Real-Time Monitoring of Thermal Phenomena during Femtosecond Ablation of Bone Tissue for Process Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biological Samples of Porcine Femur
2.2. Experimental Setup
2.3. Protocols for Real-Time Characterization
- A control environment without any active cooling system (labelled “Without cooling”).
- An air-jet cooling system with controlled air pressure (labelled “Air-knife”) placed 10 cm from the bone surface at a 45-degree angle of incidence.
- A water-based system with complete immersion of the bone tissue (labelled “Water immersion”) under a 300 µm thin layer of DI water at room temperature (20 °C).
- A hybrid air-and-water jet system which sprayed high-pressure water on to the processed tissue (labelled “Water spray”) every 1 s. Each water pulse sent to the sample corresponded to a quantity of 200 µL of DI water. Between each water pulse, air was sprayed onto the sample until the next water pulse at 4 bar.
2.4. Processing Environment for Bone Tissue Cooling
2.4.1. Thermal Imaging
2.4.2. LIBS Analyses
2.5. Processing Environment for Bone Tissue Cooling
- Confocal microscope (Zeiss SmartProof 5—Wetzlar, Germany) analyses were carried out to evaluate the ablation depth. To visualize the entire ablation cavity profile, several images were acquired and automatically stitched together by the analysis software (ZEN 2.3). Four measurements were carried on each ablation cavity in order to have statistically valid values and compensate for possible ablation inhomogeneities on the bottom of the cavities. For all ablated samples, the ablation rate was calculated as the ratio between the ablated volume (mm3) and the processing time (s).
- EDX (Bruker Quantax, Billerica, MA, USA) measurements were taken for all laser-processed samples in order to evaluate the laser-induced variation in atomic% of the main bone tissue components, such as C, O, Ca, Mg and P. To account for the semi-quantitative nature of the EDX analyses, all measured values were normalized with respect to the refence value of the same element measured on a non-laser processed area of the same sample. For each ablated cavity, three measurements were taken for statistical purposes. The ratio CBEFORE/CAFTER between the atomic% of carbon C before and after the laser process was calculated and a threshold of CBEFORE/CAFTER = 5 was defined to discriminate a healthy tissue from a calcified one for all samples. A more detailed description of this characterization approach is reported in [20].
3. Results
3.1. Effect of Processing Environment on Temperature, Ablation Rate and Calcination of Bone Tissue
3.2. Effect of Laser-Induced Thermal Accumulation on Ablation Rate
3.3. LIBS Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, B.; Peyer, M.; Kuske, L.; Augello, M.; Schötzau, A.; Steineck, M.; Deibel, W.; Mathys, D.; Jürgens, P.; Kunz, C.; et al. Comparison of an Er: YAG Laser Osteotome versus a Conventional Drill for the Use in Osteo-Odonto-keratoprosthesis (OOKP). Lasers Surg. Med. 2019, 51, 531–537. [Google Scholar] [CrossRef]
- Sotsuka, Y.; Nishimoto, S.; Tsumano, T.; Kawai, K.; Ishise, H.; Kakibuchi, M.; Shimokita, R.; Yamauchi, T.; Okihara, S. The Dawn of Computer-Assisted Robotic Osteotomy with Ytterbium-Doped Fiber Laser. Lasers Med. Sci. 2014, 29, 1125–1129. [Google Scholar] [CrossRef]
- Lo, D.D.; Mackanos, M.A.; Chung, M.T.; Hyun, J.S.; Montoro, D.T.; Grova, M.; Liu, C.; Wang, J.; Palanker, D.; Connolly, A.J.; et al. Femtosecond Plasma Mediated Laser Ablation Has Advantages over Mechanical Osteotomy of Cranial Bone: Femtosecond Plasma Mediated Laser Ablation. Lasers Surg. Med. 2012, 44, 805–814. [Google Scholar] [CrossRef]
- Lee, J.; Rabin, Y.; Ozdoganlar, O.B. A New Thermal Model for Bone Drilling with Applications to Orthopaedic Surgery. Med. Eng. Phys. 2011, 33, 1234–1244. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Mehboob, H.; Razak, S.I.A.; Yahya, M.Y.; Yusof, A.H.M.; Ramlee, M.H.; Anand, T.J.S.; Hassan, R.; Aziz, A.; Amin, R. Development of polymeric nanocomposite (xyloglucan-co-methacrylic acid/hydroxyapatite/sio2) scaffold for bone tissue engineering applications—In-vitro antibacterial, cytotoxicity and cell culture evaluation. Polymers 2020, 12, 1238. [Google Scholar] [CrossRef]
- Song, P.; Li, M.; Zhang, B.; Gui, X.; Han, Y.; Wang, L.; Zhou, W.; Guo, L.; Zhang, Z.; Li, Z.; et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application. Compos. Part B Eng. 2022, 244, 110163. [Google Scholar] [CrossRef]
- Saxena, V.; Hasan, A.; Pandey, L.M. Antibacterial nano-biocomposite scaffolds of Chitosan, Carboxymethyl Cellulose and Zn & Fe integrated Hydroxyapatite (Chitosan-CMC-FZO@ HAp) for bone tissue engineering. Cellulose 2021, 28, 9207–9226. [Google Scholar]
- Han, K.-S.; Sathiyaseelan, A.; Saravanakumar, K.; Wang, M.-H. Wound healing efficacy of biocompatible hydroxyapatite from bovine bone waste for bone tissue engineering application. J. Environ. Chem. Eng. 2022, 10, 106888. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Razak, S.I.A.; Mehboob, H.; Kadir, M.R.A.; Anand, J.S.; Inam, F.; Shah, S.A.; Abdel-Halime, M.E.F.; Amin, R. Synthesis and characterization of silver-coated polymeric scaffolds for bone tissue engineering: Antibacterial and in vitro evaluation of cytotoxicity and biocompatibility. ACS Omega 2021, 6, 4335–4346. [Google Scholar] [CrossRef] [PubMed]
- Sharifianjazi, F.; Esmaeilkhanina, A.; Moradi, M.; Pakseresht, A.; Asl, M.S.; Karimi-Maleh, H.; Jang, H.W.; Shokouhimehr, M.; Varma, R.S. Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. B 2020, 264, 114950. [Google Scholar] [CrossRef]
- Al-Arjan, W.S.; Khan, M.U.A.; Nazir, S.; Razak, S.I.A.; Kadir, M.R.A. Development of arabinoxylan-reinforced apple pectin/graphene oxide/nano-hydroxyapatite based nanocomposite scaffolds with controlled release of drug for bone tissue engineering: In-vitro evaluation of biocompatibility and cytotoxicity against MC3T3-E1. Coatings 2020, 10, 1120. [Google Scholar] [CrossRef]
- Apel, C.; Meister, J.; Ioana, R.S.; Franzen, R.; Hering, P.; Gutknecht, N. The Ablation Threshold of Er:YAG and Er:YSGG Laser Radiation in Dental Enamel. Lasers Med. Sci. 2002, 17, 246–252. [Google Scholar] [CrossRef]
- Markolf, H. Niemz Laser-Tissue Interactions Fundamentas and Applications, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-662-04719-4. [Google Scholar]
- Girard, B.; Yu, D.; Armstrong, M.R.; Wilson, B.C.; Clokie, C.M.L.; Miller, R.J.D. Effects of Femtosecond Laser Irradiation on Osseous Tissues. Lasers Surg. Med. 2007, 39, 273–285. [Google Scholar] [CrossRef]
- Shah, R. History and Results; Indications and Contraindications of SMILE Compared With LASIK. Asia Pac. J. Ophthalmol. 2019, 8, 371–376. [Google Scholar] [CrossRef]
- Boord, M. Laser in Dermatology. Clin. Tech. Small Anim. Pract. 2006, 21, 145–149. [Google Scholar] [CrossRef]
- Photocoagulation for Diabetic Macular Edema. Early Treatment Diabetic Retinopathy Study Report Number 1. Early Treatment Diabetic Retinopathy Study Research Group. Arch. Ophthalmol. 1985, 103, 1796–1806. [CrossRef]
- Zhang, J.; Guan, K.; Zhang, Z.; Guan, Y. In Vitro Evaluation of Ultrafast Laser Drilling Large-Size Holes on Sheepshank Bone. Opt. Express 2020, 28, 25528. [Google Scholar] [CrossRef]
- Gok, K.; Buluc, L.; Muezzinoglu, U.S.; Kisioglu, Y. Development of a New Driller System to Prevent the Osteonecrosis in Orthopedic Surgery Applications. J. Braz. Soc. Mech. Sci. Eng. 2015, 37, 549–558. [Google Scholar] [CrossRef]
- Gemini, L.; Al-Bourgol, S.; Machinet, G.; Bakkali, A.; Faucon, M.; Kling, R. Ablation of Bone Tissue by Femtosecond Laser: A Path to High-Resolution Bone Surgery. Materials 2021, 14, 2429. [Google Scholar] [CrossRef]
- Oyster, D.K.; Parker, W.B.; Gher, M.E. CO2 Lasers and Temperature Changes of Titanium Implants. J. Periodontol. 1995, 66, 1017–1024. [Google Scholar] [CrossRef]
- Branden, C.I.; Tooze, J. Introduction to Protein Structure; Garland Science: New York, NY, USA, 2012; ISBN 978-0-429-06209-4. [Google Scholar]
- Creighton, T.E. Proteins Structures and Molecular Properties; W. H. Freeman and Company: New York, NY, USA, 1993. [Google Scholar]
- Niemz, M.H. Laser-Tissue Interactions; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-662-04719-4. [Google Scholar]
- Yannas, I.V. Collagen and Gelatin in the Solid State. J. Macromol. Sci. Part C 1972, 7, 49–106. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; Nelson, D.G.A. Laser Effects on Dental Hard Tissues. Adv. Dent. Res. 1987, 1, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Newesely, H. High Temperature Behaviour of Hydroxy- and Fluorapatite: Crystalchemical Implications of Laser Effects on Dental Enamel. J. Oral. Rehabil. 1977, 4, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Werner, M. Ablation of Hard Biological Tissue and Osteotomy with Pulsed CO2 Lasers; Heinrich-Heine-Universität Düsseldorf: Düsseldorf, Germany, 2006. [Google Scholar]
- Jansen, E.D.; Chundru, R.K.; Samanani, S.A.; Tibbetts, T.A.; Welch, A.J. Pulsed Infrared Laser Irradiation of Biological Tissue: Effect of Pulse Duration and Repetition Rate. In Proceedings of the OE/LASE’93: Optics, Electro-Optics, and Laser Applications in Science and Engineering, Los Angeles, CA, USA, 17–22 January 1993; Jacques, S.L., Katzir, A., Eds.; SPIE: St Bellingham, WA, USA, 1993; p. 322. [Google Scholar]
- Choi, B.; Welch, A.J. Analysis of Thermal Relaxation during Laser Irradiation of Tissue. Lasers Surg. Med. 2001, 29, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Doucet, F.R.; Faustino, P.J.; Sabsabi, M.; Lyon, R.C. Quantitative Molecular Analysis with Molecular Bands Emission Using Laser-Induced Breakdown Spectroscopy and Chemometrics. J. Anal. At. Spectrom. 2008, 23, 694. [Google Scholar] [CrossRef]
- Moros, J.; Laserna, J. Laser-Induced Breakdown Spectroscopy (LIBS) of Organic Compounds: A Review. Appl. Spectrosc. 2019, 73, 963–1011. [Google Scholar] [CrossRef]
- Beltrán Bernal, L.M.; Canbaz, F.; Droneau, A.; Friederich, N.F.; Cattin, P.C.; Zam, A. Optimizing Deep Bone Ablation by Means of a Microsecond Er:YAG Laser and a Novel Water Microjet Irrigation System. Biomed. Opt. Express 2020, 11, 7253. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Beltran, B.L.M.; Rauter, G.; Guzman, R.; Cattin, P.; Zam, A. Effect of Cooling Water on Ablation in Er: YAG Laserosteotome of Hard Bone. In Proceedings of the Third International Conference on Applications of Optics and Photonics, Faro, Portugal, 8–12 May 2017; Martins Costa, M.F.P., Ed.; SPIE: St Bellingham, WA, USA, 2017; p. 95. [Google Scholar]
- Tulea, C.-A.; Caron, J.; Gehlich, N.; Lenenbach, A.; Noll, R.; Loosen, P. Laser Cutting of Bone Tissue under Bulk Water with a Pulsed Ps-Laser at 532 Nm. J. Biomed. Opt. 2015, 20, 105007. [Google Scholar] [CrossRef]
- Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R. Highly Efficient Nonthermal Ablation of Bone under Bulk Water with a Frequency-Doubled Nd: YVO 4 Picosecond Laser. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 2–3 February 2013; Kollias, N., Choi, B., Zeng, H., Kang, H.W., Knudsen, B.E., Wong, B.J., Ilgner, J.F., Suter, M.J., Lam, S., et al., Eds.; SPIE: St Bellingham, WA, USA, 2013; Volume 8565, p. 85656E. [Google Scholar]
- Cangueiro, L.T.; Vilar, R. Influence of the Pulse Frequency and Water Cooling on the Femtosecond Laser Ablation of Bovine Cortical Bone. Appl. Surf. Sci. 2013, 283, 1012–1017. [Google Scholar] [CrossRef]
- Sperandio, F.F.; Meneguzzo, D.T.; Ferreira, L.S.; da Ana, P.A.; Azevedo, L.H.; de Sousa, S.C.O.M. Different Air-Water Spray Regulations Affect the Healing of Er,Cr:YSGG Laser Incisions. Lasers Med. Sci. 2011, 26, 257–265. [Google Scholar] [CrossRef]
- Theisen-Kunde, D.; Wolken, H.; Ellebrecht, D.; Danicke, V.; Wurster, L.; Kleemann, M.; Birngruber, R. Investigation of Water Spray to Reduce Collateral Thermal Damage during Laser Resection of Soft Tissue; Lilge, L.D., Sroka, R., Eds.; Optica Publishing Group: Munich, Germany, 2013; p. 88030F. [Google Scholar]
- Zhan, X.; Guo, J.; Zhan, Z.; Xie, S.; Ye, Q. Water Spray-Assisted Ablation of Bone Hard Tissue with Pulsed CO2 Laser. Acta Opt. Sin. 2010, 30, 2069–2073. [Google Scholar] [CrossRef]
- Fernández-Cuevas, I.; Bouzas Marins, J.C.; Arnáiz Lastras, J.; Gómez Carmona, P.M.; Piñonosa Cano, S.; García-Concepción, M.Á.; Sillero-Quintana, M. Classification of Factors Influencing the Use of Infrared Thermography in Humans: A Review. Infrared Phys. Technol. 2015, 71, 28–55. [Google Scholar] [CrossRef]
- Wang, M.; Han, L.; Yang, Z.; Liu, X. Species Discrimination of Terrestrial Processed Animal Proteins by Laser-Induced Breakdown Spectroscopy (LIBS) Based on Elemental Characteristics. Biotechnol. Agron. Soc. Environ. 2019, 23, 137–146. [Google Scholar] [CrossRef]
- Woodard, H.Q.; White, D.R. The Composition of Body Tissues. Br. J. Radiol. 1986, 59, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- NIST Atomic Spectra Database Lines Form. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 23 January 2022).
- LIBS Info. Available online: https://libs-info.com/ (accessed on 23 January 2022).
- Rusak, D.A.; Castle, B.C.; Smith, B.W.; Winefordner, J.D. Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy. Crit. Rev. Anal. Chem. 1997, 27, 257–290. [Google Scholar] [CrossRef]
- Cremers, D.A.; Yueh, F.-Y.; Singh, J.P.; Zhang, H. Laser-Induced Breakdown Spectroscopy, Elemental Analysis (Update Based on the Original Article by Fang-Yu Yueh, Jagdish, P. Singh, Hansheng Zhang, Encyclopedia of Analytical Chemistry, ©2024, John Wiley & Sons, Ltd.). In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; p. a0708. ISBN 978-0-471-97670-7. [Google Scholar]
- Samek, O.; Liška, M.; Kaiser, J.; Beddows, D.C.S.; Telle, H.H.; Kukhlevsky, S.V. Clinical Application of Laser-Induced Breakdown Spectroscopy to the Analysis of Teeth and Dental Materials. J. Clin. Laser Med. Surg. 2000, 18, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Tran, M.; Smith, B.; Winefordner, J.D. In-Situ Evaluation of Barrier-Cream Performance on Human Skin Using Laser-Induced Breakdown Spectroscopy: Evaluation of barrier cream by libs. Contact Dermat. 2000, 43, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Corsi, M.; Cristoforetti, G.; Hidalgo, M.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Vallebona, C. Application of Laser-Induced Breakdown Spectroscopy Technique to Hair Tissue Mineral Analysis. Appl. Opt. 2003, 42, 6133. [Google Scholar] [CrossRef] [PubMed]
- Morel, S.; Leone, N.; Adam, P.; Amouroux, J. Detection of Bacteria by Time-Resolved Laser-Induced Breakdown Spectroscopy. Appl. Opt. 2003, 42, 6184. [Google Scholar] [CrossRef]
- Kumar, A.; Yueh, F.-Y.; Singh, J.P.; Burgess, S. Characterization of Malignant Tissue Cells by Laser-Induced Breakdown Spectroscopy. Appl. Opt. 2004, 43, 5399. [Google Scholar] [CrossRef]
Femur Pre-Processing Procedural Parameters | |
---|---|
Type of bone tissue | Porcine femur (age 7, male)/diaphysis |
Storage conditions | −6 °C/1 d |
Defrosting | RT/1 h/laminar flow system |
Pre-cleaning | DI + ethanol @70% |
Drying | RT/1 h/laminar flow system |
Cutting | Diamond blade |
Ablation Tests Visible Regime (515 nm) | LIBS Analyses IR Regime (1030 nm) | |
---|---|---|
Laser source | Tangerine | Satsuma HP3 |
Average power P (W) | 6.27 | 6.27 |
Repetition rate RR (kHz) | 250 | 250 |
Number of successive passes N | 5 | 1–4 |
Scanning speed v (mm/s) | 1000–4000 | 1000–2500 |
Horizontal overlap HOL (%) | 76; 68; 60; 52; 44; 36 | 68; 71; 74; 78; 81; 84 |
Interline distance h (μm) | 4–20 | 4 |
Vertical overlap VOL (%) | 84; 76; 60; 48; 32; 20 | 84 |
Cooling Condition | P (W) | RR (kHz) | HOL (%) | VOL (%) | Max. Ablation Rate (mm3/s) | Mean Temperature (°C) |
---|---|---|---|---|---|---|
Without cooling | 6.27 | 250 | 60 | 60 | 0.44 | 131 (SD 26 °C) |
Air-knife | 52 | 48 | 0.27 | 98.4 (SD 8 °C) | ||
Water immersion | 60 | 60 | 0.29 | 58.9 (SD 12 °C) | ||
Water spray | 52 | 48 | 0.26 | 50.3 (SD 2 °C) |
Cooling Condition | P (W) | RR (kHz) | HOL (%) | VOL (%) | Ablation Rate (mm3/s) | Max. Temperature (°C) |
---|---|---|---|---|---|---|
Without cooling | 6.27 | 250 | 84 | 84 | 0.21 | 336.2 |
Air knife | 84 | 84 | 0.21 | 229.6 | ||
Water immersion | 76 | 84 | 0.20 | 71.9 | ||
Water spray | 84 | 84 | 0.21 | 106.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bourgol, S.; Machinet, G.; Bakkali, A.; Faucon, M.; Gemini, L. Real-Time Monitoring of Thermal Phenomena during Femtosecond Ablation of Bone Tissue for Process Control. Bioengineering 2024, 11, 309. https://doi.org/10.3390/bioengineering11040309
Al-Bourgol S, Machinet G, Bakkali A, Faucon M, Gemini L. Real-Time Monitoring of Thermal Phenomena during Femtosecond Ablation of Bone Tissue for Process Control. Bioengineering. 2024; 11(4):309. https://doi.org/10.3390/bioengineering11040309
Chicago/Turabian StyleAl-Bourgol, Samy, Guillaume Machinet, Aboubakr Bakkali, Marc Faucon, and Laura Gemini. 2024. "Real-Time Monitoring of Thermal Phenomena during Femtosecond Ablation of Bone Tissue for Process Control" Bioengineering 11, no. 4: 309. https://doi.org/10.3390/bioengineering11040309
APA StyleAl-Bourgol, S., Machinet, G., Bakkali, A., Faucon, M., & Gemini, L. (2024). Real-Time Monitoring of Thermal Phenomena during Femtosecond Ablation of Bone Tissue for Process Control. Bioengineering, 11(4), 309. https://doi.org/10.3390/bioengineering11040309