Efficacy of Cross-Linked Collagen Membranes for Bone Regeneration: In Vitro and Clinical Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Study
2.1.1. Degradation Test
2.1.2. Tear Test
2.1.3. Cytotoxicity Test
2.2. Clinical Study
2.2.1. Participants
2.2.2. Inclusion and Exclusion Criteria
2.2.3. Ethics Approval and Consent to Participate
2.2.4. Study Design
2.2.5. Radiological Evaluation
2.2.6. Statistical Analysis
3. Results
3.1. In Vitro Study
3.1.1. Degradation Test
3.1.2. Tear Test
3.1.3. Cytotoxicity Test
3.2. Radiological Evaluation
3.2.1. Total Volume Change
3.2.2. Volume Ratios of New Bone Formation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GBR | Guided bone regeneration |
CBCT | Cone-beam computed tomography |
References
- Raymond, Y.; Pastorino, D.; Ginebreda, I.; Maazouz, Y.; Ortiz, M.; Manzanares, M.C.; Ginebra, M.P. Computed tomography and histological evaluation of xenogenic and biomimetic bone grafts in three-wall alveolar defects in minipigs. Clin. Oral Investig. 2021, 25, 6695–6706. [Google Scholar] [CrossRef]
- Chu, Y.-Y.; Chang, F.C.-S.; Lu, T.-C.; Lee, C.-H.; Chen, P.K.-T. Surgical outcomes of secondary alveolar bone grafting and extensive gingivoperiosteoplasty performed at mixed dentition stage in unilateral complete cleft lip and palate. J. Clin. Med. 2020, 9, 576. [Google Scholar] [CrossRef]
- Schwarze, U.Y.; Strauss, F.J.; Gruber, R. Caspase inhibitor attenuates the shape changes in the alveolar ridge following tooth extraction: A pilot study in rats. J. Periodontal Res. 2021, 56, 101–107. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, Y.; Zhou, L.; Tang, X. The application of chimeric deep circumflex iliac artery perforator flap for oromandibular reconstruction: A case report. J. Med. 2021, 100, e25458. [Google Scholar] [CrossRef]
- Kim, J.W.; Yang, B.E.; Hong, S.J.; Choi, H.G.; Byeon, S.J.; Lim, H.K.; Chung, S.M.; Lee, J.H.; Byun, S.H. Bone regeneration capability of 3D printed ceramic scaffolds. Int. J. Mol. Sci. 2020, 21, 4837. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, Y.H.; Zhao, Y.Q.; Gao, Z.R.; Ouyang, Z.Y.; Ye, Q.; Liu, Q.; Chen, Y.; Tan, L.; Zhang, S.H.; et al. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res. Ther. 2023, 14, 39. [Google Scholar] [CrossRef]
- Byun, S.H.; Lim, H.K.; Yang, B.E.; Kim, S.M.; Lee, J.H. Delayed reconstruction of palatomaxillary defect using fibula free flap. J. Clin. Med. 2020, 9, 884. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.I.; Lim, J.H.; Jo, W.M.; Lee, J.K.; Song, S.I. Effects of rhBMP-2 with various carriers on maxillofacial bone regeneration through computed tomography evaluation. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 40. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Yang, B.E.; On, S.W.; Kwon, I.J.; Ahn, K.M.; Lee, J.H.; Byun, S.H. Customized three-dimensional printed ceramic bone grafts for osseous defects: A prospective randomized study. Sci. Rep. 2024, 14, 3397. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Fan, L.; Alkildani, S.; Liu, L.; Emmert, S.; Najman, S.; Rimashevskiy, D.; Schnettler, R.; Jung, O.; Xiong, X.; et al. Barrier membranes for guided bone regeneration (gbr): A focus on recent advances in collagen membranes. Int. J. Mol. Sci. 2022, 23, 14987. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.G. Advancements in alveolar bone grafting and ridge preservation: A narrative review on materials, techniques, and clinical outcomes. Maxillofac. Plast. Reconstr. Surg. 2024, 46, 14. [Google Scholar] [CrossRef] [PubMed]
- Wessing, B.; Lettner, S.; Zechner, W. Guided bone regeneration with collagen membranes and particulate graft materials: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Implants 2018, 33, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017, 125, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Omar, N.A.; Roque, J.; Galvez, P.; Siadous, R.; Chassande, O.; Catros, S.; Amédée, J.; Roques, S.; Durand, M.; Bergeaut, C.; et al. Development of Novel Polysaccharide Membranes for Guided Bone Regeneration: In Vitro and In Vivo Evaluations. Bioengineering 2023, 10, 1257. [Google Scholar] [CrossRef]
- Shi, N.; Wang, J.; Tang, S.; Zhang, H.; Wei, Z.; Li, A.; Ma, Y.; Xu, F. Matrix nonlinear viscoelasticity regulates skeletal myogenesis through MRTF nuclear localization and nuclear mechanotransduction. Small 2024, 20, 2305218. [Google Scholar] [CrossRef]
- Bunyaratavej, P.; Wang, H.L. Collagen membranes: A review. J. Periodontol. 2001, 72, 215–229. [Google Scholar] [CrossRef]
- Kozlovsky, A.; Aboodi, G.; Moses, O.; Tal, H.; Artzi, Z.; Weinreb, M.; Nemcovsky, C.E. Bio-degradation of a resorbable collagen membrane (Bio-Gide®) applied in a double-layer technique in rats. Clin. Oral Implants Res. 2009, 20, 1116–1123. [Google Scholar] [CrossRef]
- Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020, 161, 550–560. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Lou, Y.Y.; Li, T.H.; Liu, B.Z.; Chen, K.; Zhang, D.; Li, T. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering. Am. J. Transl. Res. 2022, 14, 1146–1159. [Google Scholar]
- Spinell, T.; Sauter, D.; Schlee, M.; Präger, T.M.; Wein, M.; Eitner, S. In-Vitro Cytocompatibility and Growth Factor Content of GBR/GTR Membranes. Dent. Mater. 2019, 35, 963–969. [Google Scholar] [CrossRef]
- Moses, O.; Pitaru, S.; Artzi, Z.; Nemcovsky, C.E. Healing of dehiscence-type defects in implants placed together with different barrier membranes: A comparative clinical study. Clin. Oral Implants Res. 2005, 16, 210–219. [Google Scholar] [CrossRef]
- Paul, B.F.; Mellonig, J.T.; Towle, H.J., III; Gray, J.L. Use of a collagen barrier to enhance healing in human periodontal furcation defects. Int. J. Periodontics Restor. Dent. 1992, 12, 123–131. [Google Scholar]
- Gough, J.E.; Scotchford, C.A.; Downes, S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 2002, 61, 121–130. [Google Scholar] [CrossRef]
- Qin, X.; Hu, B.; Guo, L.; Zhang, H.; Li, L.; Jie, Y.; Tian, L. Influence of Dextran Solution and Corneal Collagen Crosslinking on Corneal Biomechanical Parameters Evaluated by Corvis ST In Vitro. Bioengineering 2024, 11, 1156. [Google Scholar] [CrossRef]
- Jimenez Garcia, J.; Berghezan, S.; Carames, J.M.M.; Dard, M.M.; Marques, D.N.S. Effect of cross-linked vs non-cross-linked collagen membranes on bone: A systematic review. J. Periodontal. Res. 2017, 52, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Chichiricco, P.M.; Matricardi, P.; Colaço, B.; Gomes, P.; Jérôme, C.; Lesoeur, J.; Veziers, J.; Réthoré, G.; Weiss, P.; Struillou, X.; et al. Injectable Hydrogel Membrane for Guided Bone Regeneration. Bioengineering 2023, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Choi, S.Y.; Park, J.H.; Kim, H.Y.; Kim, S.J.; Kim, J.W. Six-month stability following extensive alveolar bone augmentation by sausage technique. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 16. [Google Scholar] [CrossRef]
- Kölliker, R.; Hicklin, S.P.; Hirsiger, C.; Liu, C.C.; Janett, F.; Schmidlin, P.R. In Vitro Evaluation of the Permeability of Different Resorbable Xenogeneic Membranes after Collagenolytic Degradation. Membranes 2022, 12, 787. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Asady, S.; Toledano-Osorio, M.; García-Godoy, F.; Serrera-Figallo, M.-A.; Benítez-García, J.A.; Osorio, R. Differential Biodegradation Kinetics of Collagen Membranes for Bone Regeneration. Polymers 2020, 12, 1290. [Google Scholar] [CrossRef] [PubMed]
- Brunel, G.; Piantoni, P.; Elharar, F.; Benqué, E.; Marin, P.; Zahedi, S. Regeneration of rat calvarial defects using a bioabsorbable membrane technique: Influence of collagen cross-linking. J. Periodontol. 1996, 67, 1342–1348. [Google Scholar] [CrossRef]
- Mattson, J.S.; McLey, L.L.; Jabro, M.H. Treatment of intrabony defects with collagen membrane barriers. Case reports. J. Periodontol. 1995, 66, 635–645. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Shi, B.; Wang, Y.; Chen, Y.; Wang, X.; Lee, E.S.; Jiang, H.B. Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: A review. Polym. J. 2022, 14, 871. [Google Scholar] [CrossRef]
- Bouguezzi, A.; Debibi, A.; Chokri, A.; Sioud, S.; Hentati, H.; Selmi, J. Cross-linked versus natural collagen membrane for guided bone regeneration? A literature review. Am. J. Biomed. Res. 2020, 8, 12–16. [Google Scholar]
- Rothamel, D.; Schwarz, F.; Sager, M.; Herten, M.; Sculean, A.; Becker, J. Biodegradation of differently cross-linked collagen membranes: An experimental study in the rat. Clin. Oral Implants Res. 2005, 16, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Charulatha, V.; Rajaram, A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 2003, 24, 759–767. [Google Scholar] [CrossRef]
- Depalle, B.; Qin, Z.; Shefelbine, S.J.; Buehler, M.J. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J. Mech. Behav. Biomed. Mater. 2015, 52, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Raz, P.; Brosh, T.; Ronen, G.; Tal, H. Tensile Properties of Three Selected Collagen Membranes. BioMed Res. Int. 2019, 2019, 5163603. [Google Scholar] [CrossRef]
- Khadem, H.; Madani, S.; Yousefi, M.; Namazi, H. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers 2022, 14, 1709. [Google Scholar] [CrossRef]
- Chiapasco, M.; Rossi, A.; Motta, J.J.; Crescentini, M. Spontaneous bone regeneration after enucleation of large mandibular cysts: A radiographic computed analysis of 27 consecutive cases. J. Oral Maxillofac. Surg. 2000, 58, 942–948. [Google Scholar] [CrossRef]
- Ettl, T.; Gosau, M.; Sader, R.; Reichert, T.E. Jaw cysts–filling or no filling after enucleation? A review. J. Craniomaxillofac. Surg. 2012, 40, 485–493. [Google Scholar] [CrossRef]
- Bubalo, M.; Lazić, Z.; Tatić, Z.; Milović, R.; Magić, M. The use of collagen membranes in guided tissue regeneration. Vojnosanit. Pregl. 2017, 74, 767–772. [Google Scholar] [CrossRef]
- Mizraji, G.; Martinez, L.; Pujol, A.; Avila, G.; Olate, S.; Martínez, B.; Fuentes, R. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontology 2023, 93, 56–76. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W.; Kirsch, A.; Ackermann, K.L.; Hürzeler, M.B. A tissue engineered cell-occlusive device for hard tissue regeneration--a preliminary report. Int. J. Periodontics Restor. Dent. 2001, 21, 49–59. [Google Scholar]
- Palkovics, D.; Solyom, E.; Somodi, K.; Pinter, C.; Windisch, P.; Bartha, F.; Molnar, B. Three-Dimensional Volumetric Assessment of Hard Tissue Alterations Following Horizontal Guided Bone Regeneration Using a Split-Thickness Flap Design: A Case Series. BMC Oral Health 2023, 23, 118. [Google Scholar] [CrossRef]
- Heselich, A.; Śmieszek-Wilczewska, J.; Boyo, L.; Sader, R.; Ghanaati, S. Development of Semi-Automated Image-Based Analysis Tool for CBCT Evaluation of Alveolar Ridge Changes after Tooth Extraction. Bioengineering 2025, 12, 307. [Google Scholar] [CrossRef]
- Friedmann, A.; Gissel, K.; Soudan, M.; Kleber, B.M.; Pitaru, S.; Dietrich, T. Randomized controlled trial on lateral augmentation using two collagen membranes: Morphometric results on mineralized tissue compound. J. Clin. Periodontol. 2011, 38, 677–685. [Google Scholar] [CrossRef]
- Bornstein, M.M.; Bosshardt, D.; Buser, D. Effect of two different bioabsorbable collagen membranes on guided bone regeneration: A comparative histomorphometric study in the dog mandible. J. Periodontol. 2007, 78, 1943–1953. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Choe, S.H.; Cha, J.K.; Seo, G.Y.; Kim, C.S. Radiographic and histologic observations of sequential healing processes following ridge augmentation after tooth extraction in buccal-bone-deficient extraction sockets in beagle dogs. J. Clin. Periodontol. 2018, 45, 1388–1397. [Google Scholar] [CrossRef]
- Wosicka-Frąckowiak, H.; Poniedziałek, K.; Woźny, S.; Kuprianowicz, M.; Nyga, M.; Jadach, B.; Milanowski, B. Collagen and its derivatives serving biomedical purposes: A review. Polym. J. 2024, 16, 2668. [Google Scholar] [CrossRef] [PubMed]
Assessment | Screening | Surgery | 2 W Follow-Up | 3 M Follow-Up | 6 M Follow-Up |
---|---|---|---|---|---|
Panoramic radiograph | O | O | O | O | O |
Cone-beam CT | O | O | O | ||
Clinical photographs | O | O | O | O | |
Adverse event monitoring | O | O | O | O | O |
Group A | Group B | ||
---|---|---|---|
Degradation rate (%) | |||
Time (hours) | 0 | 0.0 | 0.0 |
2 | 57.9 | 21.5 | |
4 | 100.0 | 34.1 | |
6 | 100.0 | 45.7 | |
12 | 100.0 | 79.5 | |
Tear strength (N) | |||
n = 3 | 1 | 4.2 | 18.4 |
2 | 4.5 | 19.4 | |
3 | 3.3 | 17.3 | |
Average | 4.0 0.6 | 18.4 1.1 |
Sample | Result: n = 6 | Average | |||||
---|---|---|---|---|---|---|---|
Negative | 3.724 | 3.757 | 3.809 | 3.633 | 3.276 | 3.290 | 3.58 ± 0.12 |
Positive | 0.554 | 0.597 | 0.536 | 0.440 | 0.465 | 0.474 | 0.51 ± 0.09 |
Group B | 3.051 | 3.098 | 3.094 | 3.120 | 2.889 | 2.937 | 3.03 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-H.; Yang, B.-E.; Park, S.-Y.; On, S.-W.; Ahn, K.-M.; Byun, S.-H. Efficacy of Cross-Linked Collagen Membranes for Bone Regeneration: In Vitro and Clinical Studies. Bioengineering 2025, 12, 876. https://doi.org/10.3390/bioengineering12080876
Baek S-H, Yang B-E, Park S-Y, On S-W, Ahn K-M, Byun S-H. Efficacy of Cross-Linked Collagen Membranes for Bone Regeneration: In Vitro and Clinical Studies. Bioengineering. 2025; 12(8):876. https://doi.org/10.3390/bioengineering12080876
Chicago/Turabian StyleBaek, Se-Hoon, Byoung-Eun Yang, Sang-Yoon Park, Sung-Woon On, Kang-Min Ahn, and Soo-Hwan Byun. 2025. "Efficacy of Cross-Linked Collagen Membranes for Bone Regeneration: In Vitro and Clinical Studies" Bioengineering 12, no. 8: 876. https://doi.org/10.3390/bioengineering12080876
APA StyleBaek, S.-H., Yang, B.-E., Park, S.-Y., On, S.-W., Ahn, K.-M., & Byun, S.-H. (2025). Efficacy of Cross-Linked Collagen Membranes for Bone Regeneration: In Vitro and Clinical Studies. Bioengineering, 12(8), 876. https://doi.org/10.3390/bioengineering12080876