Monitoring and Quantifying the Fluvio-Geomorphological Changes in a Torrent Channel Using Images from Unmanned Aerial Vehicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: Kallifitos Torrent, Greece
2.2. The Field Surveys: Cross-Sections and Erosion Pins
2.3. The Airborne Survey
3. Results
3.1. Erosion Pin Plots Comparison
3.2. Cross-Section Comparison
3.3. DSM Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costigan, K.H.; Kennard, M.J.; Leigh, C.; Sauquet, E.; Datry, T.; Boulton, A.J. Flow regimes in intermittent rivers and ephemeral streams. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, N., Boulton, A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 51–78. [Google Scholar]
- Tzoraki, O.; Nikolaidis, P.N. A generalized framework for modeling the hydrologic and biochemical response of a Mediterranean temporary river basin. J. Hydrol. 2007, 346, 112–121. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-278 term interaction between humans and the environment—A review. Geomorphology 2008, 101, 192–208. [Google Scholar] [CrossRef]
- Tzoraki, O.; Nikolaidis, N.; Skoulikidis, N. Evaluation of in-stream processes of four temporary rivers. Geophys. Res. Abstr. 2005, 7, 02256. [Google Scholar]
- Zaimes, G.; Iakovoglou, V.; Emmanouloudis, D.; Gounaridis, D. Riparian areas of Greece: Their Definition and Characteristics. J. Eng. Sci. Technol. Rev. 2010, 3, 176–183. [Google Scholar] [CrossRef]
- Burchsted, D.; Daniels, M.; Thorson, R.; Vokoun, J. The river discontinuum: Applying beaver modifications to baseline conditions for restoration of forested headwaters. BioScience 2010, 60, 908–922. [Google Scholar] [CrossRef] [Green Version]
- Zaimes, G.N. Mediterranean Riparian Areas- Climate change implications and recommendations. J. Environ. Biol. 2020, 41, 957–965. [Google Scholar] [CrossRef]
- Llasat, M.C.; Llasat-Botija, M.; Prat, M.A.; Porcu, F.; Price, C.; Mugnai, A.; Lagouvardos, K.; Kotroni, V.; Katsanos, D.; Michaelides, S.; et al. High-impact floods and flash floods in Mediterranean countries: The FLASH preliminary database. Adv. Geosci. 2010, 23, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičová, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Lowrance, R.; Leonard, R.; Sheridan, J. Managing riparian ecosystems to control nonpoint pollution. J. Soil Water Conserv. 1985, 40, 87–91. [Google Scholar]
- Yujun, Y.I.; Zhaoyin, W.; Zhang, K.; Guoan, Y.U.; Xuehua, D. Sediment pollution and its effect on fish through food chain in the Yangtze River. Int. J. Sediment Res. 2008, 23, 338–347. [Google Scholar]
- Wohl, E. Legacy effects on sediments in river corridors. Earth-Sci. Rev. 2015, 147, 30–53. [Google Scholar] [CrossRef]
- Bat, L.; Özkan, E.Y. Heavy metal levels in sediment of the Turkish Black Sea coast. In Oceanography and Coastal Informatics: Breakthroughs in Research and Practice, 2nd ed.; Khosrow-Pour, M., Ed.; IGI Global: Hershey, PA, USA, 2019; pp. 86–107. [Google Scholar]
- Liu, A.; Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Influence of land use configurations on river sediment pollution. Environ. Pollut. 2017, 229, 639–646. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Iakovoglou, V.; Syropoulos, D.; Kaltsas, D.; Avtzis, D. Assessment of Two Adjacent Mountainous Riparian Areas along Nestos River Tributaries of Greece. Forests 2021, 12, 1284. [Google Scholar] [CrossRef]
- Koutalakis, P.; Zaimes, G.N.; Iakovoglou, V.; Ioannou, K. Reviewing soil erosion in Greece. Int. J. Geol. Environ. Eng. 2015, 9, 936–941. [Google Scholar]
- Wischmeier, W.H. Estimating the soil loss equation’s cover and management factor for undisturbed areas, in Present and prospective technology for predicting sediment yields and sources. Agric. Res. Serv. Pub. 1975, ARS-S-40, 118–124. [Google Scholar]
- Zaimes, G.N.; Kasapidis, I.; Gkiatas, G.; Pagonis, G.; Savvopoulou, A.; Iakovoglou, V. Targeted placement of soil erosion prevention works after wildfires. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 26–28 August 2020. [Google Scholar]
- Dragičević, N.; Karleuša, B.; Ožanić, N. Erosion potential method (Gavrilović Method) sensitivity analysis. Soil Water Res. 2017, 12, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Kostadinov, S.; Dragićević, S.; Stefanović, T.; Novković, I.; Petrović, A.M. Torrential Flood Prevention in the Kolubara River Basin. J. Mt. Sci. 2017, 14, 2230–2245. [Google Scholar] [CrossRef]
- Gholami, V.; Sahour, H.; Amri, M.A.H. Soil erosion modeling using erosion pins and artificial neural networks. Catena 2021, 196, 104902. [Google Scholar] [CrossRef]
- Tufekcioglu, M. Gully and streambank erosion and the effectiveness of control measures in a semi-arid watershed. Fresenius Environ. Bull. 2018, 27, 8233–8243. [Google Scholar]
- Arthun, D.; Zaimes, G.N. Channel changes following human activity exclusion in the riparian areas of Bonita Creek, Arizona, USA. Landsc. Ecol. Eng. 2020, 16, 263–271. [Google Scholar] [CrossRef]
- Anache, J.A.; Wendland, E.C.; Oliveira, P.T.; Flanagan, D.C.; Nearing, M.A. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena 2017, 152, 29–39. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Ioannou, K.; Iakovoglou, V.; Kosmadakis, I.; Koutalakis, P.; Ranis, G.; Emmanouloudis, D.; Schultz, R.C. Improving Soil Erosion Prevention in Greece with New Tools. J. Eng. Sci. Technol. Rev. 2016, 9, 66–71. [Google Scholar] [CrossRef]
- Berger, C.; McArdell, B.W.; Fritschi, B.; Schlunegger, F. A novel method for measuring the timing of bed erosion during debris flows and floods. Water Resour. Res. 2010, 46, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bucała-Hrabia, A.; Kijowska-Strugała, M.; Bryndal, T.; Cebulski, J.; Kiszka, K.; Kroczak, R. An integrated approach for investigating geomorphic changes due to flash flooding in two small stream channels (Western Polish Carpathians). J. Hydrol. Reg. Stud. 2020, 31, 100731. [Google Scholar] [CrossRef]
- King, C.; Baghdadi, N.; Lecomte, V.; Cerdan, O. The application of remote-sensing data to monitoring and modelling of soil erosion. Catena 2005, 62, 79–93. [Google Scholar] [CrossRef]
- Restas, A. Drone applications for supporting disaster management. World J. Eng. Technol. 2015, 3, 316. [Google Scholar] [CrossRef] [Green Version]
- Koutalakis, P.D.; Tzoraki, O.A.; Prazioutis, G.I.; Gkiatas, G.T.; Zaimes, G.N. Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions. Sustainability 2021, 13, 4697. [Google Scholar] [CrossRef]
- Koutalakis, P.; Tzoraki, O.; Zaimes, G. UAVs for hydrologic scopes: Application of a low-cost UAV to estimate surface water velocity by using three different image-based methods. Drones 2019, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Zwęgliński, T. The use of drones in disaster aerial needs reconnaissance and damage assessment—Three-dimensional modeling and orthophoto map study. Sustainability 2020, 12, 6080. [Google Scholar] [CrossRef]
- Antony, T.; Raju, C.S.; Mathew, N.; Saha, K.; Moorthy, K.K. A detailed study of land surface microwave emissivity over the indian subcontinent. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3604–3612. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R. Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology 2019, 325, 92–102. [Google Scholar] [CrossRef]
- Conforti, M.; Mercuri, M.; Borrelli, L. Morphological changes detection of a large earthflow using archived images, lidar-derived DTM, and UAV-based remote sensing. Remote Sens. 2020, 13, 120. [Google Scholar] [CrossRef]
- Akay, S.S.; Ozcan, O.; Sen, O.L. Modeling morphodynamic processes in a meandering river with unmanned aerial vehicle-based measurements. J. Appl. Remote Sens. 2019, 13, 044523. [Google Scholar] [CrossRef]
- Ngadiman, N.; Kasan, N.M.; Hamzan, F.H.; Zakaria, S.F.S. Riverbank Slope Erosion Monitoring using Unmanned Aerial Vehi-314 cle (UAV). Multidiscip. Appl. Res. Innov. 2021, 2, 13–24. [Google Scholar]
- Manh, N.V.; Dung, N.V.; Hung, N.N.; Merz, B.; Apel, H. Large-scale suspended sediment transport and sediment deposition in the Mekong Delta. Hydrology and Earth System Sciences 2014, 18, 3033–3053. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.; Papakonstantinou, A.; Doukari, M. Coastline change detection using Unmanned Aerial Vehicles and image processing technique. Fresen. Environ. Bull. 2017, 26, 5564–5571. [Google Scholar]
- Balestrieri, E.; Daponte, P.; De Vito, L.; Lamonaca, F. Sensors and measurements for unmanned systems: An overview. Sensors 2021, 21, 1518. [Google Scholar] [CrossRef]
- Giordan, D.; Adams, M.S.; Aicardi, I.; Alicandro, M.; Allasia, P.; Baldo, M.; De Berardinis, P.; Dominici, D.; Godone, D.; Hobbs, P.; et al. The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull. Eng. Geol. Environ. 2020, 79, 3437–3481. [Google Scholar] [CrossRef] [Green Version]
- Meinen, B.U.; Robinson, D.T. Streambank topography: An accuracy assessment of UAV-based and traditional 3D reconstructions. Int. J. Remote Sens. 2020, 41, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Duró, G.; Crosato, A.; Kleinhans, M.G.; Uijttewaal, W.S.J. Bank Erosion Processes Measured With UAV-SfM Along Complex Banklines of a Straight Mid-Sized River Reach. Earth Surf. Dyn. 2018, 6, 933–953. [Google Scholar] [CrossRef] [Green Version]
- Boreggio, M.; Bernard, M.; Gregoretti, C. Does the topographic data source truly influence the routing modelling of debris flows in a torrent catchment? Earth Surf. Process. Landf. 2022, 47, 2107–2129. [Google Scholar] [CrossRef]
- Emtehani, S.; Jetten, V.; van Westen, C.; Shrestha, D.P. Quantifying Sediment Deposition Volume in Vegetated Areas with UAV Data. Remote sens. 2021, 13, 2391. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kawahara, Y. UAV photogrammetry for monitoring changes in river topography and vegetation. Procedia Eng. 2016, 154, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Kim, M.I.; Kwak, J.; Jun, B. Analysis of the topography characteristics of a debris-flow area using drones. J. Korean Soc. Hazard Mitig. 2019, 19, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.; Ahmad, A.; Khanan, M.F.A.; Din, A.H.M. Surface Elevation Changes Estimation Underneath Mangrove Canopy Using SNERL Filtering Algorithm and DoD Technique on UAV-Derived DSM Data. ISPRS Int. J. Geo-Inf. 2021, 11, 32. [Google Scholar] [CrossRef]
- Seier, G.; Schöttl, S.; Kellerer-Pirklbauer, A.; Glück, R.; Lieb, G.K.; Hofstadler, D.N.; Sulzer, W. Riverine sediment changes and channel pattern of a gravel-bed mountain torrent. Remote Sens. 2020, 12, 3065. [Google Scholar] [CrossRef]
- Koutalakis, P.; Tzoraki, O.; Gkiatas, G.; Zaimes, G.N. Using UAV to capture and record torrent bed and banks, flood debris, and riparian areas. Drones 2020, 4, 77. [Google Scholar] [CrossRef]
- Alfonso-Torreño, A.; Gómez-Gutiérrez, Á.; Schnabel, S. Dynamics of erosion and deposition in a partially restored valley-bottom gully. Land 2021, 10, 62. [Google Scholar] [CrossRef]
- Walter, F.; Hodel, E.; Mannerfelt, E.; Ackermann, N.; Cook, K.; Dietze, M.; Estermann, L.; Farinotti, D.; Fengler, M.; Hammerschmidt, L.; et al. Brief Communication: An Autonomous UAV for Catchment-Wide Monitoring of a Debris Flow Torrent. EGUsphere 2022, preprint. [Google Scholar] [CrossRef]
- Cislaghi, A.; Bischetti, G.B. Best practices in post-flood surveys: The study case of Pioverna torrent. J. Agric. Eng. 2022, 53. [Google Scholar] [CrossRef]
- De Haas, T.; Nijland, W.; De Jong, S.M.; McArdell, B.W. How memory effects, check dams, and channel geometry control erosion and deposition by debris flows. Sci. Rep. 2020, 10, 14024. [Google Scholar] [CrossRef] [PubMed]
- Zaimes, G.N. and D. Emmanouloudis. Sustainable Management of the Freshwater Resources of Greece. J. Eng. Sci. Technol. 2012, 5, 77–82. [Google Scholar]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; del Mar Sánchez-Montoya, M.; Bonada, N.; Kalogianni, E.; et al. Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef]
- Gkiatas, G.; Kasapidis, I.; Koutalakis, P.; Iakovoglou, V.; Savvopoulou, A.; Germantzidis, I.; Zaimes, G.N. Enhancing urban and sub-urban riparian areas through ecosystem services and ecotourism activities. Water Supply 2021, 21, 2974–2988. [Google Scholar] [CrossRef]
- Pennos, C.; Lauritzen, S.E.; Pechlivanidou, S.; Sotiriadis, Y. Geomorphic constrains on the evolution of the Aggitis River Basin Northern Greece (a preliminary report). BGSG 2016, 50, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Lespez, L. Geomorphic responses to long-term land use changes in Eastern Macedonia (Greece). Catena 2003, 51, 181–208. [Google Scholar] [CrossRef]
- Koutalakis, P.; Tzoraki, O.; Zaimes, G.N. Detecting riverbank changes with remote sensing tools. Case study: Aggitis River in Greece. Ann. Univ. Dunarea Jos Galati Fascicle II Math. Phys. Theor. Mech. 2019, 42, 134–142. [Google Scholar] [CrossRef]
- Theule, J.I.; Liébault, F.; Loye, A.; Laigle, D.; Jaboyedoff, M. Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Nat. Hazards Earth Syst. Sci. 2012, 12, 731–749. [Google Scholar] [CrossRef]
- Keay-Bright, J.; Boardman, J. Evidence from field-based studies of rates of soil erosion on degraded land in the central Karoo, South Africa. Geomorphology 2009, 103, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Arthun, D.; Zaimes, G.Ν.; Martin, J. Temporal river channel changes in the Gila Box Riparian National Conservation Area, Arizona, USA. Phys. Geogr. 2013, 34, 60–73. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Tufekcioglu, M. Gully and stream bank erosion in three pastures with different management in southeast Iowa. J. Iowa Acad. Sci. 2009, 116, 1–8. [Google Scholar]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. J. Soil Water Conserv. 2004, 59, 19–27. [Google Scholar]
- Lawler, D.M. The Measurement of River Bank Erosion and Lateral Channel Change: A Review. Earth Surf. Process. Landf. 1993, 18, 777–821. [Google Scholar] [CrossRef]
- Howell, R.G.; Jensen, R.R.; Petersen, S.L.; Larsen, R.T. Measuring height characteristics of sagebrush (Artemisia sp.) using imagery derived from small unmanned aerial systems (sUAS). Drones 2020, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Jokisch, O.; Fischer, D. Drone sounds and environmental signals–a first review. In Proceedings of the ESSV Conference, TU Dresden, Germany, 6–8 March 2019. [Google Scholar]
- Bak, S.H.; Hwang, D.H.; Kim, H.M.; Yoon, H.J. Detection and Monitoring of Beach Litter Using UAV Image and Deep Neural Network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2019, XLII-3/W8, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Camarillo-Escobedo, R.; Flores, J.L.; Marin-Montoya, P.; García-Torales, G.; Camarillo-Escobedo, J.M. Smart Multi-Sensor System for Remote Air Quality Monitoring Using Unmanned Aerial Vehicle and LoRaWAN. Sensors 2022, 22, 1706. [Google Scholar] [CrossRef] [PubMed]
- Pederi, Y.A.; Cheporniuk, H.S. Unmanned aerial vehicles and new technological methods of monitoring and crop protection in precision agriculture. In Proceedings of the2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), Kyiv, Ukraine, 13–15 October 2015. [Google Scholar]
- Ruzgienė, B.; Berteška, T.; Gečyte, S.; Jakubauskienė, E.; Aksamitauskas, V.Č. The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement 2015, 73, 619–627. [Google Scholar] [CrossRef]
- Hung, I.; Unger, D.; Kulhavy, D.; Zhang, Y. Positional precision analysis of orthomosaics derived from drone captured aerial imagery. Drones 2019, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Psirofonia, P.; Samaritakis, V.; Eliopoulos, P.; Potamitis, I. Use of unmanned aerial vehicles for agricultural applications with emphasis on crop protection: Three novel case-studies. J. Agric. Sci. Technol. 2017, 5, 30–39. [Google Scholar] [CrossRef]
- Ihsan, M.; Somantri, L.; Sugito, N.T.; Himayah, S.; Affriani, A.R. The Comparison of Stage and Result Processing of Photogrammetric Data Based on Online Cloud Processing. IOP Conf. Ser. Earth Environ. Sci. 2019, 286, 012041. [Google Scholar] [CrossRef]
- Alidoost, F.; Arefi, H. Comparison of UAS-based photogrammetry software for 3d point cloud generation: A survey over a historical site. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the 4th International GeoAdvances Workshop, Safranbolu, Karabuk, Turkey, 14–15 October 2017; ISPRS: Hannover, Germany, 2017. [Google Scholar]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Merz, J.; Pasternack, G.B.; Sear, D.; Vericat, D. Linking geomorphic changes to salmonid habitat at a scale relevant to fish. River Res. Appl. 2010, 26, 469–486. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Atkinson, C.L.; Allen, D.C.; Davis, L.; Nickerson, Z.L. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward. Geomorphology 2018, 305, 123–140. [Google Scholar] [CrossRef]
- Wynn, T.; Mostaghimi, S. The effects of vegetation and soil type on streambank erosion, southwestern Virginia, USA. J. Am. Water Resour. Assoc. 2006, 42, 69–82. [Google Scholar] [CrossRef]
- Yao, Z.; Ta, W.; Jia, X.; Xiao, J. Bank erosion and accretion along the Ningxia–Inner Mongolia reaches of the Yellow River from 1958 to 2008. Geomorphology 2011, 127, 99–106. [Google Scholar] [CrossRef]
- Saleem, A.; Dewan, A.; Rahman, M.M.; Nawfee, S.M.; Karim, R.; Lu, X.X. Spatial and temporal variations of erosion and accretion: A case of a large Tropical River. Earth Syst. Environ. 2020, 4, 167–181. [Google Scholar] [CrossRef]
- Jugie, M.; Gob, F.; Virmoux, C.; Brunstein, D.; Tamisier, V.; Le Coeur, C.; Grancher, D. Characterizing and quantifying the discontinuous bank erosion of a small low energy river using Structure-from-Motion Photogrammetry and erosion pins. J. Hydrol. 2018, 563, 418–434. [Google Scholar] [CrossRef]
- d’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Yang, J.; Lundström, T.S. Field studies and 3d modelling of morphodynamics in a meandering river reach dominated by tides and suspended load. Fluids 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.A.; Schilling, K.E.; Isenhart, T.M.; Schultz, R.C.; Tomer, M.D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 2014, 209, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.E.; Isenhart, T.M.; Palmer, J.A.; Wolter, C.F.; Spooner, J. Impacts of Land-Cover Change on Suspended Sediment Transport in Two Agricultural Watersheds. J. Am. Water Resour. Assoc. 2011, 47, 672–686. [Google Scholar] [CrossRef]
- Tufekcioglu, M.; Isenhart, T.M.; Schultz, R.C.; Bear, D.A.; Kovar, J.L.; Russell, J.R. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in southern Iowa, United States. J. Soils Water Conserv. 2012, 67, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef] [Green Version]
- Zaimes, G.Ν.; Tamparopoulos, A.E.; Tufekcioglu, M.; Schultz, R.C. Understanding stream bank erosion and deposition in Iowa, USA: A seven year study along streams in different regions with different riparian land-uses. J. Environ. Manag. 2021, 287, 112352. [Google Scholar] [CrossRef]
- Lawler, D.M. Design and installation of a novel automatic erosion monitoring system. Earth Surf. Process. Landf. 1992, 17, 455–463. [Google Scholar] [CrossRef]
- Lawler, D.M. Defining the moment of erosion: The principle of thermal consonance timing. Earth Surf. Process. Landf. 2005, 30, 1597–1615. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Iakovoglou, V.; Kosmadakis, I.; Ioannou, K.; Koutalakis, P.; Ranis, G.; Laopoulos, T.; Tsardaklis, P. A New Innovative Tool to Measure Soil Erosion. In Water Resources in Arid Areas: The Way Forward. Springer Water; Abdalla, O., Kacimov, A., Chen, M., Al-Maktoumi, A., Al-Hosni, T., Clark, I., Eds.; Springer: Cham, Switzerland, 2017; pp. 267–280. [Google Scholar]
- Koutalakis, P.; Zaimes, G.N. River Flow Measurements Utilizing UAV-Based Surface Velocimetry and Bathymetry Coupled with Sonar. Hydrology 2022, 9, 148. [Google Scholar] [CrossRef]
- Hooke, J. River meander behaviour and instability: A framework for analysis. Trans. Inst. Brit. Geogr. 2003, 28, 238–253. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Thorne, C.R.; Clifford, N.J. Identifying causes and controls of river bank erosion in a British upland catchment. Catena 2013, 100, 107–119. [Google Scholar] [CrossRef]
- Nawfee, S.M.; Dewan, A.; Rashid, T. Integrating subsurface stratigraphic records with satellite images to investigate channel change and bar evolution: A case study of the Padma River, Bangladesh. Environ. Earth Sci. 2018, 77, 89. [Google Scholar] [CrossRef]
- Stott, E.; Williams, R.D.; Hoey, T.B. Ground control point distribution for accurate kilometre-scale topographic mapping using an RTK-GNSS unmanned aerial vehicle and SfM photogrammetry. Drones 2020, 4, 55. [Google Scholar] [CrossRef]
- James, M.R.; Antoniazza, G.; Robson, S.; Lane, S.N. Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271. [Google Scholar] [CrossRef]
- Lane, S.N.; Tayefi, V.; Reid, S.C.; Yu, D.; Hardy, R.J. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surface Processes and Landforms: BGRG 2007, 32, 429–446. [Google Scholar] [CrossRef]
- McMahon, J.M.; Olley, J.M.; Brooks, A.P.; Smart, J.C.; Stewart-Koster, B.; Venables, W.N.; Curwena, G.; Kempa, J.; Stewartd, M.; Saxtona, N.; et al. Vegetation and longitudinal coarse sediment connectivity affect the ability of ecosystem restoration to reduce riverbank erosion and turbidity in drinking water. Sci. Total Environ. 2020, 707, 135904. [Google Scholar] [CrossRef]
- Gurnell, A. Plants as river system engineers. Sci. Total Environ. 2014, 39, 4–25. [Google Scholar] [CrossRef]
- Malkinson, D.; Wittenberg, L. Scaling the effects of riparian vegetation on cross-sectional characteristics of ephemeral mountain streams—A case study of Nahal Oren, Mt. Carmel, Israel. Catena 2007, 69, 103–110. [Google Scholar] [CrossRef]
- Laubel, A.; Kronvang, B.; Hald, A.B.; Jensen, C. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Process. 2003, 17, 3443–3463. [Google Scholar] [CrossRef]
- Lawler, D.M.; Grove, J.R.; Couperwaite, J.S.; Leeks, G.J.L. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrol. Process. 1999, 13, 977–992. [Google Scholar] [CrossRef]
- Myers, D.T.; Rediske, R.R.; McNair, J.N. Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner. Water 2019, 11, 1846. [Google Scholar] [CrossRef] [Green Version]
- Hawley, R.J.; MacMannis, K.R.; Wooten, M.S.; Fet, E.V.; Korth, N.L. Suburban stream erosion rates in northern Kentucky exceed reference channels by an order of magnitude and follow predictable trajectories of channel evolution. Geomorphology 2020, 352, 106998. [Google Scholar] [CrossRef]
- Annayat, W.; Sil, B.S. Assessing channel morphology and prediction of centerline channel migration of the Barak River using geospatial techniques. Bull. Eng. Geol. Environ. 2020, 79, 5161–5183. [Google Scholar] [CrossRef]
- Serra-Llobet, A.; Conrad, E.; Schaefer, K. Governing for integrated water and flood risk management: Comparing top-down and bottom-up approaches in Spain and California. Water 2016, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E.; Kirchoff, C. Airborne laser scanning for riverbank erosion assessment. Remote Sens. Environ. 2005, 95, 493–501. [Google Scholar] [CrossRef]
- Longoni, L.; Papini, M.; Brambilla, D.; Barazzetti, L.; Roncoroni, F.; Scaioni, M.; Ivanov, V.I. Monitoring Riverbank Erosion in Mountain Catchments Using Terrestrial Laser Scanning. Remote Sens. 2016, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Zaimes, G.N.; Schultz, R.C. Riparian land-use impacts on bank erosion and deposition of an incised stream in north-central Iowa, USA. Catena 2015, 125, 61–73. [Google Scholar] [CrossRef]
- Kasvi, E.; Laamanen, L.; Lotsari, E.; Alho, P. Flow patterns and morphological changes in a sandy meander bend during a flood—Spatially and temporally intensive ADCP measurement approach. Water 2017, 9, 106. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mukhopadhyay, S. An assessment on the nature of channel migration of River Diana of the sub-Himalayan West Bengal using field and GIS techniques. Arab. J. Geosci. 2015, 8, 5649–5661. [Google Scholar] [CrossRef]
- Ludwig, M.M.; Runge, C.; Friess, N.; Koch, T.L.; Richter, S.; Seyfried, S.; Wraase, L.; Lobo, A.; Sebastia, M.T.; Reudenbach, C.; et al. Quality assessment of photogrammetric methods—A workflow for reproducible UAS orthomosaics. Remote Sens. 2020, 12, 3831. [Google Scholar] [CrossRef]
- Śledź, S.; Ewertowski, M.W. Evaluation of the Influence of Processing Parameters in Structure-from-Motion Software on the Quality of Digital Elevation Models and Orthomosaics in the Context of Studies on Earth Surface Dynamics. Remote Sens. 2022, 14, 1312. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Batsaris, M.; Spondylidis, S.; Topouzelis, K. A citizen science unmanned aerial system data acquisition protocol and deep learning techniques for the automatic detection and mapping of marine litter concentrations in the coastal zone. Drones 2021, 5, 6. [Google Scholar] [CrossRef]
- Vietz, G.J.; Lintern, A.; Webb, J.A.; Straccione, D. River Bank Erosion and the Influence of Environmental Flow Management. J. Environ. Manag. 2017, 61, 454–468. [Google Scholar] [CrossRef]
First Period (November 2021–March 2022) | ||||
---|---|---|---|---|
Pin’s Placement | Pin# | Erosion Pin Plots (cm) | ||
Bottom (1/3) | A | B | C | |
1 | 4 | 34 | >50 | |
1/3 | 2 | 1 | 40 | >50 |
3 | 4 | >50 | >50 | |
4 | −7 | >50 | >50 | |
5 | 4 | >50 | >50 | |
Top (2/3) | A | B | C | |
1 | 7 | 32 | >50 | |
2/3 | 2 | 10 | 50 | >50 |
3 | 10 | 47 | >50 | |
4 | 7 | >50 | >50 | |
5 | 1 | >50 | >50 | |
Second period (March 2022–June 2022) | ||||
Bottom (1/3) | A | B | C | |
1 | 0 | 0 | −4 | |
1/3 | 2 | 0 | 0 | −2 |
3 | 0 | 0 | −9 | |
4 | 0 | 0 | −23 | |
5 | 2 | 0 | 0 | |
Top (2/3) | A | B | C | |
1 | 0 | 0 | 6 | |
2/3 | 2 | 0 | 0 | 5 |
3 | 1 | 0 | 0 | |
4 | 0 | 0 | 0 | |
5 | 2 | 0 | −4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkiatas, G.T.; Koutalakis, P.D.; Kasapidis, I.K.; Iakovoglou, V.; Zaimes, G.N. Monitoring and Quantifying the Fluvio-Geomorphological Changes in a Torrent Channel Using Images from Unmanned Aerial Vehicles. Hydrology 2022, 9, 184. https://doi.org/10.3390/hydrology9100184
Gkiatas GT, Koutalakis PD, Kasapidis IK, Iakovoglou V, Zaimes GN. Monitoring and Quantifying the Fluvio-Geomorphological Changes in a Torrent Channel Using Images from Unmanned Aerial Vehicles. Hydrology. 2022; 9(10):184. https://doi.org/10.3390/hydrology9100184
Chicago/Turabian StyleGkiatas, Georgios T., Paschalis D. Koutalakis, Iordanis K. Kasapidis, Valasia Iakovoglou, and George N. Zaimes. 2022. "Monitoring and Quantifying the Fluvio-Geomorphological Changes in a Torrent Channel Using Images from Unmanned Aerial Vehicles" Hydrology 9, no. 10: 184. https://doi.org/10.3390/hydrology9100184
APA StyleGkiatas, G. T., Koutalakis, P. D., Kasapidis, I. K., Iakovoglou, V., & Zaimes, G. N. (2022). Monitoring and Quantifying the Fluvio-Geomorphological Changes in a Torrent Channel Using Images from Unmanned Aerial Vehicles. Hydrology, 9(10), 184. https://doi.org/10.3390/hydrology9100184