Biomechanics Assist Measurement, Modeling, Engineering Applications, and Clinical Decision Making in Medicine
Author Contributions
Funding
Conflicts of Interest
References
- Carniel, E.L.; Toniolo, I.; Fontanella, C.G. Computational Biomechanics: In-Silico Tools for the Investigation of Surgical Procedures and Devices. Bioengineering 2020, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Serpilli, M.; Zitti, G.; Dellabella, M.; Castellani, D.; Maranesi, E.; Morettini, M.; Lenci, S.; Burattini, L. A Preliminary Validation of a New Surgical Procedure for the Treatment of Primary Bladder Neck Obstruction Using a Computational Modeling Approach. Bioengineering 2021, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.J.; Zheng, J.; Ma, L.; Wu, Y.; Lee, C.H. Mechanics and Microstructure of the Atrioventricular Heart Valve Chordae Tendineae: A Review. Bioengineering 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Kim, E.M.; Yamamoto, M.; Park, H.; Shin, H. Engineering Multi-Cellular Spheroids for Tissue Engineering and Regenerative Medicine. Adv. Healthc. Mater. 2020, 9, e2000608. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, H.; Lee, J.; Kim, G. Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering. Int. J. Biol. Macromol. 2022, 281, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Quigley, A.; Ngan, C.; Firipis, K.; O’Connell, C.D.; Pirogova, E.; Moulton, S.E.; Williams, R.J.; Kapsa, R.M.I. Towards bioengineered skeletal muscle: Recent developments in vitro and in vivo. Essays Biochem. 2021, 65, 555–567. [Google Scholar] [PubMed]
- Nguyen-Truong, M.; Li, Y.V.; Wang, Z. Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering 2020, 7, 122. [Google Scholar] [CrossRef]
- Hudson, L.T.; Jett, S.V.; Kramer, K.E.; Laurence, D.W.; Ross, C.J.; Towner, R.A.; Baumwart, R.; Lim, K.M.; Mir, A.; Burkhart, H.M.; et al. A Pilot Study on Linking Tissue Mechanics With Load-Dependent Collagen Microstructures in Porcine Tricuspid Valve Leaflets. Bioengineering 2020, 7, 60. [Google Scholar] [CrossRef]
- Liu, L.; Stephens, B.; Bergman, M.; May, A.; Chiang, T. Role of Collagen in Airway Mechanics. Bioengineering 2021, 8, 13. [Google Scholar] [CrossRef]
- Venkata, S.S.O.; Koenig, A.; Pidaparti, R.M. Mechanical Ventilator Parameter Estimation for Lung Health through Machine Learning. Bioengineering 2021, 8, 60. [Google Scholar] [CrossRef]
- Leslie, M.; Chou, J.; Young, P.; Traini, D.; Bradbury, P.; Ong, H. How Do Mechanics Guide Fibroblast Activity? Complex Disruptions during Emphysema Shape Cellular Responses and Limit Research. Bioengineering 2021, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Sauki, N.S.M.; Damanhuri, N.S.; Othman, N.A.; Meng, B.C.C.; Chiew, Y.S.; Nor, M.B.M. Assessing the Asynchrony Event Based on the Ventilation Mode for Mechanically Ventilated Patients in ICU. Bioengineering 2021, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, I.; Fontanella, C.G.; Foletto, M.; Carniel, E.L. Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering 2020, 7, 159. [Google Scholar] [CrossRef] [PubMed]
- Sokolis, D.P. Variation of Passive Biomechanical Properties of the Small Intestine along Its Length: Microstructure-Based Characterization. Bioengineering 2021, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, H.S.; Dunn, J.C.Y. Biomechanical Force Prediction for Lengthening of Small Intestine during Distraction Enterogenesis. Bioengineering 2020, 7, 140. [Google Scholar] [CrossRef]
- Siri, S.; Zhao, Y.; Maier, F.; Pierce, D.M.; Feng, B. The Macro- and Micro-Mechanics of the Colon and Rectum I: Experimental Evidence. Bioengineering 2020, 7, 130. [Google Scholar] [CrossRef]
- Zhao, Y.; Siri, S.; Feng, B.; Pierce, D.M. The Macro- and Micro-Mechanics of the Colon and Rectum II: Theoretical and Computational Methods. Bioengineering 2020, 7, 152. [Google Scholar] [CrossRef]
- Nguyen-Truong, M.; Liu, W.; Doherty, C.; LeBar, K.; Labus, K.M.; Puttlitz, C.M.; Easley, J.; Monnet, E.; Chicco, A.; Wang, Z. The Interventricular Septum Is Biomechanically Distinct from the Ventricular Free Walls. Bioengineering 2021, 8, 216. [Google Scholar] [CrossRef]
- Saidy, N.T.; Wolf, F.; Bas, O.; Keijdener, H.; Hutmacher, D.W.; Mela, P.; De-Juan-Pardo, E.M. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting. Small 2019, 15, e1900873. [Google Scholar] [CrossRef]
- Zanza, A.; D’Angelo, M.; Reda, R.; Gambarini, G.; Testarelli, L.; Di Nardo, D. An Update on Nickel-Titanium Rotary Instruments in Endodontics: Mechanical Characteristics, Testing and Future Perspective-An Overview. Bioengineering 2021, 8, 218. [Google Scholar] [CrossRef]
- Richbourg, N.R.; Peppas, N.A.; Sikavitsas, V.I. Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications (Review). J. Tissue Eng. Regen. M. 2019, 13, 1275–1293. [Google Scholar] [CrossRef] [PubMed]
- Spadaccio, C.; Mazzocchi, L.; Timofeva, I.; Macron, L.; De Cecco, C.N.; Morganti, S.; Auricchio, F.; Nappi, F. Bioengineering Case Study to Evaluate Complications of Adverse Anatomy of Aortic Root in Transcatheter Aortic Valve Replacement: Combining Biomechanical Modelling with CT Imaging. Bioengineering 2020, 7, 121. [Google Scholar] [CrossRef]
- Hananouchi, T.; Suzuki, T.; Dorthe, E.W.; Du, J.; D’Lima, D.D. The Resistance Force of the Anterior Cruciate Ligament during Pull Probing Is Related to the Mechanical Property. Bioengineering 2021, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Ramos, T.; Moroni, L. Tissue Engineering and Regenerative Medicine 2019: The Role of Biofabrication—A Year in Review. Tissue Eng. Part C Methods 2020, 26, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, M.; Belgio, B.; Peretti, G.M.; Di Giancamillo, A.; Boschetti, F. Evolution of Meniscal Biomechanical Properties with Growth: An Experimental and Numerical Study. Bioengineering 2021, 8, 70. [Google Scholar] [CrossRef]
- Brasinika, D.; Koumoulos, E.P.; Kyriakidou, K.; Gkartzou, E.; Kritikou, M.; Karoussis, I.K.; Charitidis, C.A. Mechanical Enhancement of Cytocompatible 3D Scaffolds, Consisting of Hydroxyapatite Nanocrystals and Natural Biomolecules, Through Physical Cross-Linking. Bioengineering 2020, 7, 96. [Google Scholar] [CrossRef]
- Farah, H.; Gerard, S.; Richard, L.; Tarun, G. Biomechanical Behavior of a Variable Angle Locked Tibiotalocalcaneal Construct. Bioengineering 2020, 7, 27. [Google Scholar]
- Tse, K.M.; Holder, D. A Biomechanical Evaluation of a Novel Airbag Bicycle Helmet Concept for Traumatic Brain Injury Mitigation. Bioengineering 2021, 8, 173. [Google Scholar] [CrossRef]
- Aversa, R.; Petrescu, R.V.; Petrescu, F.I.T.; Apicella, D.A.A.A. Biomechanically Tunable Nano-Silica/P-HEMA Structural Hydrogels for Bone Scaffolding. Bioengineering 2021, 8, 45. [Google Scholar] [CrossRef]
- Gregersen, H. Novel Bionics Assessment of Anorectal Mechanosensory Physiology. Bioengineering 2020, 7, 146. [Google Scholar] [CrossRef]
- Comunale, G.; Di Micco, L.; Boso, D.P.; Susin, F.M.; Peruzzo, P. Numerical Models Can Assist Choice of an Aortic Phantom for In Vitro Testing. Bioengineering 2021, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Hu, H.; Wang, D.; Ding, H.; Chi, Q.; Liang, H.; Zeng, W. Immune-related DNA methylation signature associated with APLN expression predicts prognostic of hepatocellular carcinoma. Biocell 2022, 46, 2291–2301. [Google Scholar] [CrossRef]
- Metsiou, D.N.; Kozaniti, F.K.; Deligianni, D.D. Engineering Breast Cancer Cells and hUMSCs Microenvironment in 2D and 3D Scaffolds: A Mechanical Study Approach of Stem Cells in Anticancer Therapy. Bioengineering 2021, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Liao, J. Introduction to the Special Issue on Advances in Biological Tissue Biomechanics. Bioengineering 2020, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guo, J.; Chi, Q.; Fang, M. Molecular mechanisms of Tanshinone IIA in Hepatocellular carcinoma therapy via WGCNA-based network pharmacology analysis. Biocell 2022, 46, 1245–1259. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Q.; Liu, P.; Liang, H. Biomechanics Assist Measurement, Modeling, Engineering Applications, and Clinical Decision Making in Medicine. Bioengineering 2023, 10, 20. https://doi.org/10.3390/bioengineering10010020
Chi Q, Liu P, Liang H. Biomechanics Assist Measurement, Modeling, Engineering Applications, and Clinical Decision Making in Medicine. Bioengineering. 2023; 10(1):20. https://doi.org/10.3390/bioengineering10010020
Chicago/Turabian StyleChi, Qingjia, Pengchao Liu, and Huaping Liang. 2023. "Biomechanics Assist Measurement, Modeling, Engineering Applications, and Clinical Decision Making in Medicine" Bioengineering 10, no. 1: 20. https://doi.org/10.3390/bioengineering10010020
APA StyleChi, Q., Liu, P., & Liang, H. (2023). Biomechanics Assist Measurement, Modeling, Engineering Applications, and Clinical Decision Making in Medicine. Bioengineering, 10(1), 20. https://doi.org/10.3390/bioengineering10010020