Carrying Police Load Increases Gait Asymmetry in Ground Reaction Forces and Plantar Pressures Beneath Different Foot Regions in a Large Sample of Police Recruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Load Equipment
2.3. Ground Reaction Forces and Plantar Pressures
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larsen, L.B.; Tranberg, R.; Ramstrand, N. Effects of thigh holster use on kinematics and kinetics of active duty police officers. Clin. Biomech. 2016, 37, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Wiley, A.; Orr, R.; Schram, B.; Dawes, J.J. The impact of load carriage on measures of power and agility in tactical occupations: A critical review. Int. J. Environ. Res. Public Health 2018, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Boffey, D.; Harat, I.; Gepner, Y.; Frosti, C.L.; Funk, S.; Hoffman, J.R. The Physiology and Biomechanics of Load Carriage Performance. Mil. Med. 2019, 184, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.S.; Low, D.C. Military load carriage effects on the gait of military personnel: A systematic review. Appl. Ergon. 2021, 93, 103376. [Google Scholar] [CrossRef] [PubMed]
- Faghy, M.A.; Shei, R.J.; Armstrong, N.C.D.; White, M.; Lomax, M. Physiological impact of load carriage exercise: Current understanding and future research directions. Physiol. Rep. 2022, 10, 15502. [Google Scholar] [CrossRef] [PubMed]
- Fallowfield, J.L.; Blacker, S.D.; Willems, M.E.; Davey, T.; Layden, J. Neuromuscular and cardiovascular responses of Royal Marine recruits to load carriage in the field. Appl. Ergon. 2012, 43, 1131–1137. [Google Scholar] [CrossRef]
- Orr, R.M.; Pope, R. Gender differences in load carriage injuries of Australian army soldiers. BMC Musculoskelet. Disord. 2016, 17, 488. [Google Scholar] [CrossRef]
- Orr, R.M.; Coyle, J.; Johnston, V.; Pope, R. Self-reported load carriage injuries of military soldiers. Int. J. Inj. Contr. Saf. Promot. 2017, 24, 189–197. [Google Scholar] [CrossRef]
- Handžić, I.; Reed, K.B. Perception of gait patterns that deviate from normal and symmetric biped locomotion. Front. Psychol. 2015, 6, 199. [Google Scholar] [CrossRef]
- Helme, M.; Tee, J.; Emmonds, S.; Low, C. Does lower-limb asymmetry increase injury risk in sport? A systematic review. Phys. Ther. Sport 2021, 49, 204–213. [Google Scholar] [CrossRef]
- Lanshammar, K.; Ribom, E.L. Differences in muscle strength in dominant and non-dominant leg in females aged 20-39 years--a population-based study. Phys. Ther. Sport 2011, 12, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.A.; Ye, M.; Wang, C.T. Effect of unilateral load carriage on postures and gait symmetry in ground reaction force during walking. Comput. Methods Biomech. Biomed. Engin. 2010, 13, 339–344. [Google Scholar] [CrossRef] [PubMed]
- DeVita, P.; Hong, D.; Hamill, J. Effects of asymmetric load carrying on the biomechanics of walking. J. Biomech. 1991, 24, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Ozgül, B.; Akalan, N.E.; Kuchimov, S.; Uygur, F.; Temelli, Y.; Polat, M.G. Effects of unilateral backpack carriage on biomechanics of gait in adolescents: A kinematic analysis. Acta Orthop. Traumatol. Turc. 2012, 46, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Sy, J.F.; Horn, G.P.; Kesler, R.M.; Petrucci, M.N.; Rosengren, K.S.; Hsiao-Wecksler, E.T. Assessing gait changes in firefighters after firefighting activities and while carrying asymmetric loads. Appl. Ergon. 2018, 70, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Maines, J.M.; Reiser, R.F. Ground reaction force bilateral asymmetries during submaximal sagittal plane lifting from the floor. Int. J. Industr. Ergon. 2006, 36, 109–117. [Google Scholar] [CrossRef]
- Rocheford, E.C.; DeVoe, D.E.; Reiser II, R. FEffect of previous unilateral injuries on ground reaction force bilateral asymmetries during static lifting and standing. J. Hum. Mov. Stud. 2006, 51, 403–424. [Google Scholar]
- Umberger, B.R. Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J. Biomech. 2008, 41, 2575–2580. [Google Scholar] [CrossRef]
- Teyhen, D.S.; Shaffer, S.W.; Goffar, S.L.; Kiesel, K.; Butler, R.J.; Rhon, D.I.; Plisky, P.J. Identification of risk factors prospectively associated with musculoskeletal injury in a warrior athlete population. Sports Health 2020, 12, 564–572. [Google Scholar] [CrossRef]
- Yavnai, N.; Bar-Sela, S.; Pantanowitz, M.; Funk, S.; Waddington, G.; Simchas, L.; Svorai-Litvak, S.; Steinberg, N. Incidence of injuries and factors related to injuries in combat soldiers. BMJ Mil. Health 2021, 167, 418–423. [Google Scholar] [CrossRef]
- Canham-Chervak, M.; Rappole, C.; Grier, T.; Jones, B.H. Injury mechanisms, activities, and limited work days in US army infantry units. U.S. Army Med. Dep. J. 2018, 2-18, 6–13. [Google Scholar]
- Štefan, A.; Kasović, M.; Štefan, L. Does a standardized load carriage increase spatiotemporal gait asymmetries in police recruits? A population-based study. Mil. Med. 2024, usae358. [Google Scholar] [CrossRef] [PubMed]
- Štefan, A.; Kasović, M.; Štefan, L. Load carriage and changes in spatiotemporal and kinetic biomechanical foot parameters during quiet stance in a large sample of police recruits. Appl. Sci. 2024, 14, 3274. [Google Scholar] [CrossRef]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using effect size-or why the p-value is not enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Chavet, P.; Lafortune, M.A.; Gray, J.R. Asymmetry of lower extremity responses to external impact loading. Hum. Mov. Sci. 1997, 16, 391–406. [Google Scholar] [CrossRef]
- Alamoudi, M.; Travascio, F.; Onar-Thomas, A.; Eltoukhy, M.; Asfour, S. The effects of different carrying methods on locomotion stability, gait spatio-temporal parameters and spinal stresses. Int. J. Ind. Ergon. 2018, 67, 81–88. [Google Scholar] [CrossRef]
- Holbein, M.; Redfern, M. Postural Stability While Walking and Carrying Loads in Various Postures. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1994, 38, 564–567. [Google Scholar] [CrossRef]
- Fowler, N.E.; Rodacki, A.L.; Rodacki, C.D. Changes in stature and spine kinematics during a loaded walking task. Gait Posture 2006, 23, 133–141. [Google Scholar] [CrossRef]
- Singh, T.; Koh, M. Effects of backpack load position on spatiotemporal parameters and trunk forward lean. Gait Posture 2009, 29, 49–53. [Google Scholar] [CrossRef]
- Bobet, J.; Norman, R.W. Effects of load placement on back muscle activity in load carriage. Eur. J. Appl. Physiol. Occup. Physiol. 1984, 53, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Quesada, P.M.; Mengelkoch, L.J.; Hale, R.C.; Simon, S.R. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics 2000, 43, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Lemus, S.A.; Volz, M.; Tiozzo, E.; Perry, A.; Best, T.M.; Travascio, F. The effect of clinically elevated body mass index on physiological stress during manual lifting activities. PLoS ONE 2022, 17, e0278858. [Google Scholar] [CrossRef] [PubMed]
- Heglund, N.C.; Willems, P.A.; Penta, M.; Cavagna, G.A. Energy-saving gait mechanics with head-supported loads. Nature 1995, 375, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Goffar, S.L.; Reber, R.J.; Christiansen, B.C.; Miller, R.B.; Naylor, J.A.; Rodriguez, B.M.; Walker, M.J.; Teyhen, D.S. Changes in dynamic plantar pressure during loaded gait. Phys. Ther. 2013, 93, 1175–1184. [Google Scholar] [CrossRef]
- Majumdar, D.; Pal, M.S.; Pramanik, A.; Majumdar, D. Kinetic changes in gait during low magnitude military load carriage. Ergonomics 2013, 56, 1917–1927. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean (SD)/N (%) | Min–Max | Range |
---|---|---|---|
Gender | |||
Men | 609 (72.1%) | ||
Women | 236 (27.9%) | ||
Age (years) | 21.3 ± 2.1 | 18.7–24.7 | 6.0 |
Height (cm) | 175.2 ± 14.3 | 164.3–190.8 | 26.5 |
Weight (kg) | 74.4 ± 14.5 | 57.3–100.6 | 43.3 |
Body Mass Index (kg/m2) | 24.3 ± 4.8 | 19.4–28.3 | 8.9 |
Study Variables | Load Condition | t-Value | p-Value | |
---|---|---|---|---|
‘No Load’ | ‘a 3.5 kg Load’ | |||
Sex, N (%) | ||||
Men/Women | 609 (72.1%)/236 (27.9%) | 609 (72.1%)/236 (27.9%) | 0.000 | 1.000 |
Age (years) | 21.3 ± 2.1 | 21.3 ± 2.1 | 0.000 | 1.000 |
Body Mass Index (kg/m2) | 24.3 ± 4.8 | 25.4 ± 4.5 | −2.176 | 0.037 |
Maximal Ground Reaction Forces | ||||
Left Foot | ||||
Forefoot (N) | 758.58 (130.70) | 780.44 (135.94) | −3.351 | < 0.001 |
Midfoot (N) | 145.58 (71.58) | 150.83 (78.34) | −2.083 | 0.037 |
Hindfoot (N) | 513.65 (98.57) | 524.38 (98.53) | −1.432 | 0.152 |
Right Foot | ||||
Forefoot (N) | 766.11 (304.00) | 798.78 (336.76) | −1.497 | 0.135 |
Midfoot (N) | 156.84 (79.10) | 162.52 (76.32) | −2.227 | 0.026 |
Hindfoot (N) | 500.23 (98.86) | 508.53 (98.31) | −1.923 | 0.045 |
Maximal Plantar Pressures | ||||
Left Foot | ||||
Forefoot (N/cm2) | 44.40 (9.80) | 45.28 (9.76) | −1.857 | 0.049 |
Midfoot (N/cm2) | 15.01 (7.54) | 15.31 (7.60) | −1.088 | 0.277 |
Hindfoot (N/cm2) | 33.05 (7.59) | 33.69 (7.28) | −0.809 | 0.419 |
Right Foot | ||||
Forefoot (N/cm2) | 44.55 (10.07) | 45.08 (9.91) | −1.900 | 0.046 |
Midfoot (N/cm2) | 15.03 (6.52) | 15.64 (6.62) | −1.855 | 0.049 |
Hindfoot (N/cm2) | 31.89 (7.07) | 32.46 (7.16) | −1.646 | 0.100 |
Time Maximal Force, % of Stance Time | ||||
Left Foot | ||||
Forefoot (%) | 74.44 (2.44) | 74.79 (2.13) | −3.101 | 0.002 |
Midfoot (%) | 41.30 (9.62) | 41.02 (9.82) | −2.538 | 0.011 |
Hindfoot (%) | 18.47 (3.69) | 18.88 (3.60) | 0.570 | 0.569 |
Right Foot | ||||
Forefoot (%) | 74.16 (3.48) | 74.52 (2.28) | −0.596 | 0.552 |
Midfoot (%) | 39.70 (9.02) | 40.00 (9.10) | −2.303 | 0.021 |
Hindfoot (%) | 18.06 (3.74) | 18.27 (4.05) | −1.102 | 0.271 |
Study Variables | Asymmetry | Mean Diff. | 95% Mean Diff. | p-Value | |
---|---|---|---|---|---|
Ground Reaction Forces * | ‘No Load’ | ‘A 3.5 kg Load’ | |||
Forefoot | 0.000 (0.049) | 0.014 (0.010) | −0.014 | −0.021–0.006 | <0.001 |
Midfoot | 0.038 (0.192) | 0.076 (0.201) | −0.038 | −0.056–−0.019 | <0.001 |
Hindfoot | −0.014 (0.058) | −0.025 (0.058) | 0.011 | 0.005–0.017 | <0.001 |
Plantar Pressures * | |||||
Forefoot | 0.001 (0.092) | 0.000 (0.089) | 0.001 | −0.008–0.010 | 0.779 |
Midfoot | 0.009 (0.171) | 0.041 (0.172) | −0.032 | −0.049–−0.016 | <0.001 |
Hindfoot | −0.017 (0.085) | −0.019 (0.071) | 0.002 | −0.005–0.010 | 0.562 |
Time Maximal Force, % of Stance Time * | |||||
Forefoot | −0.003 (0.036) | −0.002 (0.017) | −0.001 | −0.003–0.002 | 0.674 |
Midfoot | −0.018 (0.105) | −0.011 (0.104) | −0.007 | −0.017–0.003 | 0.143 |
Hindfoot | −0.013 (0.102) | −0.030 (0.101) | 0.018 | 0.008–0.027 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasović, M.; Štefan, A.; Štefan, L. Carrying Police Load Increases Gait Asymmetry in Ground Reaction Forces and Plantar Pressures Beneath Different Foot Regions in a Large Sample of Police Recruits. Bioengineering 2024, 11, 895. https://doi.org/10.3390/bioengineering11090895
Kasović M, Štefan A, Štefan L. Carrying Police Load Increases Gait Asymmetry in Ground Reaction Forces and Plantar Pressures Beneath Different Foot Regions in a Large Sample of Police Recruits. Bioengineering. 2024; 11(9):895. https://doi.org/10.3390/bioengineering11090895
Chicago/Turabian StyleKasović, Mario, Andro Štefan, and Lovro Štefan. 2024. "Carrying Police Load Increases Gait Asymmetry in Ground Reaction Forces and Plantar Pressures Beneath Different Foot Regions in a Large Sample of Police Recruits" Bioengineering 11, no. 9: 895. https://doi.org/10.3390/bioengineering11090895
APA StyleKasović, M., Štefan, A., & Štefan, L. (2024). Carrying Police Load Increases Gait Asymmetry in Ground Reaction Forces and Plantar Pressures Beneath Different Foot Regions in a Large Sample of Police Recruits. Bioengineering, 11(9), 895. https://doi.org/10.3390/bioengineering11090895