Implementation of a Virtual Reality Based Digital-Twin Robotic Minimally Invasive Surgery Simulator
Abstract
:1. Introduction
- A set of laparoscopic surgical robot virtual reality simulators, encompassing both software and hardware design, has been devised and validated;
- The simulator has been evaluated using two modules: peg transfer and soft tissue cutting;
- The effectiveness of simulator training has been quantitatively assessed through the utilization of the entropy method.
2. Design of the VRDT-RMIS
2.1. Remote Center of Motion Algorithm
- Remote Center of Motion Constraint Task
- Inverse Jacobian Inverse Kinematic Solver
2.2. Hardware
2.2.1. Leader Part
2.2.2. Responder Part
2.3. Software
3. Experimental Design
3.1. Participants
3.2. Tasks
3.3. Data Collection
3.4. Data Analysis
4. Evaluation
4.1. Face and Content Validation
4.2. Construct Validation
4.3. The Entropy Method
4.3.1. The Steps of the Entropy Method Steps
4.3.2. Data Processing
5. Result and Discussion
5.1. Peg Transfer
5.2. Soft Tissue Cutting
5.3. Limitation of the VRDT-RMIS
5.4. Comparison with Existing RMIS Simulators
6. Conclusions
- Enhancing the coherence between real robot control and the virtual robot environment in the simulator remains a priority. We aim to seamlessly integrate these two components into a responsive system.
- Given the significant differences in communication speeds today, remote surgery is becoming a reality. We are committed to advancing the connectivity of the VRDT-RMIS system, allowing surgeons to access it from different locations, facilitating guidance and training from experts worldwide.
- The simulator’s data collection capabilities are invaluable for objective skill assessment and surgical competency certification. Surgeons can use the system to track their progress, identify areas for improvement, and attain certification based on their proficiency levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuchs, K.H. Minimally invasive surgery. Endoscopy 2002, 34, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Sang, H.; Yang, C.; Liu, F.; Yun, J.; Jin, G.; Chen, F. A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Kalan, S.; Chauhan, S.; Coelho, R.F.; Orvieto, M.A.; Camacho, I.R.; Palmer, K.J.; Patel, V.R. History of robotic surgery. J. Robot. Surg. 2010, 4, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, O.; Snodin, C.; Dunne, D. Robotic cholecystectomy advantages and disadvantages, a literature review. Surgery 2023. preprint. [Google Scholar]
- Dupont, P.E.; Nelson, B.J.; Goldfarb, M.; Hannaford, B.; Menciassi, A.; O’malley, M.K.; Simaan, N.; Valdastri, P.; Yang, G.-Z. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 2021, 6, eabi8017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yan, P.; Feng, L.; Chu, X.; Li, J.; Li, J.; Guo, K.; Guo, T.; Liu, X.; Yang, K. Top 100 most-cited original articles, systematic reviews/meta-analyses in robotic surgery: A scientometric study. Asian J. Surg. 2022, 45, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bramhe, S.; Pathak, S.S. Robotic surgery: A narrative review. Cureus 2022, 14, e29179. [Google Scholar] [CrossRef] [PubMed]
- Lane, T. A short history of robotic surgery. Ann. R. Coll. Surg. Engl. 2018, 100 (Suppl. 6), 5–7. [Google Scholar] [CrossRef]
- Valls-Esteve, A.; Adell-Gómez, N.; Pasten, A.; Barber, I.; Munuera, J.; Krauel, L. Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery. Children 2023, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Valls-Esteve, A.; Tejo-Otero, A.; Lustig-Gainza, P.; Buj-Corral, I.; Fenollosa-Artes, F.; Ruio-Palau, J.; de la Torre, I.B.-M.; Munuera, J.; Fondevila, C.; Krauel, L. Patient-Specific 3D Printed Soft Models for Liver Surgical Planning and Hands-On Training. Gels 2023, 9, 339. [Google Scholar] [CrossRef]
- Alsofy, S.Z.; Sakellaropoulou, I.; Nakamura, M.; Ewelt, C.; Salma, A.; Lewitz, M.; Saravia, H.W.; Sarkis, H.M.; Fortmann, T.; Stroop, R. Impact of virtual reality in arterial anatomy detection and surgical planning in patients with unruptured anterior communicating artery aneurysms. Brain Sci. 2020, 10, 963. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.-J.; Choi, J.-S.; Kim, J.; Kim, H.-J.; Moon, S.-Y. Virtual reality (VR) simulation and augmented reality (AR) navigation in orthognathic surgery: A case report. Appl. Sci. 2021, 11, 5673. [Google Scholar] [CrossRef]
- Sørensen, S.M.D.; Savran, M.M.; Konge, L.; Bjerrum, F. Three-dimensional versus two-dimensional vision in laparoscopy: A systematic review. Surg. Endosc. 2016, 30, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, J.; Jiang, A.; Althoefer, K.; Dasgupta, P.; Nanayakkara, T. Implementation of tactile sensing for palpation in robot-assisted minimally invasive surgery: A review. IEEE Sens. J. 2014, 14, 2490–2501. [Google Scholar] [CrossRef]
- Zia, A.; Essa, I. Automated surgical skill assessment in RMIS training. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Xing, Y.; Liu, R.; Li, J.; Zhang, Z. An automatic skill evaluation framework for robotic surgery training. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1964. [Google Scholar] [CrossRef] [PubMed]
- Aghakhani, N.; Geravand, M.; Shahriari, N.; Vendittelli, M.; Oriolo, G. Task control with remote center of motion constraint for minimally invasive robotic surgery. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Piscataway, NJ, USA; pp. 5807–5812. [Google Scholar]
- Almusawi, A.R.J.; Dülger, L.C.; Kapucu, S. Artificial neural network based kinematics: Case study on robotic surgery. In Advances in Mechanism and Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science, Krakow, Poland, 15–18 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1839–1848. [Google Scholar]
- Alamdar, A.; Samandi, P.; Hanifeh, S.; Kheradmand, P.; Mirabagheri, A.; Farahmand, F.; Sarkar, S. Investigation of a Hybrid Kinematic Calibration Method for the “Sina” Surgical Robot. IEEE Robot. Autom. Lett. 2020, 5, 5276–5282. [Google Scholar] [CrossRef]
- Wilz, O.; Sainsbury, B.; Rossa, C. Constrained haptic-guided shared control for collaborative human–robot percutaneous nephrolithotomy training. Mechatronics 2021, 75, 102528. [Google Scholar] [CrossRef]
- Colan, J.; Davila, A.; Fozilov, K.; Hasegawa, Y. A concurrent framework for constrained inverse kinematics of minimally invasive surgical robots. Sensors 2023, 23, 3328. [Google Scholar] [CrossRef]
- Colan, J.; Nakanishi, J.; Aoyama, T.; Hasegawa, Y. Optimization-Based Constrained Trajectory Generation for Robot-Assisted Stitching in Endonasal Surgery. Robotics 2021, 10, 27. [Google Scholar] [CrossRef]
- Mansard, N.; Chaumette, F. Task sequencing for high-level sensor-based control. IEEE Trans. Robot. 2007, 23, 60–72. [Google Scholar] [CrossRef]
- Kibsgaard, M.; Thomsen, K.K.; Kraus, M. Simulation of surgical cutting in deformable bodies using a game engine. In Proceedings of the 2014 International Conference on Computer Graphics Theory and Applications (GRAPP), Lisbon, Portugal, 5–8 January 2014; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Sivasankaran, P.; Karthikeyan, R. Simulation of Robot Kinematic Motions using Collision Mapping Planner using RoboDK Solver. Blue Eyes Intell. Eng. Sci. Publ. 2020, 9, 21–27. [Google Scholar]
- Braumann, J.; Singline, K. Towards Real-Time Interaction with Industrial Robots in the Creative Industries. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA; pp. 9453–9459. [Google Scholar]
- Ritter, E.M.; Kindelan, T.W.; Michael, C.; Pimentel, E.A.; Bowyer, M.W. Concurrent validity of augmented reality metrics applied to the fundamentals of laparoscopic surgery (FLS). Surg. Endosc. 2007, 21, 1441–1445. [Google Scholar] [CrossRef]
- Nagyné Elek, R.; Haidegger, T. Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training. J. Clin. Med. 2022, 11, 7533. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowski, P.; Brown, D.C.; Sodergren, M.H.; Barrow, A.; Bello, F. Validation of NOVISE: A novel natural orifice virtual surgery simulator. Surg. Innov. 2017, 24, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Zachár, G. Visualization of large-scale trajectory datasets. In Proceedings of the CPS-IoT Week ‘23: Cyber-Physical Systems and Internet of Things Week, San Antonio, TX, USA, 9–12 May 2023; Volume 2023, pp. 152–157. [Google Scholar]
- Larkins, K.M.; Mohan, H.M.; Gray, M.; Costello, D.M.; Costello, A.J.; Heriot, A.G.; Warrier, S.K. Transferability of robotic console skills by early robotic surgeons: A multi-platform crossover trial of simulation training. J. Robot. Surg. 2023, 17, 859–867. [Google Scholar] [CrossRef] [PubMed]
Component | Leader Part (Figure 3) |
---|---|
a | VR glasses |
b | 1000 Hz Haptic Devices |
c | Monitor |
d | Computing Station |
Component | Responder Part (Figure 4) |
---|---|
a | UR5 Robot |
b | End-effectors |
c | Endoscope |
d | Target object |
Information | Group A (Novice) | Group B (Expert) |
---|---|---|
Number | 15 | 10 |
Average age (years) | 27.8 (25–30) | 46.5 (42–55) |
Postgraduate year of training (years) | 3 (2–4) | 8 (6–10) |
Male (%) | 66.7 | 70 |
Right-handed (%) | 86.7 | 90 |
Real RMIS experience | 8/15 | 10/10 |
VR RMIS experience | 7/15 | 5/10 |
Face and Content Validity Questions (Score: 1–5; 1 = Poor, 5 = Excellent) | |
---|---|
Question 1 | Visual Realism of the Model |
Question 2 | Realism of the Surgical Instrument |
Question 3 | Realism of Robot Control |
Question 4 | Haptic Feedback Realism |
Question 5 | Realism of the Surgical Environment |
Peg Transfer | Soft Tissue Cutting | Mean | |
---|---|---|---|
Question 1 | 4.2 | 4.4 | 4.3 |
Question 2 | 3.8 | 4.4 | 4.1 |
Question 3 | 4 | 4.6 | 4.3 |
Question 4 | 3.8 | 4 | 3.9 |
Question 5 | 4.2 | 4.2 | 4.2 |
Peg Transfer | Soft Tissue Cutting | |||||||
---|---|---|---|---|---|---|---|---|
T | LML | RML | ND | T | LML | RML | FC | |
Expert | 119.82 | 34.15 | 54.34 | 1 | 15.80 | 15.21 | 37.43 | 3 |
Novice | 240.22 | 34.96 | 77.28 | 6 | 26.96 | 24.34 | 64.36 | 6 |
Peg Transfer | Soft Tissue Cutting | |||||||
---|---|---|---|---|---|---|---|---|
T | LML | RML | ND | T | LML | RML | FC | |
Expert | 0.00002 | 0.0359 | 0.0499 | 0.0007 | 0.0022 | 0.0112 | 0.0089 | 0.0005 |
Novice |
Peg Transfer | Soft Tissue Cutting | |||||||
---|---|---|---|---|---|---|---|---|
T | LML | RML | ND | T | LML | RML | FC | |
Expert1 | 91.00 | 35.70 | 53.54 | 1 | 14.11 | 14.46 | 47.17 | 3 |
Expert2 | 92.18 | 26.28 | 37.83 | 0 | 8.61 | 15.95 | 34.55 | 3 |
Expert3 | 105.34 | 32.75 | 52.02 | 1 | 10.60 | 14.24 | 34.46 | 2 |
Expert4 | 90.28 | 32.00 | 48.72 | 0 | 11.64 | 15.25 | 40.94 | 3 |
Expert5 | 93.34 | 34.22 | 40.85 | 0 | 10.98 | 14.11 | 46.76 | 3 |
Expert6 | 107.32 | 33.98 | 53.89 | 1 | 12.65 | 15.41 | 39.73 | 3 |
Expert7 | 92.61 | 30.85 | 45.31 | 0 | 9.73 | 14.36 | 35.67 | 2 |
Expert8 | 96.52 | 31.50 | 51.49 | 1 | 12.56 | 16.91 | 45.33 | 3 |
Expert9 | 102 | 31.84 | 54.71 | 0 | 13.11 | 15.26 | 42.09 | 3 |
Expert10 | 92.09 | 29.81 | 38.72 | 0 | 9.18 | 14.63 | 37.95 | 2 |
Peg Transfer | Soft Tissue Cutting | |||||||
---|---|---|---|---|---|---|---|---|
T | LML | RML | ND | T | LML | RML | FC | |
Weight | 0.50 | 0.43 | 0.44 | −0.36 | 0.20 | 0.28 | 0.29 | 0.23 |
Score |
Simulators | Country | Robotic Simulation | 3D Version | 3D Mode | Haptic Feedback |
---|---|---|---|---|---|
dV-Trainer® | Tacoma, WA USA | Yes | Yes | Fingertip Operation in Closed Binoculars | No |
HUGO™ RAS | Minneapolis, MN USA | No | Yes | Open 3D Glasses, Laparoscopic Handle | Yes/960 Hz |
MedBot® Toumai | Shanghai CHN | No | Yes | Open 3D Glasses, Laparoscopic Handle | No |
VRDT-RMIS | Kunming, Yunnan CHN | Yes | Yes | Fingertip Operation in Closed Binoculars | Yes/1000 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Wang, Z.; Li, S.; Pan, J.; Li, C.; Tai, Y. Implementation of a Virtual Reality Based Digital-Twin Robotic Minimally Invasive Surgery Simulator. Bioengineering 2023, 10, 1302. https://doi.org/10.3390/bioengineering10111302
Cai X, Wang Z, Li S, Pan J, Li C, Tai Y. Implementation of a Virtual Reality Based Digital-Twin Robotic Minimally Invasive Surgery Simulator. Bioengineering. 2023; 10(11):1302. https://doi.org/10.3390/bioengineering10111302
Chicago/Turabian StyleCai, Xiaoyu, Zijun Wang, Shijie Li, Junjun Pan, Chengli Li, and Yonghang Tai. 2023. "Implementation of a Virtual Reality Based Digital-Twin Robotic Minimally Invasive Surgery Simulator" Bioengineering 10, no. 11: 1302. https://doi.org/10.3390/bioengineering10111302
APA StyleCai, X., Wang, Z., Li, S., Pan, J., Li, C., & Tai, Y. (2023). Implementation of a Virtual Reality Based Digital-Twin Robotic Minimally Invasive Surgery Simulator. Bioengineering, 10(11), 1302. https://doi.org/10.3390/bioengineering10111302