives. Nanomaterials 2018, 8, 11. [Google Scholar] [CrossRef]
- Venditti, I.; Fontana, L.; Fratoddi, I.; Battocchio, C.; Cametti, C.; Sennato, S.; Mura, F.; Sciubba, F.; Delfini, M.; Russo, M.V. Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: loading and release study. J. Colloid Interface Sci. 2014, 15, 52–60. [Google Scholar] [CrossRef]
- Bearzotti, A.; Fontana, L.; Fratoddi, I.; Venditti, I.; Testa, G.; Rasi, S.; Gatta, V.; Russo, M.V.; Zampetti, E.; Papa, P.; et al. Hydrophobic Noble Metal Nanoparticles: Synthesis, Characterization and Perspectives as Gas Sensing Materials. Procedia Eng. 2015, 120, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Prosposito, P.; Mochi, F.; Ciotta, E.; Casalboni, M.; De Matteis, F.; Venditti, I.; Fontana, L.; Testa, G.; Fratoddi, I. Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water. Beilstein J. Nanotechnol. 2016, 7, 1654–1661. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Fratoddi, I.; Venditti, I.; Matassa, R.; Familiari, G.; Battocchio, C.; Magnano, E.; Nappini, S.; Leahu, G.; Belardini, A.; et al. Hydrophilic Metal Nanoparticles Functionalized by 2-Diethylaminoethanethiol: A Close Look at the Metal–Ligand Interaction and Interface Chemical Structure. J. Phys. Chem. C 2017, 127, 18110–18119. [Google Scholar]
- Farid, S.; Kuljic, R.; Poduri, S.; Dutta, M.; Darling, S.B. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices. Superlattices Microstruct. 2018, 118, 1–6. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, J.; Li, Y.; Gao, H.; Guo, J.; Shen, F.; Sun, C. A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 2015, 54, 7–15. [Google Scholar] [CrossRef]
- Rai, P.K.; Kumar, V.; Lee, S.; Raza, N.; Kim, K.-H.; Ok, Y.S.; Tsang, D.C.W. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ. Int. 2018, 119, 1–19. [Google Scholar] [CrossRef]
- Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240–264. [Google Scholar] [CrossRef]
- Yang, C.; Bromma, K.; Di Ciano-Oliveira, C.; Zafarana, G.; Van Prooijen, M.; Chithrani, D.B. Effects of Gold Nanoparticles in Cells in a Combined Treatment with Cisplatin and Radiation at Therapeutic Megavoltage Energies. Cancers 2018, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Cartoni, A.; Venditti, I.; Catone, D.; O’Keeffe, P.; Paladini, A.; Toschi, F.; Turchini, S.; Sciubba, F.; Testa, G.; et al. Gold nanoparticles functionalized by Rhodamine B Isothiocyanate: a new tool to control Plasmonic Effects. J. Colloid Surf. Sci. 2018, 513, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Neuschmelting, V.; Harmsen, S.; Beziere, N.; Lockau, H.; Hsu, H.T.; Huang, R.; Razansky, D.; Ntziachristos, V.; Kircher, M.F. Dual-Modality Surface-Enhanced Resonance Raman Scattering and Multispectral Optoacoustic Tomography Nanoparticle Approach for Brain Tumor Delineation. Small 2018, 14, 1800740. [Google Scholar] [CrossRef] [PubMed]
- Biancolillo, A.; Firmani, P.; Bucci, R.; Magrì, A.; Marini, F. Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchem. J. 2019, 145, 252–258. [Google Scholar] [CrossRef]
- Preti, R.; Rapa, M.; Vinci, G. Effect of Steaming and Boiling on the Antioxidant Properties and Biogenic Amines Content in Green Bean (Phaseolus vulgaris) Varieties of Different Colours. J. Food Qual. 2017. [Google Scholar] [CrossRef]
- Ünüsan, N. Systematic review of mycotoxins in food and feeds in Turkey. Food Control 2019, 97, 1–14. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Møller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef] [PubMed]
- Nilam, M.; Hennig, A.; Naua, W.N.; Assaf, K.I. Gold nanoparticle aggregation enables colorimetric sensing assays for enzymatic decarboxylation. Anal. Methods 2017, 19, 2784–2787. [Google Scholar] [CrossRef]
- Adányi, N.; Nagy, Á.G.; Takács, B.; Szendrő, I.; Szakacs, G.; Szűcs, R.; Tóth-Szeles, E.; Lagzi, I.; Weiser, D.; Bódai, V.; et al. Sensitivity enhancement for mycotoxin determination by optical waveguide lightmode spectroscopy using gold nanoparticles of different size and origin. Food Chem. 2018, 267, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.; Ren, J.; Li, B.; Jin, X.; Pan, L. A simple, highly sensitive colorimetric immunosensor for the detection of alternariol monomethyl ether in fruit by non-aggregated gold nanoparticles. Anal. Bioanal. Chem. 2018, 410, 7511–7521. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Alladio, E.; Baggiani, C.; Cavalera, S.; Giovannoli, C.; Spano, G.; Anfossi, L. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single test line. Talanta 2019, 192, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Behpour, M.; Ghoreishi, S.M.; Khayatkashani, M.; Motaghedifard, M. Determination of strychnine in strychnos nux-vomica crude and detoxified seeds by voltammetric method using a carbon paste electrode incorporated with gold nanoparticles. Anal. Methods. 2011, 3, 872–876. [Google Scholar] [CrossRef]
- Liu, C.Y.; Tseng, W.L. Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chem. Commun. 2011, 47, 2550–2552. [Google Scholar] [CrossRef]
- Liu, C.Y.; Tseng, W.L. Using polysorbate 40-stabilized gold nanoparticles in colorimetric assays of hydrogen cyanide in cyanogenic glycoside-containing plants. Anal. Methods 2012, 8, 2537–2542. [Google Scholar] [CrossRef]
- González-Castro, A.; Peña-Vázqueza, E.; Bermejo-Barrera, P. A fast and simple method to perform cyanide detection using ATP stabilized gold nanoparticles combined with the Cu(DDTC)2 complex. Anal. Methods 2015, 10, 4308–4314. [Google Scholar] [CrossRef]
- Lou, X.; Zhang, Y.; Qin, J.; Li, Z. A Highly Sensitive and Selective Fluorescent Probe for Cyanide Based on the Dissolution of Gold Nanoparticles and Its Application in Real Samples. Chem. Eur. J. 2011, 17, 9691–9696. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, D.; Cui, B. A fluorometric assay for staphylococcal enterotoxin B by making use of platinum coated gold nanorods and of upconversion nanoparticles. Mikrochim. Acta 2018, 185, 516. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Ma, X.; Zhao, S.; Lv, Y.; Hun, X.; Wang, H.; Wang, Z. Nanogapped Au(core) @ Au-Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Anal. Chim. Acta 2018, 1033, 165–172. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, T.; Ma, M.; Chen, C.; Liang, X.; Wen, K.; Wang, Z.; Shen, J. Highly sensitive visual detection of amantadine residues in poultry at the ppb level: A colorimetric immunoassay based on a fenton reaction and gold nanoparticles aggregation. Anal. Chim. Acta 2018, 1027, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Lai, X.; Du, G.; Xiang, Y. Identification of aminoglycoside antibiotics in milk matrix with a colorimetric sensor array and pattern recognition methods. Anal. Chim. Acta 2018, 1034, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Shahrouei, F.; Elhami, S.; Tahanpesar, E. Highly sensitive detection of Ceftriaxone in water, food, pharmaceutical and biological samples based on gold nanoparticles in aqueous and micellar media. Spectrochim. Acta A 2018, 203, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.; Pimentel, F.; Nouws, H.; Marques, R.; González-García, M.B.; Oliveira, M.; Delerue-Matos, C. Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosens. Bioelectron. 2015, 19, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.; Pimentel, F.; Nouws, H.; Correr, W.; González-García, M.B.; Oliveira, M.; Delerue-Matos, C. Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach. Anal. Bioanal. Chem. 2015, 407, 7157–7163. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. Available online: http://data.europa.eu/eli/reg/2008/1272/oj (accessed on 31 December 2008).
- Rapa, M.; Ruggieri, R.; Vinci, G. Acrilammide: applicazione del Regolamento UE 2017/2158 nella produzione industriale degli alimenti. Ind. Aliment. 2018, 57, 13–20. [Google Scholar]
- Shi, X.; Lu, D.; Wang, Z.; Zhang, D.; Gao, W.; Zhang, C.; Deng, J.; Guo, S. Colorimetric and visual determination of acrylamide via acrylamide-mediated polymerization of acrylamide-functionalized gold nanoparticles. Mikrochim. Acta 2018, 185, 522. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, L.; Lin, L.; Wu, Y.; Fu, F. A Colorimetric Sensor for the Visual Detection of Azodicarbonamide in Flour Based on Azodicarbonamide-Induced Anti-Aggregation of Gold Nanoparticles. ACS Sens. 2018, 3, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Jigyasa, R.J.K. Bio-polyphenols promoted green synthesis of silver nanoparticles for facile and ultra-sensitive colorimetric detection of melamine in milk. Biosens. Bioelectron. 2018, 120, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Koyun, Ö.; Şahin, Y. Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics 2018, 24, 3187–3197. [Google Scholar] [CrossRef]
- Zhao, B.; Feng, S.; Hu, Y.; Wang, S.; Lu, X. Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor. Food Chem. 2018, 276, 366–375. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Luo, Y.; Duan, H.; Li, D.; Xu, H.; Fodjo, E.K. Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Anal. Methods 2018, 10, 4655–4664. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 2019, 191, 449–456. [Google Scholar] [CrossRef]
- Mohammad Lukman, Y.; Nor Dyana, Z.; Rahmah, N.; Khairunisak, A.R. Development and Evaluation of Colloidal Gold Lateral Flow Immunoassays for Detection of Escherichia Coli O157 and Salmonella Typhi. J. Phys. Conf. Ser. 2018, 1082, 012049. [Google Scholar] [CrossRef]
- Xu, Z.; Bi, X.; Huang, Y.; Che, Z.; Chen, X.; Fu, M.; Tian, H.; Yang, S. Sensitive colorimetric detection of Salmonella enteric serovar typhimurium based on a gold nanoparticle conjugated bifunctional oligonucleotide probe and aptamer. J. Food Saf. 2018, 38, 12482. [Google Scholar] [CrossRef]
- Qi, C.; Fengchun, H.; Gaozhe, C.; Maohua, W.; Jianhan, L. An optical biosensor using immunomagnetic separation, urease catalysis and pH indication for rapid and sensitive detection of Listeria monocytogenes. Sens. Actuator B Chem. 2018, 258, 447–453. [Google Scholar]
- Youngsang, Y.; Seokwon, L.; Jungwoo, H.; Young, J.; Choi, S.G. Bifunctional linker-based immunosensing for rapid and visible detection of bacteria in real matrices. Biosens. Bioelectron. 2018, 100, 389–395. [Google Scholar] [CrossRef]
- de Rijke, E.; Out, P.; Niessen, W.M.A.; Ariese, F.; Gooijer, C.; Brinkman, U.A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2016, 1112, 31–63. [Google Scholar] [CrossRef]
- Apak, R.; Çekiç, S.D.; Üzer, A.; Çelik, S.E.; Bener, M.; Bekdeşer, B.; Can, Z.; Sağlam, Ş.; Önem, A.N.; Erçağ, E. Novel spectroscopic and electrochemical sensors and nanoprobes for the characterization of food and biological antioxidants. Sensors 2018, 18, 186. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Gogoi, S.; Barua, S.; Sankar Dutta, H.; Bordoloi, M.; Khan, R. Electrochemical detection of monosodium glutamate in foodstuffs based on Au@MoS2/chitosan modified glassy carbon electrode. Food Chem. 2019, 276, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Jie, M.M.; Yang, M.; Tang, L.; Chen, S.Y.; Sun, X.M.; Tang, B.; Yang, S.M. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging. Nanoscale Res. Lett. 2018, 13, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Eckert, R.; Berghofer, E.; Ciclitira, P.J.; Chirdo, F.; Denery-Papini, S.; Ellis, H.J.; Ferranti, P.; Goodwin, P.; Immer, U.; Mamone, G.; et al. Towards a new gliadin reference material-isolation and characterisation. J. Cereal Sci. 2006, 43, 331–341. [Google Scholar] [CrossRef]
- Poms, R.E.; Klein, C.L.; Anklam, E. Methods for allergen analysis in food: A review. Food Addit. Contam. 2004, 21, 1–31. [Google Scholar] [CrossRef]
- Manfredi, A.; Giannetto, M.; Mattarozzi, M.; Costantini, M.; Mucchino, C.; Careri, M. Competitive immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes for rapid determination of celiotoxic prolamins. Anal. Bioanal. Chem. 2016, 408, 7289–7298. [Google Scholar] [CrossRef]
- Chu, P.-T.; Lin, C.-S.; Chen, W.-J.; Chen, C.-F.; Wen, H.-W. Detection of Gliadin in Foods Using a Quartz Crystal Microbalance Biosensor That Incorporates Gold Nanoparticles. J. Agric. Food Chem. 2012, 60, 6483–6492. [Google Scholar] [CrossRef]
- Yin, H.-Y.; Chu, P.-T.; Tsai, W.-C.; Wen, H.-W. Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chem. 2016, 192, 934–942. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem. Toxicol. 2000, 38, 647–659. [Google Scholar] [CrossRef]
- Papillo, V.A.; Vitaglione, P.; Graziani, G.; Gokmen, V.; Fogliano, V. Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol. J. Agric. Food Chem. 2014, 62, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Caporaso, N.; Sacchi, R. Temporal changes of virgin olive oil volatile compounds in a model system simulating domestic consumption: The role of biophenols. Food Res. Int. 2015, 77, 670–674. [Google Scholar] [CrossRef]
- Della Pelle, F.; González, M.C.; Sergi, M.; Del Carlo, M.; Compagnone, D.; Escarpa, A. Gold nanoparticles-based extraction-free colorimetric assay in organic media: an optical index for determination of total polyphenols in fat-rich samples. Anal. Chem. 2015, 87, 6905–6911. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Rapa, M.; Testa, G.; Venditti, I.; Scaramuzzo, F.A.; Vinci, G. Response surface methodology for the optimization of phenolic compounds extraction from extra virgin olive oil with functionalized gold nanoparticles. Microchem. J. 2018, 138, 430–437. [Google Scholar] [CrossRef]
- Bordbar, M.M.; Hemmateenejad, B.; Tashkhourian, J.; Nami-Ana, S.F. An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants. Mikrochim. Acta 2018, 185, 493. [Google Scholar] [CrossRef]
- Della Pelle, F.; Scroccarello, A.; Sergi, M.; Mascini, M.; Del Carlo, M.; Compagnone, D. Simple and rapid silver nanoparticles based antioxidant capacity assays: Reactivity study for phenolic compounds. Food Chem. 2018, 256, 342–349. [Google Scholar] [CrossRef]
- Bener, M.; Şen, F.B.; Apak, R. Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement. Talanta 2018, 187, 148–155. [Google Scholar] [CrossRef]
- Della Pelle, F.; Compagnone, D. Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors 2018, 18, 462. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, J.; Rivas Romero, P.; Estevez Brito, R.; Rodriguez Mellado, J.M.; Ruiz Montolla, M.; Rodriguez Amaro, R. Exploring the relation between composition of extracts of healthy foods and their antioxidant capacities determined by electrochemical and spectrophotometrical methods. LWT 2018, 95, 157–166. [Google Scholar]
Matrix | Mycotoxin | Molecular Weight | Chemical Structure | Nanoparticles | Method | References |
---|---|---|---|---|---|---|
Paprika | Aflatoxin B1 | 312.28 g/mol | C17H12O6 | AuNPs | Immunosensor | [24] |
Fruits, Vegetables, Grains | Alternariol Monomethyl Ether | 272.256 g/mol | C15H12O5 | AuNPs | Colorimetric Immunosensor | [25] |
Wheat, Wheat Products | Type-B Fumonisins | 721.84 g/mol | C34H59NO15 | AuNPs | Colorimetric Assays | [26] |
Nux-Vomica Seeds | Strychnine | 334.42 g/mol | C21H22N2O2 | AuNPs | Colorimetric Assays | [27] |
Vegetables | Cyanide Linamarin | 26.02 g/mol 247,248 g/mol | CN− C10H17NO6 | AuNPs | Colorimetric Assays | [28,29,30,31] |
Milk | Enterotoxin B | 30,000 ± 1000 g/mol | * | AuNR@Pt | DNA Fragment of Toxin Aptamer Immobilization | [32] |
Wine | Ochratoxin A | 403.813 g/mol | C20H18ClNO6 | Au(core)@Au-Ag(shell) | Surface-Enhanced Raman Scattering | [33] |
Matrix | Drug residues and Allergens | Molecular Weight | Chemical Structure | Nanoparticles | Method | References |
---|---|---|---|---|---|---|
Poultry | Amantadine | 151.253 g/mol | C10H17N | AuNPs | Immunoassay | [34] |
Milk | Aminoglycoside antibiotics | * | * | AuNPs | Pattern Recognition | [35] |
Milk, Meat | Ceftriaxone | 554.58 g/mol | C18H18N8O7S3 | AuNPs | NPs Aggregation | [36] |
Cookies, Chocolate | Ara h 1, Ara h 6 (peanut allergens) | 500–600 kDa | * | AuNPs | Immunoassay | [37,38] |
Matrix | Probably Carcinogenic Compounds | Molecular Weight | Chemical Structure | Nanoparticles | Method | References |
---|---|---|---|---|---|---|
Potato Chips, Cookies | Acrylamide | 71.08 g/mol | C3H5NO | AuNPs | NPs Aggregation | [41] |
Flour Products | Azodicarbonamide | 116.08 g/mol | C2H4N4O2 | AuNPs | NPs Aggregation | [42] |
Milk | Melamine | 126.12 g/mol | C3H6N6 | AgNPs | Colorimetric Assays | [43] |
Sausage, Water | Nitrites | 46.01 g/mol | NO2− | AgNPs | Sensoristic | [44] |
Matrix | Pesticides | Molecular Weight | Chemical Structure | Nanoparticles | Method | References |
---|---|---|---|---|---|---|
Apple Juice | Atrazine | 215.68 g/mol | C8H14ClN5 | AuNPs | NPs Aggregation | [45] |
Grapes | Difenoconazole | 406.263 g/mol | C19H17Cl2N3O3 | Au@AgNPs | NPs Aggregation | [46] |
Fruit, Vegetables | Various Pesticides | * | * | AgNPs | Colorimetric Assays | [47] |
Matrix | Bacteria | Nanoparticles | Method | References |
---|---|---|---|---|
Water, Milk | Escherichia coli, Salmonella | AuNPs | Immunoassays | [48] |
Milk, Shrimp | Salmonella | AuNPs | Colorimetric Assays | [49] |
Lettuce | Listeria | AuNPs | Colorimetric Assays | [50] |
Water, Milk | Escherichia coli, Salmonella | AuNPs | Colorimetric Assays | [51] |
Chicken, Turkey, Egg Products | Salmonella | AuNPs | Microfluidic | [52] |
Matrix | Compounds | Molecular Weight | Chemical Structure | Nanoparticles | Method | References |
---|---|---|---|---|---|---|
Flours (Mile, Chestnut, Chickpeas, Quinoa, Potato) | Gliadin | 631.687 g/mol | C29H41N7O9 | AuNPs | Immunoassay | [58] |
Cereals | Gliadin | 631.687 g/mol | C29H41N7O9 | AuNPs | Immunoassay | [59] |
Wheat, Barley, Oat, Rice, Foxtail Millet, Corn, Buckwheat, Soybean, Rye | Gliadin | 631.687 g/mol | C29H41N7O9 | AuNPs | DNA recognition | [60] |
Matrix | Determination | Nanoparticles | Method | References |
---|---|---|---|---|
Fat matrix | Phenolic Compounds | AuNPs | SPR | [66] |
Olive oil | Phenolic Compounds | AuNPs | Extraction | [67] |
Tea, Lemon Juice | Phenolic Compounds | AuNPs, AgNPS | Colorimetric Assays | [68] |
Tea | Antioxidant Capacity | AgNPs | NPs synthesis - SPR | [69] |
Tea | Antioxidant Capacity | AuNPs | Colorimetric Assays | [70] |
Olive Oil | Antioxidant Capacity | AuNPs | Colorimetric Assays | [71] |
Tea, Infusions | Antioxidant Capacity | PtNPs | Colorimetric Assays | [72] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinci, G.; Rapa, M. Noble Metal Nanoparticles Applications: Recent Trends in Food Control. Bioengineering 2019, 6, 10. https://doi.org/10.3390/bioengineering6010010
Vinci G, Rapa M. Noble Metal Nanoparticles Applications: Recent Trends in Food Control. Bioengineering. 2019; 6(1):10. https://doi.org/10.3390/bioengineering6010010
Chicago/Turabian StyleVinci, Giuliana, and Mattia Rapa. 2019. "Noble Metal Nanoparticles Applications: Recent Trends in Food Control" Bioengineering 6, no. 1: 10. https://doi.org/10.3390/bioengineering6010010
APA StyleVinci, G., & Rapa, M. (2019). Noble Metal Nanoparticles Applications: Recent Trends in Food Control. Bioengineering, 6(1), 10. https://doi.org/10.3390/bioengineering6010010