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Biomechanical studies of surgeries and medical devices are usually performed with
human or animal models. Biomechanical models can quantitatively access information
that is difficult to obtain experimentally, such as changes in strain rates, and have a wide
range of applications [1]. Michele et al. [2] proposed a new surgical technique for treating
primary bladder neck obstruction and maintaining paracolic ejaculation based on numerical
simulations. The method improved urination, lower urinary tract symptoms, as well as
sustained continual ejaculatory function and quality of life. Moreover, biomodelling and
FEA enhanced an understanding of the mechanobiology of the heart. In turn, the differences
in elastic modulus for physiological and pathological myocardium can be measured and
analyzed to support mechanical conditioning and myocardial regenerative medicine in
cardiac tissue engineering [3].

Finite elements serve as a relatively simple and effective method for studying biome-
chanics. Therefore, the computational biomodelling of structures such as the human heart
and joints using finite element analysis (FEA) studies is arguably a critical method for
studying the mechanical properties of human organs in various situations. Biomodelling
analysis can assist in designing and manufacturing multicellular spheres, biocomposite
scaffolds for bone tissue regeneration, and structural bone stimulations for muscle bion-
ics [4–6]. The analysis helps us understand the properties of various parts of the human
body and provides better treatment for patients.

The application of biomechanics has achieved specific achievements. Computational
biomodelling and finite element analysis have been widely used in biomechanics. The
heart is one of the more complex organs in human beings, and its mechanical properties
are very complex, making treating various heart diseases difficult. The tricuspid valve
(TV) consists of three leaflets that engage during systole to prevent deoxygenated blood
from re-entering the right atrium. TV and atrioventricular heart valves (AHVs.03) are both
dynamically remodeled tissues. Biomechanical properties are particularly important in the
design of both biomaterials to promote cardiac tissue repair [3,7,8].

Authors have investigated the mechanical properties of the respiratory system through
modelling, providing a basis to assist in clinical decision-making. The main determinant
of airway mechanical properties is collagen, the most abundant extracellular matrix com-
ponent of the airway. Abnormal airway collagen deposition is associated with the patho-
genesis and progression of airway diseases, such as emphysema. A key feature is the
destruction of the extracellular matrix (ECM) of the lung parenchyma, leading to dramatic
changes in the mechanical properties of the lung. Respiratory modeling provides insight
into the mechanical properties of the lungs and helps clinicians select different mechanical
ventilation settings for different patients’ lung conditions in intensive care [9–11]. Thus, the
technique can significantly improve the management of patients with respiratory diseases.
Currently, the most developed models are only apply to fully sedated patients rather than
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patients with asynchronous breathing. Studies detected asynchronous breathing in a hos-
pital’s intensive care unit for patients with MV using an extended time-varying elasticity
model, which may guide clinicians in determining the optimal ventilation mode for stroke
patients [12]. Follow-up studies still need biomechanics to improve models and treatments
for respiratory diseases, especially emphysema.

Authors have studied the mechanical behavioral properties of the digestive system
through a combination of computational modeling and experimentation, which has in-
formed doctors in their surgical decisions. In recent years, rising living conditions have led
to an increasing number of people developing symptoms of obesity. Although bariatric
surgery (BS) is the most effective treatment for severe obesity, there are still drawbacks
and complications as the intervention design is based mainly on the surgeon’s expertise
and intraoperative decision-making. Ilaria et al. [13] developed a biomechanical model
of the stomach considering the anisotropic viscoelasticity, nonlinear elastic response, and
time-dependent behavior of the tissue. The model can provide information on gastric
volume and stiffness to aid the surgeon in preoperative decision making. At the same time,
diseases of the digestive system can also have an impact on obesity. Dimitrios et al. [14]
performed multi-axial tests of the small intestinal wall using rat small intestinal wall tissue.
The rat tissue’s nonlinear hyperelastic and anisotropic response was characterized by a
fiber-reinforced model, reflecting the biomechanical properties of the small intestinal wall.
To stimulate the growth and elongation of the small intestine, self-expanding springs that
exploit biomechanical forces have been used. Hosseini et al. [15] developed a series of
computational models based on experimental measurements of patient biometrics and
mechanical properties of soft tissues to predict the response of individual tissues to spring-
mediated detrusor heterogenesis. They can be used to safely deliver mechanical forces. In
turn, many lower gastrointestinal disorders are associated with altered mechanical motion
and deformation of the large intestine. However, the authors are still exploring the link
between biomechanical models and mechanosensitive nerve endings to predict organ-level
biomechanical regulation [16,17].

Measuring mechanical properties is difficult in conventional medicine and can be
well addressed by biomodelling. Nguyen-Truong et al. [8] provided a multi-scale model
that can better simulate the mechanical, microstructural, and morphological characteristics
of the tricuspid leaflets. Nguyen-Truong et al. [18] measured mechanical properties of
the left ventricular and septal side and ventricular wall, providing essential knowledge
about septal wall biomechanics. The highly flexible and tough heart valve demonstrated
complex mechanical characteristics, which are determined by the microstructure of the
tissue components, particularly the collagen fibers. Navid et al. [19] used melt electro-
writing (MEW) to create a functional scaffold with a highly controlled fibrous microstructure
that mimics the load-dependent recruitment of collagen fibers. The biocompatible scaffold
has strictly nonlinear and anisotropic mechanical properties required for HVTE.

Biomechanically manufactured materials, such as stents and implants, can assist in
treating patients. The two main causes of separation within the root canal of endodontic
instruments are cyclic fatigue and torsional loading. The biocompatible, superelastic, and
shape memory properties of nickel–titanium alloys can promote the predictability and
effectiveness of endodontic treatment and the success of root canal therapy [20]. At the
same time, tissue engineering and regenerative medicine rely extensively on biomaterial
scaffolds. Moreover, the study of scaffold surface properties is essential, significantly
impacting cellular responses [21]. Post-implantation complications cannot be ignored in
implantation surgery. A computational framework based on finite element analysis (FEA)
to simulate patient-specific implantation as an adjunct to CT scanning can potentially
predict post-implantation complications. It can provide relevant information for patient
treatment [22].

Biomechanics also supports medicine by measuring human tissue’s mechanical pa-
rameters and refining its mechanical properties. The initial tension of the anterior cruciate
ligament (ACL) in other muscles or tendon reconstructions is one of the critical factors
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affecting postoperative outcomes. However, it is rather difficult to measure tension after
graft fixation. An appropriate quantitative intraoperative assessment is performed by
pulling the soft tissue of the joint with an arthroscopic probe. Hananouchi et al. [23] also
developed devices that can quantitatively measure tension in the reconstructed ACL after
fixation and provide support for post-graft treatment.

Recent advances in medicine have greatly improved the management of the disease.
However, the human body is a large and complex system. There are still various difficulties
in the diagnosis and treatment of both cardiac and other diseases, such as respiratory
diseases [3,10]. Consequently, biomechanics guides engineering applications to produce
better models fitting the human body. Consequently, bioengineering has emerged and
developed over a short period of time. Still, it has been subject to various technological
advances from various disciplines, giving rise to various options available to produce
complex geometrical structures to precisely manipulate and control cell behavior and to
create complex kinetic models of living tissue [24].

With their short cycle time, safety, and low cost, biomechanics can be an excellent
alternative to experiments and can be widely used in engineering. The menisci of the
knee are complex fibrocartilaginous tissues that play an essential role in weight bearing,
shock absorption, joint lubrication, and stability [25]. Ferroni et al. [25] assessed the
interactions between different meniscal tissue components by numerical simulations. They
revealed changes in the structural components of the tissue during maturation based
on the mechanical response of the tissue developmental. Brasinika et al. [26] enhanced
the mechanical properties of a bionic bone scaffold with a bone-like nanostructure and
composition. Hamandi et al. [27] investigated the mechanics of tibial heel structures using
the PHILOS electroplating system to provide a basis for their longevity and strength.
Tse et al. [28] integrated an airbag system into a conventional helmet for a new bicycle
helmet. They carried out a series of dynamic impact simulations of the helmet and found
that it provided sufficient protection even when the airbag failed to deploy.

Biomechatronics (bionics) is an applied science that establishes an interdisciplinary
link between biomechanics and engineering and is widely used today. The mechanical
properties of innovative tissue-engineered bionic hydrogels based on hydrophilic polymers
were investigated [29]. Investigators have developed a fecal mimic for studying defecation
patterns in large animals and humans that can be used to help patients with defecation
disorders and fecal incontinence symptoms. Simulated feces can possess the consistency
and shape of normal feces, and various parameters have been recorded, including pressure,
curvature, and shape changes [30]. Comunale et al. [31] compared three aortic models
through a series of fluid–solid coupled simulations, reproducing patient-specific geometries
with biological tissue or silicone walls based on in vivo data made of silicone. The replica
with the same compliance as the real aorta can simulate the vessel’s overall behavior.

Biomechanics, which provides a good insight into the mechanical properties of various
parts and tissues of living organisms, is an important part of medical science and provides
the fundamental theoretical knowledge of mechanics for medical science. Bionics has
tremendous advantages for specific patients, and bionic scaffolds that mimic the proper-
ties of natural bone tissue hold great promise for bone regeneration in tissue engineering
applications. Adjustable bionic scaffold biomaterials offer more significant advantages
for bone tissue engineering [26,29]. Analysis of the role of collagen in airway mechan-
ics quantifies macro- and micro-scale approaches to airway mechanics and pathological
changes associated with collagen deposition in airway disease in the quest to treat airway
pathology and address airway defects [9]. In contrast, cellular and molecular biomechanics
is a promising biomarker for early cancer diagnosis and prognosis [32]. It can inform the
treatment of cancer cells through methods such as cell culture [33]. Meanwhile, advanced
experimental and computational biomechanics has become an important component for
understanding the physiological and pathological conditions of human biological tissues.
Recent advances in medical imaging modalities, image segmentation, tissue characteriza-



Bioengineering 2023, 10, 20 4 of 5

tion experiments, and predictive models significantly transform the therapeutic paradigm
to facilitate patient-specific diagnosis and individualized surgical planning [34,35].

Finite elements and biomodelling enable a more comprehensive understanding of the
mechanical properties of various tissue components and the appropriate use of medical
devices and implants. Biomechanics helps to provide a precise model of complex tissues,
improves the quantitative measurement of mechanical properties, offers some assistance
to engineering applications, and aids in the clinical management of the patient. Based on
biomechanics, it promises to produce more complex and realistic models of living tissues
to aid accurate clinical decision-making.
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