Smoothness of Gait in Overweight (But Not Obese) Children Aged 6–10
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Data Acquisition
- Spatio-temporal parameters of gait (namely gait speed, stride length, cadence and duration of double support phase expressed as a percentage of the gait cycle). The parameters known to be influenced by an individual’s anthropometry (i.e., gait speed, stride length and cadence) were normalized by dividing them by each participant’s height [34,35,36].
- HRs for AP, ML and SI directions.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Álvarez, M.A.; Lázaro-Alquézar, A.; Simón-Fernández, M.B. Global Trends in Child Obesity: Are Figures Converging? Int. J. Environ. Res. Public Health 2020, 17, 9252. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.; Chen, C.T. Musculoskeletal effects of obesity. Curr. Opin. Pediatr. 2009, 21, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.P.; Anner, J.; Hills, A.P. Paediatric obesity, physical activity and the musculoskeletal system. Obes. Rev. 2009, 10, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Molina-Garcia, P.; Migueles, J.H.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Mora-Gonzalez, J.; Rodriguez-Ayllon, M.; Plaza-Florido, A.; Vanrenterghem, J.; Ortega, F.B. A systematic review on biomechanical characteristics of walking in children and adolescents with overweight/obesity: Possible implications for the development of musculoskeletal disorders. Obes. Rev. 2019, 20, 1033–1044. [Google Scholar] [CrossRef]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices 2016, 13, 641–659. [Google Scholar] [CrossRef]
- Picerno, P.; Iosa, M.; D’Souza, C.; Benedetti, M.G.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis: A five-year update. Expert Rev. Med. Devices 2021, 18 (Suppl. S1), 79–94. [Google Scholar] [CrossRef]
- Pacini Panebianco, G.; Bisi, M.C.; Stagni, R.; Fantozzi, S. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture 2018, 66, 76–82. [Google Scholar] [CrossRef]
- Dasgupta, P.; VanSwearingen, J.; Godfrey, A.; Redfern, M.; Montero-Odasso, M.; Sejdic, E. Acceleration Gait Measures as Proxies for Motor Skill of Walking: A Narrative Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 249–261. [Google Scholar] [CrossRef]
- Smidt, G.L.; Arora, J.S.; Johnston, R.C. Accelerographic analysis of several types of walking. Am. J. Phys. Med. 1971, 50, 285–300. [Google Scholar]
- Bellanca, J.L.; Lowry, K.A.; Vanswearingen, J.M.; Brach, J.S.; Redfern, M.S. Harmonic ratios: A quantification of step to step symmetry. J. Biomech. 2013, 46, 828–831. [Google Scholar] [CrossRef] [Green Version]
- Lowry, K.A.; Lokenvitz, N.; Smiley-Oyen, A.L. Age- and Speed-Related Differences in Harmonic Ratios during Walking. Gait Posture 2012, 35, 272–276. [Google Scholar] [CrossRef]
- Bisi, M.C.; Riva, F.; Stagni, R. Measures of gait stability: Performance on adults and toddlers at the beginning of independent walking. J. Neuroeng. Rehabil. 2014, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Bisi, M.C.; Stagni, R. Development of gait motor control: What happens after a sudden increase in height during adolescence? Biomed. Eng. Online 2016, 15, 47. [Google Scholar] [CrossRef] [Green Version]
- Bisi, M.C.; Tamburini, P.; Stagni, R. A ‘Fingerprint’ of locomotor maturation: Motor development descriptors, reference development bands and data-set. Gait Posture 2019, 68, 232–237. [Google Scholar] [CrossRef]
- Leban, B.; Cimolin, V.; Porta, M.; Arippa, F.; Pilloni, G.; Galli, M.; Pau, M. Age-Related Changes in Smoothness of Gait of Healthy Children and Early Adolescents. J. Mot. Behav. 2020, 52, 694–702. [Google Scholar] [CrossRef]
- Brach, J.S.; McGurl, D.; Wert, D.; Vanswearingen, J.M.; Perera, S.; Cham, R.; Studenski, S. Validation of a measure of smoothness of walking. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 136–141. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; St George, R.; Fitzpatrick, R.C. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabil. 2004, 85, 245–252. [Google Scholar] [CrossRef]
- Lowry Kristin, A.; Smiley-Oyen, A.L.; Carrel, A.J.; Kerr, J.P. Walking stability using harmonic ratios in Parkinson’s disease. Mov. Disord. 2009, 24, 261–267. [Google Scholar] [CrossRef]
- Iosa, M.; Fusco, A.; Morone, G.; Paolucci, S. Development and decline of upright gait stability. Front. Aging Neurosci. 2014, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pau, M.; Mandaresu, S.; Pilloni, G.; Porta, M.; Coghe, G.; Marrosu, M.G.; Cocco, E. Smoothness of gait detects early alterations of walking in persons with multiple sclerosis without disability. Gait Posture 2017, 58, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Leban, B.; Allali, G. Smoothness of Gait in Healthy and Cognitively Impaired Individuals: A Study on Italian Elderly Using Wearable Inertial Sensor. Sensors 2020, 20, 3577. [Google Scholar] [CrossRef] [PubMed]
- Schifino, G.; Cimolin, V.; Pau, M.; da Cunha, M.J.; Leban, B.; Porta, M.; Galli, M.; Souza Pagnussat, A. Functional Electrical Stimulation for Foot Drop in Post-Stroke People: Quantitative Effects on Step-to-Step Symmetry of Gait Using a Wearable Inertial Sensor. Sensors 2021, 21, 921. [Google Scholar] [CrossRef]
- Castiglia, S.F.; Trabassi, D.; De Icco, R.; Tatarelli, A.; Avenali, M.; Corrado, M.; Grillo, V.; Coppola, G.; Denaro, A.; Tassorelli, C.; et al. Harmonic ratio is the most responsive trunk-acceleration derived gait index to rehabilitation in people with Parkinson’s disease at moderate disease stages. Gait Posture 2022, 97, 152–158. [Google Scholar] [CrossRef]
- Wada, O.; Asai, T.; Hiyama, Y.; Nitta, S.; Mizuno, K. Gait Variability in Women With Hip Osteoarthritis Before and After Total Hip Replacement: A Prospective Cohort Study. Am. J. Phys. Med. Rehabil. 2019, 98, 866–871. [Google Scholar] [CrossRef]
- Misu, S.; Asai, T.; Sakai, H.; Nishiguchi, S.; Fuse, K. Usefulness of gait parameters obtained from inertial sensors attached to the lower trunk and foot for assessment of gait performance in the early postoperative period after total knee arthroplasty. Knee 2022, 37, 143–152. [Google Scholar] [CrossRef]
- Misu, S.; Asai, T.; Doi, T.; Sawa, R.; Ueda, Y.; Saito, T.; Nakamura, R.; Murata, S.; Sugimoto, T.; Yamada, M.; et al. Association between Gait Abnormality and Malnutrition in a Community-Dwelling Elderly Population. Geriatr. Gerontol. Int. 2017, 17, 1155–1160. [Google Scholar] [CrossRef]
- Cimolin, V.; Cau, N.; Sartorio, A.; Capodaglio, P.; Galli, M.; Tringali, G.; Leban, B.; Porta, M.; Pau, M. Symmetry of Gait in Underweight, Normal and Overweight Children and Adolescents. Sensors 2019, 19, 2054. [Google Scholar] [CrossRef]
- Cimolin, V.; Pau, M.; Cau, N.; Leban, B.; Porta, M.; Capodaglio, P.; Sartorio, A.; Grugni, G.; Galli, M. Changes in symmetry during gait in adults with Prader-Willi syndrome. Comput. Methods Biomech. Biomed. Engin. 2020, 23, 1094–1101. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Pau, M.; Mandaresu, S.; Leban, B.; Nussbaum, M.A. Short-term effects of backpack carriage on plantar pressure and gait in schoolchildren. J. Electromyogr. Kinesiol. 2015, 5, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Capodaglio, P.; Cau, N.; Galli, M.; Santovito, C.; Patrizi, A.; Tringali, G.; Sartorio, A. Computation of spatio-temporal parameters in level walking using a single inertial system in lean and obese adolescents. Biomed. Tech. 2017, 62, 505–511. [Google Scholar] [CrossRef]
- Pau, M.; Leban, B.; Pilloni, G.; Porta, M.; Cubeddu, F.; Secci, C.; Piras, V.; Monticone, M. Trunk rotation alters postural sway but not gait in female children and early adolescents: Results from a school-based screening for scoliosis. Gait Posture 2018, 61, 301–305. [Google Scholar] [CrossRef]
- Beck, R.J.; Andriacchi, T.P.; Kuo, K.N.; Fermier, R.W.; Galante, J.O. Changes in the gait patterns of growing children. J. Bone Jt. Surg. 1981, 63, 1452–1457. [Google Scholar] [CrossRef]
- Stansfield, B.W.; Hillman, S.J.; Hazlewood, M.E.; Robb, J.E. Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait Posture 2006, 23, 288–294. [Google Scholar] [CrossRef]
- Dini, P.; David, A. Repetibilidade dos parâmetros espaço-temporais da marcha: Comparação entre crianças normais e com paralisia cerebral do tipo hemiplegia espástica. Braz. J. Phys. Ther. 2009, 13, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, W. Assessment of Spatio-Temporal Parameters during Unconstrained Walking. Eur. J. Appl. Physiol. 2004, 92, 39–44. [Google Scholar] [CrossRef]
- Pasciuto, I.; Bergamini, E.; Iosa, M.; Vannozzi, G.; Cappozzo, A. Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry. J. Biomech. 2017, 53, 84–89. [Google Scholar] [CrossRef]
- Deforche, B.I.; Hills, A.P.; Worringham, C.J.; Murphy, A.J.; Bouckaert, J.J.; De Bourdeaudhuij, I.M. Balance and postural skills in normal-weight and overweight prepubertal boys. Int. J. Pediatr. Obes. 2009, 4, 175–182. [Google Scholar] [CrossRef]
- Pau, M.; Kim, S.; Nussbaum, M.A. Does load carriage differentially alter postural sway in overweight vs. normal-weight schoolchildren? Gait Posture 2012, 35, 378–382. [Google Scholar] [CrossRef]
- Steinberg, N.; Nemet, D.; Pantanowitz, M.; Eliakim, A. Gait Pattern, Impact to the Skeleton and Postural Balance in Overweight and Obese Children: A Review. Sports 2018, 6, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catan, L.; Amaricai, E.; Onofrei, R.R.; Popoiu, C.M.; Iacob, E.R.; Stanciulescu, C.M.; Cerbu, S.; Horhat, D.I.; Suciu, O. The Impact of Overweight and Obesity on Plantar Pressure in Children and Adolescents: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 6600. [Google Scholar] [CrossRef] [PubMed]
- Wearing, S.C.; Hennig, E.M.; Byrne, N.M.; Steele, J.R.; Hills, A.P. The impact of childhood obesity on musculoskeletal form. Obes. Rev. 2006, 7, 209–218. [Google Scholar] [CrossRef] [PubMed]
- D’Hondt, E.; Segers, V.; Deforche, B.; Shultz, S.P.; Tanghe, A.; Gentier, I.; De Bourdeaudhuij, I.; De Clercq, D.; Lenoir, M. The role of vision in obese and normal-weight children’s gait control. Gait Posture 2011, 33, 179–184. [Google Scholar] [CrossRef]
- Dufek, J.S.; Currie, R.L.; Gouws, P.L.; Candela, L.; Gutierrez, A.P.; Mercer, J.A.; Putney, L.G. Effects of overweight and obesity on walking characteristics in adolescents. Hum. Mov. Sci. 2012, 31, 897–906. [Google Scholar] [CrossRef]
- Huang, L.; Chen, P.; Zhuang, J.; Zhang, Y.; Walt, S. Metabolic cost, mechanical work, and efficiency during normal walking in obese and normal- weight children. Res. Q. Exerc. Sport. 2014, 84 (Suppl. S2), S72–S79. [Google Scholar] [CrossRef]
- Row Lazzarini, B.S.; Kataras, T.J. Treadmill walking is not equivalent to overground walking for the study of walking smoothness and rhythmicity in older adults. Gait Posture 2016, 46, 42–46. [Google Scholar] [CrossRef]
- Rosenblatt, N.J.; Grabiner, M.D. Measures of frontal plane stability during treadmill and overground walking. Gait Posture 2010, 31, 380–384. [Google Scholar] [CrossRef]
- Lowry, K.A.; Sebastian, K.; Perera, S.; Van Swearingen, J.; Smiley-Oyen, A.L. Age-Related Differences in Locomotor Strategies During Adaptive Walking. J. Mot. Behav. 2017, 49, 435–440. [Google Scholar] [CrossRef]
- Moe-Nilssen, R.; Aaslund, M.K.; Hodt-Billington, C.; Helbostad, J.L. Gait variability measures may represent different constructs. Gait Posture 2010, 32, 98–101. [Google Scholar] [CrossRef]
- Moe-Nilssen, R.; Helbostad, J.L. Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Gait Posture 2005, 21, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Helbostad, J.L.; Leirfall, S.; Moe-Nilssen, R.; Sletvold, O. Physical fatigue affects gait characteristics in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
Normal Weight | Overweight | |
---|---|---|
Participants # (M, F) | 69 (32 M, 37 F) | 39 (18 M, 21 F) |
Age (years) | 9.0 ± 1.3 | 9.0 ± 1.1 |
Height (cm) | 132.3 ± 8.6 | 134.6 ± 8.9 |
Body Mass (kg) | 28.1 ± 5.6 | 38.0 ± 6.7 † |
Body Mass Index (kg m−2) | 15.9 ± 1.9 | 20.8 ± 1.5 † |
Normal Weight | Overweight | ||||
---|---|---|---|---|---|
Absolute | Normalized | Absolute | Normalized | ||
Spatio-temporal parameters of gait | Gait speed (m s−1 and s−1) | 1.24 ± 0.21 | 0.97 ± 0.16 | 1.24 ± 0.28 | 0.96 ± 0.22 |
Stride length (m and m m−1) | 1.19 ± 0.18 | 0.92 ± 0.14 | 1.18 ± 0.21 | 0.92 ± 0.16 | |
Cadence (steps min−1 and steps min−1 m−1) | 128.11 ± 13.84 | 99.71 ± 11.34 | 128.82 ± 12.36 | 99.89 ± 10.46 | |
Double support phase (% GC) | 19.59 ± 3.16 | 18.98 ± 2.35 | |||
Harmonic ratio | AP direction | 95.13 ± 1.90 | 93.18 ± 4.75 † | ||
ML direction | 80.35 ± 6.81 | 84.35 ± 8.65 † | |||
SI direction | 94.09 ± 4.53 | 92.54 ± 6.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porta, M.; Cimmino, D.; Leban, B.; Arippa, F.; Casu, G.; Fastame, M.C.; Pau, M. Smoothness of Gait in Overweight (But Not Obese) Children Aged 6–10. Bioengineering 2023, 10, 286. https://doi.org/10.3390/bioengineering10030286
Porta M, Cimmino D, Leban B, Arippa F, Casu G, Fastame MC, Pau M. Smoothness of Gait in Overweight (But Not Obese) Children Aged 6–10. Bioengineering. 2023; 10(3):286. https://doi.org/10.3390/bioengineering10030286
Chicago/Turabian StylePorta, Micaela, Demetra Cimmino, Bruno Leban, Federico Arippa, Giulia Casu, Maria Chiara Fastame, and Massimiliano Pau. 2023. "Smoothness of Gait in Overweight (But Not Obese) Children Aged 6–10" Bioengineering 10, no. 3: 286. https://doi.org/10.3390/bioengineering10030286
APA StylePorta, M., Cimmino, D., Leban, B., Arippa, F., Casu, G., Fastame, M. C., & Pau, M. (2023). Smoothness of Gait in Overweight (But Not Obese) Children Aged 6–10. Bioengineering, 10(3), 286. https://doi.org/10.3390/bioengineering10030286