Effect of Porcine-Derived Collagen Membrane Crosslinking on Intraoral Soft Tissue Augmentation: A Canine Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Surgical Protocol Summary
2.2. Histological Processing
2.3. Qualitative Analysis
2.4. Semi-Quantitative Analysis
2.5. Quantitative Analysis
3. Results
3.1. Postoperative Observations
3.2. Qualitative Histologic Findings
3.3. Semi-Quantitative Histologic Findings
3.4. Quantitative Histologic Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carra, M.C.; Blanc-Sylvestre, N.; Courtet, A.; Bouchard, P. Primordial and primary prevention of peri-implant diseases: A systematic review and meta-analysis. J. Clin. Periodontol. 2023, 50 (Suppl. S26), 77–112. [Google Scholar] [CrossRef]
- Chackartchi, T.; Romanos, G.E.; Sculean, A. Soft tissue-related complications and management around dental implants. Periodontology 2000 2019, 81, 124–138. [Google Scholar] [CrossRef]
- Puzio, M.; Hadzik, J.; Blaszczyszyn, A.; Gedrange, T.; Dominiak, M. Soft tissue augmentation around dental implants with connective tissue graft (CTG) and xenogenic collagen matrix (XCM). 1-year randomized control trail. Ann. Anat. 2020, 230, 151484. [Google Scholar] [CrossRef]
- Lang, N.P.; Löe, H. The relationship between the width of keratinized gingiva and gingival health. J. Periodontol. 1972, 43, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Lorenzo, R.; Aranda, J.J.; Martin, C.; Orsini, M. Clinical evaluation of a new collagen matrix (Mucograft prototype) to enhance the width of keratinized tissue in patients with fixed prosthetic restorations: A randomized prospective clinical trial. J. Clin. Periodontol. 2009, 36, 868–876. [Google Scholar] [CrossRef]
- Fu, J.H.; Su, C.Y.; Wang, H.L. Esthetic soft tissue management for teeth and implants. J. Evid. Based Dent. Pract. 2012, 12, 129–142. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.K.; Scheyer, E.T.; Lipton, D.I.; Gunsolley, J.C. Randomized, controlled, clinical trial to evaluate a xenogeneic collagen matrix as an alternative to free gingival grafting for oral soft tissue augmentation: A 6- to 8-year follow-up. J. Periodontol. 2021, 92, 1088–1095. [Google Scholar] [CrossRef]
- Gargallo-Albiol, J.; Barootchi, S.; Tavelli, L.; Wang, H.L. Efficacy of Xenogeneic Collagen Matrix to Augment Peri-Implant Soft Tissue Thickness Compared to Autogenous Connective Tissue Graft: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2019, 34, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater. 2019, 31, e1801651. [Google Scholar] [CrossRef]
- Caballé-Serrano, J.; Zhang, S.; Sculean, A.; Staehli, A.; Bosshardt, D.D. Tissue Integration and Degradation of a Porous Collagen-Based Scaffold Used for Soft Tissue Augmentation. Materials 2020, 13, 2420. [Google Scholar] [CrossRef]
- Caballe-Serrano, J.; Zhang, S.; Ferrantino, L.; Simion, M.; Chappuis, V.; Bosshardt, D.D. Tissue Response to a Porous Collagen Matrix Used for Soft Tissue Augmentation. Materials 2019, 12, 3721. [Google Scholar] [CrossRef]
- Geistlich Biomaterials. Your Cookbook for Gaining Keratinized Tissue Geistlich Pharma. Available online: https://www.geistlich-na.com/fileadmin/content/International_Pharma/PDF/Dental_EN/601807_FLY_Mucograft_Open_Healing_EN_2002.pdf (accessed on 24 May 2025).
- Navya, P.D.; Rajasekar, A. Management of inadequate width of attached gingiva using mucograft. J. Adv. Pharm. Technol. Res. 2022, 13, S358–S361. [Google Scholar] [CrossRef]
- Menceva, Z.; Dimitrovski, O.; Popovska, M.; Spasovski, S.; Spirov, V.; Petrushevska, G. Free Gingival Graft versus Mucograft: Histological Evaluation. Open Access Maced. J. Med. Sci. 2018, 6, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, R.; Pini-Prato, G. Use of a new collagen matrix (mucograft) for the treatment of multiple gingival recessions: Case reports. Int. J. Periodontics Restor. Dent. 2012, 32, 413–419. [Google Scholar]
- Lima, R.S.; Peruzzo, D.C.; Napimoga, M.H.; Saba-Chujfi, E.; Dos Santos-Pereira, S.A.; Martinez, E.F. Evaluation of the Biological Behavior of Mucograft(R) in Human Gingival Fibroblasts: An In Vitro Study. Braz. Dent. J. 2015, 26, 602–606. [Google Scholar] [CrossRef]
- Baulin, I.M.; Badalyan, V.A.; Ryakhovsky, A.N. Experimental study of the collagen matrix for increase the gums using a 3D-modeling. Stomatologiia 2015, 94, 8–10. [Google Scholar] [CrossRef]
- Rokn, A.; Zare, H.; Haddadi, P. Use of Mucograft Collagen Matrix((R)) versus Free Gingival Graft to Augment Keratinized Tissue around Teeth: A Randomized Controlled Clinical Trial. Front. Dent. 2020, 17, 5. [Google Scholar] [CrossRef]
- Ophof, R.; Maltha, J.C.; Kuijpers-Jagtman, A.M.; Von den Hoff, J.W. Implantation of tissue-engineered mucosal substitutes in the dog palate. Eur. J. Orthod. 2008, 30, 1–9. [Google Scholar] [CrossRef]
- Shen, Z.; Sun, L.; Liu, Z.; Li, M.; Cao, Y.; Han, L.; Wang, J.; Wu, X.; Sang, S. Rete ridges: Morphogenesis, function, regulation, and reconstruction. Acta Biomater. 2023, 155, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Vallecillo, C.; Toledano-Osorio, M.; Vallecillo-Rivas, M.; Toledano, M.; Osorio, R. In Vitro Biodegradation Pattern of Collagen Matrices for Soft Tissue Augmentation. Polymers 2021, 13, 2633. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, S.; Luo, P.; Deng, S.; Shan, Z.; Fang, J.; Liu, X.; Xie, J.; Liu, R.; Wu, S.; et al. Optimizing the bio-degradability and biocompatibility of a biogenic collagen membrane through cross-linking and zinc-doped hydroxyapatite. Acta Biomater. 2022, 143, 159–172. [Google Scholar] [CrossRef]
- Lakshmi, M.R.; Gottumukkala, S.; Penmetsa, G.S.; Ramesh, K.S.V.; Kumar, P.M.; Vamsi, E.S.; Mounica, M.B. Clinical outcomes of root coverage using porcine-derived collagen matrix with modified coronally advanced tunnel technique (MCAT) in multiple gingival recessions in smokers—A randomized controlled clinical trial. Clin. Oral Investig. 2023, 27, 1101–1111. [Google Scholar] [CrossRef]
- Lorenz, J.; Blume, M.; Barbeck, M.; Teiler, A.; Kirkpatrick, C.J.; Sader, R.A.; Ghanaati, S. Expansion of the peri-implant attached gingiva with a three-dimensional collagen matrix in head and neck cancer patients-results from a prospective clinical and histological study. Clin. Oral Investig. 2017, 21, 1103–1111. [Google Scholar] [CrossRef]
- Thoma, D.S.; Alshihri, A.; Fontolliet, A.; Hämmerle, C.H.F.; Jung, R.E.; Benic, G.I. Clinical and histologic evaluation of different approaches to gain keratinized tissue prior to implant placement in fully edentulous patients. Clin. Oral Investig. 2018, 22, 2111–2119. [Google Scholar] [CrossRef]
- Woodley, D.T.; Peterson, H.D.; Herzog, S.R.; Stricklin, G.P.; Burgeson, R.E.; Briggaman, R.A.; Cronce, D.J.; O’Keefe, E.J. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA 1988, 259, 2566–2571. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; He, S.; Sa, G. The adhesive heterogeneity of different compartments of oral mucosal rete ridges. Exp. Dermatol. 2022, 31, 413–419. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.C.; Chang, Y.H.; Liu, X.; Chang, C.L.; Lin, C.; Chung, R.J. Preparation and in vivo investigation of oligomeric proanthocyanidins cross-linked collagen serving as synthesized tissue regeneration membrane. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 640–649. [Google Scholar] [CrossRef]
- Delgado, L.M.; Bayon, Y.; Pandit, A.; Zeugolis, D.I. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng. Part B Rev. 2015, 21, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Rothamel, D.; Schwarz, F.; Sager, M.; Herten, M.; Sculean, A.; Becker, J. Biodegradation of differently cross-linked collagen membranes: An experimental study in the rat. Clin. Oral Implant. Res. 2005, 16, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Alkildani, S.; Burckhardt, K.; Köwitsch, A.; Radenkovic, M.; Stojanovic, S.; Najman, S.; Jung, O.; Liu, L.; Barbeck, M. The influence of different crosslinking agents onto the physical properties, integration behavior and immune response of collagen-based barrier membranes. Front. Bioeng. Biotechnol. 2024, 12, 1506433. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Kodama, Y.; Miwa, K.; Kishimoto, K.; Hoshikawa, E.; Haga, K.; Sato, T.; Mizuno, J.; Izumi, K. Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci. Rep. 2020, 10, 22192. [Google Scholar] [CrossRef]
- Rothamel, D.; Benner, M.; Fienitz, T.; Happe, A.; Kreppel, M.; Nickenig, H.J.; Zöller, J.E. Biodegradation pattern and tissue integration of native and cross-linked porcine collagen soft tissue augmentation matrices—An experimental study in the rat. Head Face Med. 2014, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Rothamel, D.; Herten, M.; Sager, M.; Becker, J. Angiogenesis pattern of native and cross-linked collagen membranes: An immunohistochemical study in the rat. Clin. Oral Implant. Res. 2006, 17, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.; Khalid, A.W.; Pae, H.C.; Cha, J.K.; Lee, J.S.; Paik, J.W.; Jung, U.W.; Choi, S.H. Distinctive bone regeneration of calvarial defects using biphasic calcium phosphate supplemented ultraviolet-crosslinked collagen membrane. J. Periodontal Implant. Sci. 2020, 50, 14–27. [Google Scholar] [CrossRef]
- Chu, C.; Deng, J.; Xiang, L.; Wu, Y.; Wei, X.; Qu, Y.; Man, Y. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 67, 386–394. [Google Scholar] [CrossRef]
- Chia-Lai, P.J.; Orlowska, A.; Al-Maawi, S.; Dias, A.; Zhang, Y.; Wang, X.; Zender, N.; Sader, R.; Kirkpatrick, C.J.; Ghanaati, S. Sugar-based collagen membrane cross-linking increases barrier capacity of membranes. Clin. Oral Investig. 2018, 22, 1851–1863. [Google Scholar] [CrossRef]
- Ramos-Rodriguez, D.H.; MacNeil, S.; Claeyssens, F.; Ortega Asencio, I. Fabrication of Topographically Controlled Electrospun Scaffolds to Mimic the Stem Cell Microenvironment in the Dermal-Epidermal Junction. ACS Biomater. Sci. Eng. 2021, 7, 2803–2813. [Google Scholar] [CrossRef]
- Braun, K.M.; Prowse, D.M. Distinct epidermal stem cell compartments are maintained by independent niche microenvironments. Stem Cell Rev. 2006, 2, 221–231. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, T.; He, S. Physical forces make rete ridges in oral mucosa. Med. Hypotheses 2013, 81, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Ghanaati, S.; Kovacs, A.; Barbeck, M.; Lorenz, J.; Teiler, A.; Sadeghi, N.; Kirkpatrick, C.J.; Sader, R. Bilayered, non-cross-linked collagen matrix for regeneration of facial defects after skin cancer removal: A new perspective for biomaterial-based tissue reconstruction. J. Cell Commun. Signal 2016, 10, 3–15. [Google Scholar] [CrossRef]
- Wermker, K.; Hogrebe, M.; Gellrich, N.C.; Heselich, A.; Ghanaati, S. Covering skin defects with a xenogeneic collagen matrix in comparison with a skin graft—A multicenter randomized controlled trial. J. Craniomaxillofac. Surg. 2024, 52, 101–107. [Google Scholar] [CrossRef]
- Baur, J.O.; Rahmanian-Schwarz, A.; Held, M.; Schiefer, J.; Daigeler, A.; Eisler, W. Evaluation of a cross-linked versus non-cross-linked collagen matrix in full-thickness skin defects. Burns 2021, 47, 150–156. [Google Scholar] [CrossRef]
- Sant’Anna da Costa, L.; Luiz, J.J.F.; Petronilho, V.G.; Destefani, M.; Casaroto, A.R.; Salmeron, S. Porcine Resorbable Collagen Matrix Shows Good Incorporation of Liquid Platelet-Rich Fibrin In Vitro. Int. J. Oral Maxillofac. Implant. 2023, 38, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Al-Maawi, S.; Herrera-Vizcaino, C.; Orlowska, A.; Willershausen, I.; Sader, R.; Miron, R.J.; Choukroun, J.; Ghanaati, S. Biologization of Collagen-Based Biomaterials Using Liquid-Platelet-Rich Fibrin: New Insights into Clinically Applicable Tissue Engineering. Materials 2019, 12, 3993. [Google Scholar] [CrossRef] [PubMed]
- Ghanaati, S.; Herrera-Vizcaino, C.; Al-Maawi, S.; Lorenz, J.; Miron, R.J.; Nelson, K.; Schwarz, F.; Choukroun, J.; Sader, R. Fifteen Years of Platelet Rich Fibrin in Dentistry and Oromaxillofacial Surgery: How High is the Level of Scientific Evidence? J. Oral Implantol. 2018, 44, 471–492. [Google Scholar] [CrossRef] [PubMed]
Membrane Presence | Description |
---|---|
0 | No membrane presence characterized by an absence of gaps in the healing layers with a dense, organized connective tissue, and a return to normal structural tissue morphology |
1 | Partial membrane presence characterized by an absence of gaps in the healing layer and residual membrane (indicating degradation) |
2 | Full membrane presence characterized by tissue integration with minimal gaps in the healing layer and inflammatory reaction to the membranes |
Membrane Presence | Group | Median (IQR) | ||
4 Weeks | 8 Weeks | 12 Weeks | ||
ZdermTM | 2 (0) | 1(1) | 0 (0) | |
Mucograft® | 2 (1) | 1 (0) | 0.5 (1) |
Timepoint | ZdermTM Average KT Length (mm) | Mucograft® Average KT Length (mm) | p-Value |
---|---|---|---|
4 weeks | 5.99 ± 0.67 | 5.70 ± 0.66 | 0.514 |
8 weeks | 5.18 ± 0.60 | 5.35 ± 0.60 | 0.660 |
12 weeks | 6.32 ± 0.52 | 6.99 ± 0.90 | 0.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slavin, B.V.; Nayak, V.V.; Stauber, Z.M.; Ehlen, Q.T.; Costello, J.P., II; Tabibi, O.; Herbert, J.E.; Almada, R.; Daunert, S.; Witek, L.; et al. Effect of Porcine-Derived Collagen Membrane Crosslinking on Intraoral Soft Tissue Augmentation: A Canine Model. Bioengineering 2025, 12, 875. https://doi.org/10.3390/bioengineering12080875
Slavin BV, Nayak VV, Stauber ZM, Ehlen QT, Costello JP II, Tabibi O, Herbert JE, Almada R, Daunert S, Witek L, et al. Effect of Porcine-Derived Collagen Membrane Crosslinking on Intraoral Soft Tissue Augmentation: A Canine Model. Bioengineering. 2025; 12(8):875. https://doi.org/10.3390/bioengineering12080875
Chicago/Turabian StyleSlavin, Blaire V., Vasudev Vivekanand Nayak, Zachary M. Stauber, Quinn T. Ehlen, Joseph P. Costello, II, Orel Tabibi, Justin E. Herbert, Ricky Almada, Sylvia Daunert, Lukasz Witek, and et al. 2025. "Effect of Porcine-Derived Collagen Membrane Crosslinking on Intraoral Soft Tissue Augmentation: A Canine Model" Bioengineering 12, no. 8: 875. https://doi.org/10.3390/bioengineering12080875
APA StyleSlavin, B. V., Nayak, V. V., Stauber, Z. M., Ehlen, Q. T., Costello, J. P., II, Tabibi, O., Herbert, J. E., Almada, R., Daunert, S., Witek, L., & Coelho, P. G. (2025). Effect of Porcine-Derived Collagen Membrane Crosslinking on Intraoral Soft Tissue Augmentation: A Canine Model. Bioengineering, 12(8), 875. https://doi.org/10.3390/bioengineering12080875