Electroencephalogram Alpha Oscillations in Stroke Recovery: Insights into Neural Mechanisms from Combined Transcranial Direct Current Stimulation and Mirror Therapy in Relation to Activities of Daily Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Design and Intervention
2.3. tDCS Protocol
2.4. EEG Acquisition and Preprocessing
2.5. Clinical Measures
2.6. EEG Indexes
2.7. Statistical Analysis
3. Results
3.1. Demographical Features
3.2. ADL Outcomes: SIS-ADL, FIM, NEADL
3.3. Motor Ability Outcome: WMFT-Time, WMFT-Strength
3.4. Alpha Power
3.5. Neural-Behavioral Correlation: SIS-ADL
3.6. Neural-Behavioral Correlation: FIM
3.7. Neural-Behavioral Correlation: NEADL
3.8. Neural-Behavioral Correlation: WMFT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, P.; Mastropietro, A.; Scano, A.; Chiavenna, A.; Mrakic-Sposta, S.; Caimmi, M.; Molteni, F.; Rizzo, G. Quantitative EEG for Predicting Upper Limb Motor Recovery in Chronic Stroke Robot-Assisted Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Nicolo, P.; Rizk, S.; Magnin, C.; Pietro, M.D.; Schnider, A.; Guggisberg, A.G. Coherent neural oscillations predict future motor and language improvement after stroke. Brain 2015, 138, 3048–3060. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.M.; Alvarez, E.E.; Acevedo, P.F.; Moyano, V.A.; Castillo, N.N.; Ch, G.C. Early transcranial direct current stimulation with modified constraint-induced movement therapy for motor and functional upper limb recovery in hospitalized patients with stroke: A randomized, multicentre, double-blind, clinical trial. Brain Stimul. 2023, 16, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, Y.; Imura, T.; Suzukawa, T.; Fukuyama, H.; Ishii, T.; Taki, S.; Imada, N.; Shibukawa, M.; Inagawa, T.; Araki, H.; et al. Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients. J. Stroke Cerebrovasc. Dis. 2019, 28, 2018–2025. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, U.; Yang, D.; Hong, K.S. Neuromodulatory Effects of HD-tACS/tDCS on the Prefrontal Cortex: A Resting-State fNIRS-EEG Study. IEEE J. Biomed. Health Inform. 2022, 26, 2192–2203. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke. Cochrane Database Syst. Rev. 2013, 11, CD009645. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Deeny, S.P.; Hillman, C.H.; Janelle, C.M.; Hatfield, B.D. Cortico-cortical communication and superior performance in skilled marksmen: An EEG coherence analysis. J. Sport Exerc. Psychol. 2003, 25, 188–204. [Google Scholar] [CrossRef]
- Zhu, F.F.; Poolton, J.M.; Wilson, M.R.; Maxwell, J.P.; Masters, R.S.W. Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement. Biol. Psychol. 2011, 87, 66–73. [Google Scholar] [CrossRef]
- Haufler, A.J.; Spalding, T.W.; Santa Maria, D.L.; Hatfield, B.D. Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters. Biol. Psychol. 2000, 53, 131–160. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, G.; Ring, C. Don’t look, don’t think, just do it! Toward an understanding of alpha gating in a discrete aiming task. Psychophysiology 2019, 56, e13298. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, G.; Cooke, A.; Ring, C. Practice Makes Efficient: Cortical Alpha Oscillations Are Associated With Improved Golf Putting Performance. Sport Exerc. Perform. 2017, 6, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Zotey, V.; Andhale, A.; Shegekar, T.; Juganavar, A. Adaptive Neuroplasticity in Brain Injury Recovery: Strategies and Insights. Cureus 2023, 15, e45873. [Google Scholar] [CrossRef] [PubMed]
- Bowden, M.G.; Woodbury, M.L.; Duncan, P.W. Promoting neuroplasticity and recovery after stroke: Future directions for rehabilitation clinical trials. Curr. Opin. Neurol. 2013, 26, 37–42. [Google Scholar] [CrossRef]
- Dupont-Hadwen, J.; Bestmann, S.; Stagg, C.J. Motor training modulates intracortical inhibitory dynamics in motor cortex during movement preparation. Brain Stimul. 2019, 12, 300–308. [Google Scholar] [CrossRef]
- Yokoi, A.; Arbuckle, S.A.; Diedrichsen, J. The Role of Human Primary Motor Cortex in the Production of Skilled Finger Sequences. J. Neurosci. 2018, 38, 1430–1442. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.; Fukunaga, M.; Sugawara, S.K.; Hamano, Y.H.; Yamamoto, T.; Sadato, N. Cognitive control affects motor learning through local variations in GABA within the primary motor cortex. Sci. Rep. 2021, 11, 18566. [Google Scholar] [CrossRef]
- Kantak, S.S.; Stinear, J.W.; Buch, E.R.; Cohen, L.G. Rewiring the brain: Potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabilit. Neural Repair 2012, 26, 282–292. [Google Scholar] [CrossRef]
- Pavlova, E.; Kuo, M.F.; Nitsche, M.A.; Borg, J. Transcranial direct current stimulation of the premotor cortex: Effects on hand dexterity. Brain Res. 2014, 1576, 52–62. [Google Scholar] [CrossRef]
- Lefebvre, S.; Thonnard, J.L.; Laloux, P.; Peeters, A.; Jamart, J.; Vandermeeren, Y. Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke. Neurorehabilit. Neural Repair 2014, 28, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Buccino, G.; Solodkin, A.; Small, S.L. Functions of the mirror neuron system: Implications for neurorehabilitation. Cogn. Behav. Neurol. 2006, 19, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, F.J.; Smorenburg, A.R.; Benham, A.; Ledebt, A.; Feltham, M.G.; Savelsbergh, G.J. Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabilit. Neural Repair 2015, 29, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed]
- Thielman, G.; Kaminski, T.; Gentile, A.M. Rehabilitation of reaching after stroke: Comparing 2 training protocols utilizing trunk restraint. Neurorehabilit. Neural Repair 2008, 22, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, G.C.; Plous, S. Research Randomizer; Version 4.0; Social Psychology Network: Middletown, CT, USA, 2013. [Google Scholar]
- Wu, C.Y.; Huang, P.C.; Chen, Y.T.; Lin, K.C.; Yang, H.W. Effects of mirror therapy on motor and sensory recovery in chronic stroke: A randomized controlled trial. Arch. Phys. Med. Rehab. 2013, 94, 1023–1030. [Google Scholar] [CrossRef]
- Liao, W.W.; Chiang, W.C.; Lin, K.C.; Wu, C.Y.; Liu, C.T.; Hsieh, Y.W.; Lin, Y.C.; Chen, C.L. Timing-dependent effects of transcranial direct current stimulation with mirror therapy on daily function and motor control in chronic stroke: A randomized controlled pilot study. J. Neuroeng. Rehabil. 2020, 17, 101. [Google Scholar] [CrossRef]
- Butler, A.J.; Shuster, M.; O’Hara, E.; Hurley, K.; Middlebrooks, D.; Guilkey, K. A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors. J. Hand Ther. 2013, 26, 162–170. [Google Scholar] [CrossRef]
- Bastani, A.; Jaberzadeh, S. Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: A systematic review and meta-analysis. Clin. Neurophysiol. 2012, 123, 644–657. [Google Scholar] [CrossRef]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (OCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef]
- Wiethoff, S.; Hamada, M.; Rothwell, J.C. Variability in Response to Transcranial Direct Current Stimulation of the Motor Cortex. Brain Stimul. 2014, 7, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Summers, J.J.; Cauraugh, J.H. Transcranial direct current stimulation facilitates motor learning post-stroke: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Triccas, L.T.; Burridge, J.H.; Hughes, A.M.; Pickering, R.M.; Desikan, M.; Rothwell, J.C.; Verheyden, G. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis. Clin. Neurophysiol. 2016, 127, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Dyke, K.; Kim, S.; Jackson, G.M.; Jackson, S.R. Intra-Subject Consistency and Reliability of Response Following 2 mA Transcranial Direct Current Stimulation. Brain Stimul. 2016, 9, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Chew, T.; Ho, K.A.; Loo, C.K. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities. Brain Stimul. 2015, 8, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, V.; Krebs, H.I.; Volpe, B.T.; Pascual-Leone, A.; Rykman, A.; Zeiarati, G.; Fregni, F.; Dipietro, L.; Thickbroom, G.W.; Edwards, D.J. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: The dimension of timing. Neurorehabilitation 2013, 33, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, M. Makoto’s Preprocessing Pipeline. Available online: https://sccn.ucsd.edu/wiki/Makoto’s_preprocessing_pipeline (accessed on 13 January 2024).
- Duncan, P.W.; Bode, R.K.; Min Lai, S.; Perera, S.; Glycine Antagonist in Neuroprotection Americas Investigators. Rasch analysis of a new stroke-specific outcome scale: The Stroke Impact Scale. Arch. Phys. Med. Rehabil. 2003, 84, 950–963. [Google Scholar] [CrossRef] [PubMed]
- Ottenbacher, K.J.; Hsu, Y.W.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quantitative review. Arch. Phys. Med. Rehab. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Stineman, M.G.; Shea, J.A.; Jette, A.; Tassoni, C.J.; Ottenbacher, K.J.; Fiedler, R.; Granger, C.V. The functional independence measure: Tests of scaling assumptions, structure, and reliability across 20 diverse impairment categories. Arch. Phys. Med. Rehab. 1996, 77, 1101–1108. [Google Scholar] [CrossRef]
- Wu, C.Y.; Chuang, L.L.; Lin, K.C.; Lee, S.D.; Hong, W.H. Responsiveness, Minimal Detectable Change, and Minimal Clinically Important Difference of the Nottingham Extended Activities of Daily Living Scale in Patients With Improved Performance After Stroke Rehabilitation. Arch. Phys. Med. Rehab. 2011, 92, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.J.; Rudd, A.G.; Douiri, A.; Wolfe, C.D.A. Comparison of 2 Extended Activities of Daily Living Scales With the Barthel Index and Predictors of Their Outcomes Cohort Study Within the South London Stroke Register (SLSR). Stroke 2012, 43, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.L.; Catlin, P.A.; Ellis, M.; Archer, A.L.; Morgan, B.; Piacentino, A. Assessing Wolf Motor function Test as outcome measure for research in patients after stroke. Stroke 2001, 32, 1635–1639. [Google Scholar] [CrossRef] [PubMed]
- Maris, E.; Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 2007, 164, 177–190. [Google Scholar] [CrossRef]
- Pernet, C.R.; Wilcox, R.; Rousselet, G.A. Robust correlation analyses: False positive and power validation using a new open source matlab toolbox. Front. Psychol. 2013, 3, 606. [Google Scholar] [CrossRef] [PubMed]
- Rousseeuw, P.J. Least Median of Squares Regression. J. Am. Stat. Assoc. 1984, 79, 871–880. [Google Scholar] [CrossRef]
- Rousselet, G.A.; Pernet, C.R. Improving standards in brain-behavior correlation analyses. Front. Human Neurosci. 2012, 6, 119. [Google Scholar] [CrossRef] [PubMed]
- Hubert, M.; Rousseeuw, P.J.; Van Aelst, S. High-breakdown robust multivariate methods. Stat. Sci. 2008, 23, 92–119. [Google Scholar] [CrossRef]
- Carling, K. Resistant outlier rules and the non-Gaussian case. Comput. Stat. Data Anal. 2000, 33, 249–258. [Google Scholar] [CrossRef]
- Nakayama, Y.; Sugawara, S.K.; Fukunaga, M.; Hamano, Y.H.; Sadato, N.; Nishimura, Y. The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans. NeuroImage 2022, 256, 119221. [Google Scholar] [CrossRef]
- Hanakawa, T. Rostral premotor cortex as a gateway between motor and cognitive networks. Neurosci. Res. 2011, 70, 144–154. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.E.; Huijbregts, M.P.J.; Ryan, J.D.; Polatajko, H.J. Cognitive strategy use to enhance motor skill acquisition post-stroke: A critical review. Brain Inj. 2009, 23, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, N.; Che Daud, A.Z.; Ahmad Roslan, N.F.; Mansor, W. Mirror Therapy Rehabilitation in Stroke: A Scoping Review of Upper Limb Recovery and Brain Activities. Rehabil. Res. Pract. 2021, 2021, 9487319. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, M.E.; Selles, R.W.; van der Geest, J.N.; Eckhardt, M.; Yavuzer, G.; Stam, H.J.; Smits, M.; Ribbers, G.M.; Bussmann, J.B.J. Motor Recovery and Cortical Reorganization After Mirror Therapy in Chronic Stroke Patients: A Phase II Randomized Controlled Trial. Neurorehabilit. Neural Repair 2011, 25, 223–233. [Google Scholar] [CrossRef]
- Elsner, B.; Kwakkel, G.; Kugler, J.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: A network meta-analysis of randomised controlled trials. J. Neuroeng. Rehabil. 2017, 14, 95. [Google Scholar] [CrossRef]
Variables | PMC (n = 12) | M1 (n = 12) | Sham (n = 12) | p-Value |
---|---|---|---|---|
Age (year) | 58.95 (12.40) | 54.33 (14.60) | 64.03 (7.25) | 0.22 |
Gender/Male | 8 (66.67%) | 11 (91.67%) | 10 (83.33%) | 0.29 a |
Education (year) | 13.75 (2.01) | 13.25 (4.81) | 11.67 (3.28) | 0.12 |
Lesion/left hemisphere (%) | 6 (50%) | 6 (50%) | 6 (50%) | 1.00 |
Onset time (months) | 53.92 (39.79) | 48.00 (42.44) | 26.33 (16.85) | 0.24 |
MMSE | 32.42 (10.61) | 33.08 (11.88) | 34.5 (11.29) | 0.84 |
FMA | 28.33 (1.56) | 28.42 (1.73) | 28.67 (1.15) | 0.94 |
PMC (n = 12) | M1 (n = 12) | Sham (n = 12) | ||||
---|---|---|---|---|---|---|
Variables | Pre | Post | Pre | Post | Pre | Post |
SIS-ADL | 74.58 (14.88) | 76.46 (13.79) | 71.25 (17.21) | 69.72 (19.47) | 68.96 (17.24) | 72.92 (13.97) |
FIM | 113.58 (9.48) | 112.33 (12.78) | 106.50 (9.47) | 106.67 (12.22) | 106.50 (10.32) | 109.42 (9.39) |
NEADL | 36.92 (15.63) | 42.75 (13.05) | 33.67 (13.35) | 37.33 (13.41) | 34.25 (13.07) | 32.83 (12.22) |
WMFT-Time | 11.04 (6.48) | 12.28 (7.42) | 14.25 (5.22) | 10.75 (4.82) | 9.72 (5.37) | 10.56 (6.50) |
WMFT-Strength | 2.76 (0.67) | 2.91 (0.58) | 2.51 (0.61) | 2.69 (0.65) | 3.06 (0.80) | 3.23 (0.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-L.; Tu, Y.-W.; Li, M.-W.; Chang, K.-C.; Chang, C.-H.; Chen, C.-K.; Wu, C.-Y. Electroencephalogram Alpha Oscillations in Stroke Recovery: Insights into Neural Mechanisms from Combined Transcranial Direct Current Stimulation and Mirror Therapy in Relation to Activities of Daily Life. Bioengineering 2024, 11, 717. https://doi.org/10.3390/bioengineering11070717
Liu C-L, Tu Y-W, Li M-W, Chang K-C, Chang C-H, Chen C-K, Wu C-Y. Electroencephalogram Alpha Oscillations in Stroke Recovery: Insights into Neural Mechanisms from Combined Transcranial Direct Current Stimulation and Mirror Therapy in Relation to Activities of Daily Life. Bioengineering. 2024; 11(7):717. https://doi.org/10.3390/bioengineering11070717
Chicago/Turabian StyleLiu, Chia-Lun, Ya-Wen Tu, Ming-Wei Li, Ku-Chou Chang, Chih-Hung Chang, Chih-Kuang Chen, and Ching-Yi Wu. 2024. "Electroencephalogram Alpha Oscillations in Stroke Recovery: Insights into Neural Mechanisms from Combined Transcranial Direct Current Stimulation and Mirror Therapy in Relation to Activities of Daily Life" Bioengineering 11, no. 7: 717. https://doi.org/10.3390/bioengineering11070717
APA StyleLiu, C. -L., Tu, Y. -W., Li, M. -W., Chang, K. -C., Chang, C. -H., Chen, C. -K., & Wu, C. -Y. (2024). Electroencephalogram Alpha Oscillations in Stroke Recovery: Insights into Neural Mechanisms from Combined Transcranial Direct Current Stimulation and Mirror Therapy in Relation to Activities of Daily Life. Bioengineering, 11(7), 717. https://doi.org/10.3390/bioengineering11070717