Biomechanical Study of Symmetric Bending and Lifting Behavior in Weightlifter with Lumbar L4-L5 Disc Herniation and Physiological Straightening Using Finite Element Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Collection of Data
2.3. Model Establishment
2.4. Boundary and Loading Condition
3. Results
3.1. Whole Vertebrae Deformation during Weight Lifting
3.2. Distribution of Biomechanical Forces in FE Modeling of the Lumbar Spine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seidler, A.; Bergmann, A.; Jäger, M.; Ellegast, R.; Ditchen, D.; Elsner, G.; Grifka, J.; Haerting, J.; Hofmann, F.; Linhardt, O.; et al. Cumulative occupational lumbar load and lumbar disc disease–results of a German multi-center case-control study (EPILIFT). BMC Musculoskelet. Disord. 2009, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Palepu, V.; Kodigudla, M.; Goel, V.K. Biomechanics of disc degeneration. Adv. Orthop. 2012, 2012, 726210. [Google Scholar] [CrossRef]
- Zhang, X. Weightlifter Lumbar Physiology Health Influence Factor Analysis of Sports Medicine. Open Biomed. Eng. J. 2015, 9, 266. [Google Scholar] [CrossRef] [PubMed]
- Keogh, J.W.; Winwood, P.W. The epidemiology of injuries across weight-training sports. Sports Med. 2017, 47, 479–501. [Google Scholar] [CrossRef]
- Yang, J.H.; Barani, R.; Bhandarkar, A.W.; Suh, S.W.; Hong, J.Y.; Modi, H.N. Changes in the spinopelvic parameters of elite weight lifters. Clin. J. Sport Med. 2014, 24, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.; Lehman, G. Getting out of neutral: The risks and rewards of lumbar spine flexion during lifting exercises. Strength. Cond. J. 2021, 60, 19–31. [Google Scholar]
- Khan, A.N.; Jacobsen, H.E.; Khan, J.; Filippi, C.G.; Levine, M.; Lehman, R.A., Jr.; Riew, K.D.; Lenke, L.G.; Chahine, N.O. Inflammatory biomarkers of low back pain and disc degeneration: A review. Ann. N. Y. Acad. Sci. 2017, 1410, 68–84. [Google Scholar] [CrossRef] [PubMed]
- McNally, D.; Adams, M.A. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 1992, 17, 66–73. [Google Scholar] [CrossRef]
- Hardjasudjana, A.W.; Kosalishkwaran, G.; Parasuraman, S.; Khan, M.A.; Elamvazuthi, I. Kinesis (In-vivo/In-vitro) of L5-S1 lumbar spine. In Proceedings of the 2017 IEEE 3rd International Symposium in Robotics and Manufacturing Automation (ROMA), Kuala Lumpur, Malaysia, 19–21 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Azari, F.; Arjmand, N.; Shirazi-Adl, A.; Rahimi-Moghaddam, T. A combined passive and active musculoskeletal model study to estimate L4–L5 load sharing. J. Biomech. 2018, 70, 157–165. [Google Scholar] [CrossRef]
- Liu, T.; Khalaf, K.; Adeeb, S.; El-Rich, M. Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study. J. Biomech. 2019, 82, 116–123. [Google Scholar] [CrossRef]
- Zwierzchowska, A.; Gaweł, E.; Maszczyk, A.; Roczniok, R. The importance of extrinsic and intrinsic compensatory mechanisms to body posture of competitive athletes a systematic review and meta-analysis. Sci. Rep. 2022, 12, 8808. [Google Scholar] [CrossRef] [PubMed]
- Sparrey, C.J.; Bailey, J.F.; Safaee, M.; Clark, A.J.; Lafage, V.; Schwab, F.; Smith, J.S.; Ames, C.P. Etiology of lumbar lordosis and its pathophysiology: A review of the evolution of lumbar lordosis, and the mechanics and biology of lumbar degeneration. Neurosurg. Focus 2014, 36, E1. [Google Scholar] [CrossRef] [PubMed]
- Been, E.; Kalichman, L. Lumbar lordosis. Spine J. 2014, 14, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A.; Hutton, W.C. The effect of posture on the lumbar spine. J. Bone Jt. Surgery. Br. Vol. 1985, 67, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Meakin, J.R.; Smith, F.W.; Gilbert, F.J.; Aspden, R.M. The effect of axial load on the sagittal plane curvature of the upright human spine in vivo. J. Biomech. 2008, 41, 2850–2854. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, N.; Shirazi-Adl, A. Biomechanics of changes in lumbar posture in static lifting. Spine 2005, 30, 2637–2648. [Google Scholar] [CrossRef] [PubMed]
- Roussouly, P.; Pinheiro-Franco, J.L. Sagittal parameters of the spine: Biomechanical approach. Eur. Spine J. 2011, 20, 578. [Google Scholar] [CrossRef]
- Natarajan, R.N.; Lavender, S.A.; An, H.A.; Andersson, G.B.J. Biomechanical response of a lumbar intervertebral disc to manual lifting activities: A poroelastic finite element model study. Spine 2008, 33, 1958–1965. [Google Scholar] [CrossRef]
- Beaucage-Gauvreau, E. Brace for It: Assessing Lumbar Spinal Loads for a Braced Arm-to-Thigh Lifting and Bending Technique Using a Musculoskeletal Modelling Approach. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2019. [Google Scholar]
- Salvatore, G.; Berton, A.; Giambini, H.; Ciuffreda, M.; Florio, P.; Longo, U.G.; Denaro, V.; Thoreson, A.; An, K.-N. Biomechanical effects of metastasis in the osteoporotic lumbar spine: A Finite Element Analysis. BMC Musculoskelet. Disord. 2018, 19, 38. [Google Scholar] [CrossRef]
- Ambati, D.V.; Wright, E.K., Jr.; Lehman, R.A., Jr.; Kang, D.G.; Wagner, S.C.; Dmitriev, A.E. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: A finite element study. Spine J. 2015, 15, 1812–1822. [Google Scholar] [CrossRef]
- Xu, M.; Yang, J.; Lieberman, I.; Haddas, R. Stress distribution in vertebral bone and pedicle screw and screw–bone load transfers among various fixation methods for lumbar spine surgical alignment: A finite element study. Med. Eng. Phys. 2019, 63, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Sterba, M.; Aubin, C.-É.; Wagnac, E.; Fradet, L.; Arnoux, P.-J. Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: A finite element study. Med. Biol. Eng. Comput. 2019, 57, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Kim, H.-J.; Son, J.; Kang, K.-T.; Chang, B.-S.; Lee, C.-K.; Seok, H.S.; Yeom, J.S. Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine—Validated finite element analysis. Comput. Biol. Med. 2017, 89, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Eltoukhy, M.; Travascio, F.; Asfour, S.; Elmasry, S.; Heredia-Vargas, H.; Signorile, J. Examination of a lumbar spine biomechanical model for assessing axial compression, shear, and bending moment using selected Olympic lifts. J. Orthop. 2016, 13, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Park, W.M.; Kim, Y.H.; Cha, T.; Wood, K.; Li, G. In vivo loads in the lumbar L3–4 disc during a weight lifting extension. Clin. Biomech. 2014, 29, 155–160. [Google Scholar] [CrossRef] [PubMed]
- von Arx, M.; Liechti, M.; Connolly, L.; Bangerter, C.; Meier, M.L.; Schmid, S. From stoop to squat: A comprehensive analysis of lumbar loading among different lifting styles. Front. Bioeng. Biotechnol. 2021, 9, 769117. [Google Scholar] [CrossRef]
- Mimura, M.; Panjabi, M.; Oxland, T.; Crisco, J.J.; Yamamoto, I.; Vasavada, A. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 1994, 19, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Raheem, H.M.; Aljanabi, M. Studying the bulging of a lumbar intervertebral disc: A finite element analysis. Procedia Struct. Integr. 2020, 28, 1727–1732. [Google Scholar] [CrossRef]
- Hui, Y.; Zhou, Z.-x.; Du, J.; Wu, B.; Huang, W. Finite element mechanics analysis of lumbar spine with normal and varying degrees of herniated lesions under different working conditions and material properties. Mech. Adv. Mater. Struct. 2022, 29, 6188–6205. [Google Scholar] [CrossRef]
- Tayyab, N.A.; Samartzis, D.; Altiok, H.; Shuff, C.E.; Lubicky, J.P.; Herman, J.; Khanna, N. The reliability and diagnostic value of radiographic criteria in sagittal spine deformities: Comparison of the vertebral wedge ratio to the segmental cobb angle. Spine 2007, 32, E451–E459. [Google Scholar] [CrossRef]
- Makino, T.; Kaito, T.; Fujiwara, H.; Yonenobu, K. Morphometric analysis using multiplanar reconstructed CT of the lumbar pedicle in patients with degenerative lumbar scoliosis characterized by a Cobb angle of 30 or greater. J. Neurosurg. Spine 2012, 17, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.K.; Beheshtiha, A.S.; van der Meer, R.; Willems, P.C.; Arts, J.J.; Ito, K.; van Rietbergen, B. Validation of a finite element model of the thoracolumbar spine to study instrumentation level variations in early onset scoliosis correction. J. Mech. Behav. Biomed. Mater. 2021, 117, 104360. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-Y.; Li, H.-Y.; Jian, F.-Z.; Yan, H.-G. The finite element modeling and analysis of human lumbar segment herniation. Chin. J. Contemp. Neurol. Neurosurg. 2012, 12, 394. [Google Scholar] [CrossRef]
- Pitzen, T.; Geisler, F.; Matthis, D.; Müller-Storz, H.; Barbier, D.; Steudel, W.-I.; Feldges, A. A finite element model for predicting the biomechanical behaviour of the human lumbar spine. Control Eng. Pract. 2002, 10, 83–90. [Google Scholar] [CrossRef]
- Serhan, H.; Mhatre, D.; Defossez, H.; Bono, C.M. Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons. Int. J. Spine Surg. 2011, 5, 75–89. [Google Scholar] [CrossRef]
- Willburger, R.E.; Ehiosun, U.K.; Kuhnen, C.; Krämer, J.; Schmid, G. Clinical symptoms in lumbar disc herniations and their correlation to the histological composition of the extruded disc material. Spine 2004, 29, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Yasuma, T.; Makino, E.; Saito, S.; Inui, M. Histological development of intervertebral disc herniation. J. Bone Jt. Surg. 1986, 68, 1066–1072. [Google Scholar] [CrossRef]
- Mochida, K.; Komori, H.; Okawa, A.; Muneta, T.; Haro, H.; Shinomiya, K. Regression of cervical disc herniation observed on magnetic resonance images. Spine 1998, 23, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yang, Y.; Lou, S.; Zhang, D.; Liao, S. Construction and validation of a three-dimensional finite element model of degenerative scoliosis. J. Orthop. Surg. Res. 2015, 10, 189. [Google Scholar] [CrossRef]
- Meng, Q.-H.; Bao, C.-Y. Mechanics analysis of lumbar segment for the athlete during preparing lifting barbell and it’s finite element simulation. In Proceedings of the 2011 International Conference on Future Computer Science and Education, Xi’an, China, 20–21 August 2011; pp. 55–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Ke, J.; Wu, X.; Luo, X. A biomechanical waist comfort model for manual material lifting. Int. J. Environ. Res. Public Health 2020, 17, 5948. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J. Biomechanics Analysis on Waist of Sitting Work Chinese Journal of Industrial Hygiene and Occupational Diseases. Chin. J. Labor Hyg. Occup. Dis. 1994, 12, 29–31. [Google Scholar]
- Zheng, X.; Xia, S.; Gao, X. Modern Sports Biomechanics; National Defence Industry Press: Beijing, China, 2002; pp. 100–148. [Google Scholar]
- Kluess, D.; Wieding, J.; Souffrant, R.; Mittelmeier, W.; Bader, R. Finite Element Analysis in Orthopaedic Biomechanics; IntechOpen: London, UK, 2010. [Google Scholar] [CrossRef]
- Naoum, S.; Vasiliadis, A.V.; Koutserimpas, C.; Mylonakis, N.; Kotsapas, M.; Katakalos, K. Finite element method for the evaluation of the human spine: A literature overview. J. Funct. Biomater. 2021, 12, 43. [Google Scholar] [CrossRef]
- Galbusera, F. Biomechanics of the Spine. In Human Orthopaedic Biomechanics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 265–283. [Google Scholar] [CrossRef]
- Chowdhury, S.K.; Byrne, R.M.; Zhou, Y.; Zhang, X. Lumbar facet joint kinematics and load effects during dynamic lifting. Hum. Factors J. Hum. Factors Ergon. Soc. 2018, 60, 1130–1145. [Google Scholar] [CrossRef] [PubMed]
- Naserkhaki, S.; Jaremko, J.L.; El-Rich, M. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study. J. Biomech. 2016, 49, 2909–2917. [Google Scholar] [CrossRef]
- Rohlmann, A.; Zander, T.; Schmidt, H.; Wilke, H.-J.; Bergmann, G. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J. Biomech. 2006, 39, 2484–2490. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.-Y.; Sun, M.-S.; Huang, Y.-P.; Liu, Z.-X.; Liu, C.-J.; Du, C.-F.; Yang, Q. Biomechanical effect of L4–L5 intervertebral disc degeneration on the lower lumbar spine: A finite element study. Orthop. Surg. 2020, 12, 917–930. [Google Scholar] [CrossRef]
- Rustenburg, C.M.; Kingma, I.; Holewijn, R.M.; Faraj, S.S.; van der Veen, A.; Bisschop, A.; de Kleuver, M.; Emanuel, K.S. Biomechanical properties in motion of lumbar spines with degenerative scoliosis. J. Biomech. 2020, 102, 109495. [Google Scholar] [CrossRef] [PubMed]
- Langrana, N.A.; Lee, C.K.; Yang, S.W. Finite-element modeling of the synthetic intervertebral disc. Spine 1991, 16, S245. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Judith, M.R.; Kumar, A.; Mishra, V.; Robert, M.C. Analysis of stress distribution in lumbar interbody fusion. Spine 2005, 30, 1731–1735. [Google Scholar] [CrossRef]
- Iorio, J.A.; Jakoi, A.M.; Singla, A. Biomechanics of degenerative spinal disorders. Asian Spine J. 2016, 10, 377. [Google Scholar] [CrossRef]
- Dolan, P.; Adams, M.A. Recent advances in lumbar spinal mechanics and their significance for modelling. Clin. Biomech. 2001, 16, S8–S16. [Google Scholar] [CrossRef]
- Pollintine, P.; Dolan, P.; Tobias, J.H.; Adams, M.A. Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body: A cause of osteoporotic vertebral fracture? Spine 2004, 29, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Neidlinger-Wilke, C.; Galbusera, F.; Pratsinis, H.; Mavrogonatou, E.; Mietsch, A.; Kletsas, D.; Wilke, H.-J. Mechanical loading of the intervertebral disc: From the macroscopic to the cellular level. Eur. Spine J. 2014, 23, 333–343. [Google Scholar] [CrossRef]
- Natarajan, R.N.; Williams, J.; Lavender, S.; An, H.; Andersson, G.B. Relationship between disc injury and manual lifting: A poroelastic finite element model study. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Humzah, M.; Soames, R. Human intervertebral disc: Structure and function. Anat. Rec. 1988, 220, 337–356. [Google Scholar] [CrossRef]
- Adams, M.A.; Freeman, B.J.; Morrison, H.P.; Nelson, I.W.; Dolan, P. Mechanical initiation of intervertebral disc degeneration. Spine 2000, 25, 1625–1636. [Google Scholar] [CrossRef]
- Vadalà, G.; Russo, F.; Battisti, S.; Stellato, L.; Martina, F.; Del Vescovo, R.; Giacalone, A.; Borthakur, A.; Zobel, B.B.; Denaro, V. Early intervertebral disc degeneration changes in asymptomatic weightlifters assessed by t1ρ-magnetic resonance imaging. Spine 2014, 39, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Cen, X. Can running technique modification benefit patellofemoral pain improvement in runners? A systematic review and meta-analysis. Int. J. Biomed. Eng. Technol. 2024, 45, 83–101. [Google Scholar] [CrossRef]
- Yan, G.; Trachuk, S.; Xiao, M.M.; Yan, J.S.; Xue, Z. Physiological features of musculoskeletal system formation of adolescents under the influence of directed physical training. Phys. Act. Health 2023, 7, 1–12. [Google Scholar] [CrossRef]
- Song, Y.; Cen, X.; Sun, D.; Bálint, K.; Wang, Y.; Chen, H.; Gao, S.; Bíró, I.; Zhang, M.; Gu, Y. Curved carbon-plated shoe may further reduce forefoot loads compared to flat plate during running. Sci. Rep. 2024, 14, 13215. [Google Scholar] [CrossRef]
- Cen, X.; Song, Y.; Yu, P.; Sun, D.; Simon, J.; Bíró, I.; Gu, Y. Effects of plantar fascia stiffness on the internal mechanics of idiopathic pes cavus by finite element analysis: Implications for metatarsalgia. Comput. Methods Biomech. Biomed. Eng. 2023, 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
Young’s Modulus (MPa) | Mesh Size (mm) | Poisson Ratio | |
---|---|---|---|
Cortical bone | 12,000.00 | 1.5 | 0.30 |
Cancellous bone | 100.00 | 1.5 | 0.20 |
Endplate | 25.00 | 0.8 | 0.40 |
Annulus fibrosis | 1.00 | 0.8 | 0.49 |
Nucleus pulposus | 4.20 | 0.8 | 0.45 |
Anterior longitudinal ligament | 7.80 | / | 0.30 |
Posterior longitudinal ligament | 10.00 | / | 0.30 |
Ligamentum flavum | 15.00 | / | 0.30 |
Interspinous ligament | 10.00 | / | 0.30 |
Transverse ligament | 7.50 | / | 0.30 |
Intertransverse ligament | 10.00 | / | 0.30 |
Supraspinous ligament | 8.00 | / | 0.30 |
Young’s Modulus (MPa) | Poisson Ratio | |
---|---|---|
Annulus fibrosis | 1.62 | 0.40 |
Nucleus pulposus | 10.29 | 0.40 |
15 kg | 20 kg | 25 kg | |
---|---|---|---|
X (+) * X (−) * | X (+) X (−) | X (+) X (−) | |
UI | 4.32 1.74 | 4.38 1.85 | 4.41 1.92 |
UR1 * | 53.88 2.29 | 57.87 2.29 | 60.15 2.29 |
Y (+) Y (−) | Y (+) Y (−) | Y (+) Y (−) | |
U2 | 2.88 92.2 | 3.05 98.2 | 3.16 101.80 |
UR2 | 3.99 1.15 | 3.99 1.15 | 3.99 1.15 |
Z (+) Z (−) | Z (+) Z (−) | Z (+) Z (−) | |
U3 | 11.60 74.60 | 12.39 79.33 | 12.86 82.17 |
UR3 | 1.14 1.72 | 1.14 2.29 | 1.72 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Song, Y.; Zhang, Q.; Teo, E.-C.; Liu, W. Biomechanical Study of Symmetric Bending and Lifting Behavior in Weightlifter with Lumbar L4-L5 Disc Herniation and Physiological Straightening Using Finite Element Simulation. Bioengineering 2024, 11, 825. https://doi.org/10.3390/bioengineering11080825
Zhang C, Song Y, Zhang Q, Teo E-C, Liu W. Biomechanical Study of Symmetric Bending and Lifting Behavior in Weightlifter with Lumbar L4-L5 Disc Herniation and Physiological Straightening Using Finite Element Simulation. Bioengineering. 2024; 11(8):825. https://doi.org/10.3390/bioengineering11080825
Chicago/Turabian StyleZhang, Caiting, Yang Song, Qiaolin Zhang, Ee-Chon Teo, and Wei Liu. 2024. "Biomechanical Study of Symmetric Bending and Lifting Behavior in Weightlifter with Lumbar L4-L5 Disc Herniation and Physiological Straightening Using Finite Element Simulation" Bioengineering 11, no. 8: 825. https://doi.org/10.3390/bioengineering11080825
APA StyleZhang, C., Song, Y., Zhang, Q., Teo, E. -C., & Liu, W. (2024). Biomechanical Study of Symmetric Bending and Lifting Behavior in Weightlifter with Lumbar L4-L5 Disc Herniation and Physiological Straightening Using Finite Element Simulation. Bioengineering, 11(8), 825. https://doi.org/10.3390/bioengineering11080825