Comparison of Calibration Approaches of the Soil and Water Assessment Tool (SWAT) Model in a Tropical Watershed
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Soil and Water Assessment Tool (SWAT) Model
2.3. SWAT Input Data
2.3.1. Digital Elevation Model (DEM)
2.3.2. Land-Use Land-Cover (LULC) Properties
2.3.3. Soil Properties
2.3.4. Meteorological and Hydrological Data
2.4. Detailed Analysis
2.4.1. Watershed Delineation and Hydrological Response Units (HRUs)
2.4.2. Parameter Selection
2.4.3. Calibration and Validation
2.4.4. Performance Evaluation of the Model
3. Results and Discussion
3.1. Land-Use Land-Cover Classification
3.2. Single-Site Calibration and Validation
3.2.1. Hanwella Sub-Basin
3.2.2. Deraniyagala Sub-Basin
3.3. Multi-Site Calibration and Validation
3.4. Comparative Analysis
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Water Balance Equation
Appendix B. Statistical Indices Utilized for Model Performance Evaluation
References
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Bergstrom, S. The HBV Model—Its Structure and Applications; No. 4, SMHI Reports Hydrology; SMHI: Norrköping, Sweden, 1992; pp. 1–44.
- Feldman, A. Hydrologic Modeling System HEC-HMS Technical Reference Manual: US Army Corps of Engineers; Hydrologic Engineering Center: Davis, CA, USA, 2000.
- Lu, Z.; Zou, S.; Xiao, H.; Zheng, C.; Yin, Z.; Wang, W. Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Phys. Chem. Earth Parts A/B/C 2015, 79, 76–85. [Google Scholar] [CrossRef]
- Chathuranika, I.M.; Gunathilake, M.B.; Azamathulla, H.M.; Rathnayake, U. Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology 2022, 9, 48. [Google Scholar] [CrossRef]
- Chathuranika, I.M.; Gunathilake, M.B.; Baddewela, P.K.; Sachinthanie, E.; Babel, M.S.; Shrestha, S.; Jha, M.K.; Rathnayake, U.S. Comparison of Two Hydrological Models, HEC-HMS and SWAT in Runoff Estimation: Application to Huai Bang Sai Tropical Watershed, Thailand. Fluids 2022, 7, 267. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Zamri, M.; Alagiyawanna, T.P.; Samarasinghe, J.T.; Baddewela, P.K.; Babel, M.S.; Jha, M.K.; Rathnayake, U.S. Hydrologic utility of satellite-based and gauge-based gridded precipitation products in the Huai Bang Sai Watershed of Northeastern Thailand. Hydrology 2021, 8, 165. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Sun, G.; Strauss, P.; Guo, J.; Tang, Y.; Yao, A. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrol. Earth Syst. Sci. 2012, 16, 4621–4632. [Google Scholar] [CrossRef] [Green Version]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrol. Process. 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Niraula, R.; Meixner, T.; Norman, L.M. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451. [Google Scholar]
- Piniewski, M.; Okruszko, T. Multi-site calibration and validation of the hydrological component of SWAT in a large lowland catchment. In Modelling of Hydrological Processes in the Narew Catchment; Springer: Berlin/Heidelberg, Germany, 2011; pp. 15–41. [Google Scholar]
- Molina-Navarro, E.; Andersen, H.E.; Nielsen, A.; Thodsen, H.; Trolle, D. The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environ. Model. Softw. 2017, 93, 255–267. [Google Scholar] [CrossRef]
- Anderton, S.; Latron, J.; Gallart, F. Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrol. Process. 2002, 16, 333–353. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Boyle, D.P.; Gupta, H.V.; Sorooshian, S. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res. 2000, 36, 3663–3674. [Google Scholar]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, J.C. Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Cao, W.; Bowden, W.B.; Davie, T.; Fenemor, A. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol. Process. Int. J. 2006, 20, 1057–1073. [Google Scholar] [CrossRef]
- Desai, S.; Singh, D.; Islam, A.; Sarangi, A. Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quat. Int. 2021, 571, 136–149. [Google Scholar] [CrossRef]
- Malik, M.A.; Dar, A.Q.; Jain, M.K. Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments, NW Himalaya’s. Modeling Earth Syst. Environ. 2022, 8, 1203–1213. [Google Scholar] [CrossRef]
- Niraula, R.; Norman, L.M.; Meixner, T.; Callegary, J.B. Multi-gauge calibration for modeling the semi-arid Santa Cruz Watershed in Arizona-Mexico border area using SWAT. Air Soil Water Res. 2012, 5, ASWR-S9410. [Google Scholar] [CrossRef]
- Odusanya, A.E.; Mehdi, B.; Schürz, C.; Oke, A.O.; Awokola, O.S.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef] [Green Version]
- Swalih, S.A.; Kahya, E. Hydrological model optimization using multi-gauge calibration (MGC) in a mountainous region. J. Hydroinform. 2021, 23, 340–351. [Google Scholar] [CrossRef]
- Zhang, X.; Srinivasan, R.; Van Liew, M. Multi-site calibration of the SWAT model for hydrologic modeling. Trans. ASABE 2008, 51, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Bekele, E.G.; Nicklow, J.W. Multi-objective automatic calibration of SWAT using NSGA-II. J. Hydrol. 2007, 341, 165–176. [Google Scholar] [CrossRef]
- Lu, Z.; Zou, S.; Yin, Z.; Long, A.; Xu, B. A new suitable method for SWAT model calibration and its application in datascarce basins. J. Lanzhou Univ. Nat. Sci. 2012, 48, 1–7. [Google Scholar]
- Eckhardt, K.; Arnold, J. Automatic calibration of a distributed catchment model. J. Hydrol. 2001, 251, 103–109. [Google Scholar] [CrossRef]
- White, K.L.; Chaubey, I. Sensitivity analysis, calibration, and validations for a multi-site and multivariable SWAT model 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 1077–1089. [Google Scholar] [CrossRef]
- De Silva, M.; Weerakoon, S.; Herath, S. Modeling of event and continuous flow hydrographs with HEC–HMS: Case study in the Kelani River Basin, Sri Lanka. J. Hydrol. Eng. 2014, 19, 800–806. [Google Scholar] [CrossRef]
- Gunathilake, M.; Panditharathne, P.; Gunathilake, G.; Warakagoda, N. Application of HEC-HMS model to simulate long term streamflow in the Kelani River Basin, Sri Lanka. In Proceedings of the 10th International Conference on Structural Engineering and Construction Management (ICSECM), Kandy, Sri Lanka, 2–5 December 2019. [Google Scholar]
- Siriwardena, K.; Rajapakse, R. Evaluation of Climate Elasticity of Runoff based on Observed Rainfall, Streamflow and Simulated Future Streamflow using SWAT Model in Kelani Ganga Basin. Engineer 2021, 54, 1–15. [Google Scholar] [CrossRef]
- Samarasinghe, J.T.; Perera, E.; Teo, F.Y.; Chan, A.; Ghosh, S. Flood inundations and risk mapping in a tidal river: A case study for the Kelani River basin, Sri Lanka. Res. Sq. 2021. preprint. [Google Scholar] [CrossRef]
- FAO; IIASA. Harmonized World Soil Database. 2012. Available online: https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ (accessed on 5 September 2022).
- Makubura, R.; Meddage, D.P.P.; Azamathulla, H.M.; Pandey, M.; Rathnayake, U. A Simplified Mathematical Formulation for Water Quality Index (WQI): A Case Study in the Kelani River Basin, Sri Lanka. Fluids 2022, 7, 147. [Google Scholar] [CrossRef]
- Abeysinghe, N.D.A.; Samarakoon, M. Analysis of variation of water quality in Kelani River, Sri Lanka. Int. J. Environ. Agric. Biotechnol. 2017, 2, 238965. [Google Scholar]
- Neitsch, S.L. Soil and water assessment tool. User’s Man. Version 2005, 2005, 476. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Buakhao, W.; Kangrang, A. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT. Adv. Civ. Eng. 2016, 2016, 8180158. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Hardy, E.; Roach, J.; Witmer, R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; USGS Numbered Series No. 964, Professional Paper; The USGS Land Cover Institute: Garretson, SD, USA, 1976.
- Congedo, L. Semi-automatic classification plugin documentation. Release 2016, 4, 29. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Williams, J.R. EPIC-Erosion/Productivity Impact Calculator. I: Model Documentation. II: User Manual; Technical Bulletin; United States Department of Agriculture: Washington, DC, USA, 1990; Volume 1768.
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Khoi, D.N.; Thom, V.T. Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam. Glob. Ecol. Conserv. 2015, 4, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Negahban-Azar, M. Sensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed, California. Model. Earth Syst. Environ. 2018, 4, 1509–1525. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large rwer basin with point and nonpoint sources 1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Van Liew, M.; Arnold, J.; Garbrecht, J. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Servat, É.; Dezetter, A. Selection of calibration objective functions in the context of rainfall-runoff modelling in a Sudanese savannah area. Hydrol. Sci. J. 1991, 36, 307–330. [Google Scholar] [CrossRef]
- Legates, D.; McCabe, G., Jr. Reliability of Precipitation Estimates for Doubled-CO2 Scenarios Simulated with Two General Circulation Models. In Proceedings of the American Meteorological Society Special Session on Hydrometeorology, Salt Lake City, UT, USA, 10–13 September 1991; pp. 200–203. [Google Scholar]
- Singh, J.; Knapp, H.; Arnold, J.; Misganaw, D. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Chu, T.; Shirmohammadi, A. Evaluation of the SWAT model’s hydrology component in the piedmont physiographic region of Maryland. Trans. ASAE 2004, 47, 1057. [Google Scholar] [CrossRef]
- Gupta, H.V.; Bastidas, L.; Sorooshian, S.; Shuttleworth, W.J.; Yang, Z. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res. Atmos. 1999, 104, 19491–19503. [Google Scholar] [CrossRef] [Green Version]
- Houshmand Kouchi, D.; Esmaili, K.; Faridhosseini, A.; Sanaeinejad, S.H.; Khalili, D.; Abbaspour, K.C. Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water 2017, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.; Gitau, M.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; De Roo, A. Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J. Hydrol. 2013, 499, 324–338. [Google Scholar] [CrossRef]
- Parajuli, P. Assessing sensitivity of hydrologic responses to climate change from forested watershed in Mississippi. Hydrol. Process. 2010, 24, 3785–3797. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. (n.d.). Available online: https://www.noaa.gov/ (accessed on 20 September 2022).
- Hapuarachchi, H.; Zhijia, L.; Wolfgang, F. Application of the SWAT model for river flow forecasting in Sri Lanka. J. Lake Sci. 2003, 15, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Iresh, A.D.; Marasingha, A.G.; Wedanda, A.M.; Wickramasekara, G.P.; Wickramasooriya, M.D.; Premathilaka, M.T. Development of a hydrological model for Kala Oya basin using SWAT model. Eng. J. Inst. Eng. Sri Lanka 2021, 54, 57–65. [Google Scholar] [CrossRef]
- Shelton, S. Evaluation of the streamflow simulation by SWAT model for selected catchments in Mahaweli River Basin, Sri Lanka. Water Conserv. Sci. Eng. 2021, 6, 233–248. [Google Scholar] [CrossRef]
- Gunathilaka MD, E.K.; Wikramanayake WA, L.; Perera DN, D.; Lanka, S. Identifying the impact of tidal level variation on river basin flooding. Volume 2. Water quality, environment, and climate change. In Proceedings of the National Conference on Water, Food Security, and Climate Change in Sri Lanka, BMICH, Colombo, Sri Lanka, 9–11 June 2009; IWMI: Colombo, Sri Lanka, 2010; Volume 2, p. 119. [Google Scholar]
Soil Name | Texture | Hydrological Soil Group | Area (km2) |
---|---|---|---|
Ao73-2bc-3645 | Loam | C | 1810.7 |
Ap19-2b-3654 | Loam | C | 467.2 |
Qc50-1a-3841 | Sandy Loam | C | 41.4 |
Bf12-3bc- 3687 | Clay Loam | C | 15.5 |
Indices | R2 | NSE | RSR | PBIAS |
---|---|---|---|---|
Range | 0 to 1 | to 1 | to | |
Optimal Value | 1 | 1 | 0 | 0 |
Satisfactory Value | >0.5 | >0.5 | ≤0.7 | <±25 |
Land Use | SWAT Land-Use Class | Area (km2) | |
---|---|---|---|
Model Code | Description | ||
Settlements | URBN | Urban | 91.3 |
Agriculture | AGRL | Agricultural Land-Generic | 302.3 |
Forest | FRST | Forest-Mixed | 1875.8 |
Barren lands | BARR | Barren | 38.6 |
Water bodies | WATR | Water | 16.9 |
Station | NSE | PBIAS | RSR | NSE | PBIAS | RSR | ||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | |||||||
Hanwella | 0.82 | 0.65 | −29.34 | 0.6 | 0.85 | 0.51 | −43.94 | 0.75 |
Deraniyagala | 0.69 | 0.66 | −3.9 | 0.52 | 0.69 | 0.62 | 5.97 | 0.53 |
Glencorse | 0.81 | −0.96 | -81.94 | 1.58 | 0.69 | −0.17 | −40.75 | 1.05 |
Holombuwa | 0.73 | 0.72 | −4.24 | 0.56 | 0.61 | 0.59 | 0.34 | 0.60 |
Kithulgala | 0.61 | −0.07 | −20.35 | 1.05 | 0.7 | 0.59 | −7.58 | 0.59 |
Parameter | Description of the Parameter | Fitted | Min | Max |
---|---|---|---|---|
ALPHA_BF.gw | Alpha-factor of the baseflow in days | 0.9998 | 0 | 1 |
GW_DELAY.gw | Groundwater lag time in days | 146.45 | 0 | 500 |
GWQMN.gw | In a shallow aquifer, the threshold water depth is needed for the return flow (mm) | 325 | 0 | 5000 |
GW_REVAP | Groundwater “revap” coefficient | 0.1985 | 0.02 | 0.2 |
REVAPMN | The threshold depth at which water can percolate from the shallow aquifer into the deeper aquifer (mm) | 175 | 0 | 500 |
CN2.mgt * | Runoff curve number | Varied | 35 | 98 |
CANMX.hru | Canopy water storage (maximum) (mm) | 84.356 | 0 | 100 |
ESCO.hru | Compensation factor of soil evaporation | 0.985 | 0.01 | 1 |
Station | NSE | PBIAS | RSR | NSE | PBIAS | RSR | ||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | |||||||
Hanwella | 0.81 | 0.65 | −29.26 | 0.64 | 0.84 | 0.41 | −51.41 | 0.87 |
Deraniyagala | 0.66 | 0.66 | −4.77 | 0.56 | 0.69 | 0.68 | 6.06 | 0.55 |
Glencorse | 0.8 | −0.87 | −81.89 | 1.58 | 0.66 | −0.15 | −41.99 | 1.06 |
Holombuwa | 0.72 | 0.69 | −3.16 | 0.57 | 0.58 | 0.57 | 0.06 | 0.6 |
Kithulgala | 0.56 | −0.07 | −20.79 | 1.06 | 0.64 | 0.55 | −7.96 | 0.62 |
Parameter | Description of the Parameter | Fitted | Min | Max |
---|---|---|---|---|
ALPHA_BF.gw | Alpha-factor of the baseflow in days | 0.9998 | 0 | 1 |
GW_DELAY.gw | Groundwater lag time in days | 340 | 0 | 500 |
GWQMN.gw | In a shallow aquifer, the threshold water depth is needed for the return flow (mm) | 320 | 0 | 5000 |
GW_REVAP | Groundwater “revap” coefficient | 0.1965 | 0.02 | 0.2 |
REVAPMN | The threshold depth at which water can percolate from the shallow aquifer into the deeper aquifer (mm) | 180 | 0 | 500 |
CN2.mgt* | Runoff curve number | Varied | 35 | 98 |
CANMX.hru | Canopy water storage (maximum) (mm) | 84.356 | 0 | 100 |
ESCO.hru | Compensation factor of soil evaporation | 0.985 | 0.01 | 1 |
Station | NSE | PBIAS | RSR | NSE | PBIAS | RSR | ||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | |||||||
Hanwella | 0.83 | 0.71 | −23.67 | 0.53 | 0.82 | 0.51 | −40.68 | 0.73 |
Deraniyagala | 0.68 | 0.66 | −4.34 | 0.50 | 0.70 | 0.66 | 5.77 | 0.51 |
Glencourse | 0.81 | −0.87 | −72.75 | 1.41 | 0.69 | −0.28 | −34.16 | 0.99 |
Holombuwa | 0.75 | 0.75 | 5.09 | 0.52 | 0.61 | 0.59 | 9.51 | 0.58 |
Kithulgala | 0.59 | −0.32 | −13.51 | 1.17 | 0.69 | 0.50 | −1.79 | 0.69 |
Parameter Name | Station | ||||
---|---|---|---|---|---|
Hanwella | Deraniyagala | Glencourse | Holombuwa | Kithulgala | |
ALPHA_BF.gw | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 |
GW_DELAY.gw | 146.45 | 340 | 340 | 340 | 120 |
GWQMN.gw | 325 | 320 | 320 | 320 | 320 |
GW_REVAP | 0.1985 | 0.1965 | 0.1965 | 0.1965 | 0.1995 |
REVAPMN | 175 | 180 | 180 | 180 | 175 |
CN2.mgt * | Varied | Varied | Varied | Varied | Varied |
CANMX.hru | 84.356 | 84.356 | 84.356 | 84.356 | 99.356 |
ESCO.hru | 0.985 | 0.985 | 0.005 | 0.485 | 0.005 |
Variable Name | Description | Single-Site Calibration | Multi-Site Calibration | |
---|---|---|---|---|
Calibration 01 | Calibration 02 | |||
Precip | Watershed average precipitation used in the simulation (mm) | 3897.6 | 3897.6 | 3897.6 |
Surface Runoff Q | Simulation-based surface runoff generated in the watershed (mm) | 1501.3 | 1080.1 | 1520.8 |
Lateral Soil Q | Simulated lateral flow contribution to streamflow in the watershed (mm) | 130.7 | 179.6 | 131.9 |
Groundwater (Shal Aq) Q | Simulated groundwater flow into the watershed’s stream (mm) (shallow) | 664.7 | 1023.4 | 669.3 |
Groundwater (Deep Aq) Q | Simulated groundwater flow into the watershed’s stream (mm) (deep) | 51.7 | 70.4 | 48.3 |
Revap (Shal Aq => Soil/Plants) | Amount of water simulated to flow from a shallow aquifer to the watershed’s vegetation and soil profile (mm) | 318.1 | 313.7 | 249.1 |
Deep Aq Recharge | Simulated deep aquifer recharging in the watershed (mm) | 51.7 | 70.4 | 48.4 |
Total Aq Recharge | Calculated flow entering into both watershed aquifers (mm) | 1034.9 | 1407.6 | 967.4 |
Total Water Yld | Simulated water yield from HRUs in the watershed (mm) | 2348.4 | 2353.6 | 2370.4 |
Percolation Out of Soil | Simulated water percolation at the soil profile’s base in the watershed (mm) | 1039.7 | 1412.4 | 968.9 |
ET | Simulated evapotranspiration in the watershed (mm) | 1225.6 | 1225.1 | 1275 |
PET | Simulated potential evapotranspiration in the watershed (mm) | 1611.4 | 1611.4 | 1611.4 |
Total Sediment Loading | Simulated sediment yield from HRUs in the watershed (metric tons/ha) | 111.4 | 138.2 | 141.6 |
Climate Condition | |
---|---|
<0.4 | Arid |
0.4–0.8 | Semi-arid |
0.8–1.2 | Sub-humid |
>1.2 | Humid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makumbura, R.K.; Gunathilake, M.B.; Samarasinghe, J.T.; Confesor, R.; Muttil, N.; Rathnayake, U. Comparison of Calibration Approaches of the Soil and Water Assessment Tool (SWAT) Model in a Tropical Watershed. Hydrology 2022, 9, 183. https://doi.org/10.3390/hydrology9100183
Makumbura RK, Gunathilake MB, Samarasinghe JT, Confesor R, Muttil N, Rathnayake U. Comparison of Calibration Approaches of the Soil and Water Assessment Tool (SWAT) Model in a Tropical Watershed. Hydrology. 2022; 9(10):183. https://doi.org/10.3390/hydrology9100183
Chicago/Turabian StyleMakumbura, Randika K., Miyuru B. Gunathilake, Jayanga T. Samarasinghe, Remegio Confesor, Nitin Muttil, and Upaka Rathnayake. 2022. "Comparison of Calibration Approaches of the Soil and Water Assessment Tool (SWAT) Model in a Tropical Watershed" Hydrology 9, no. 10: 183. https://doi.org/10.3390/hydrology9100183
APA StyleMakumbura, R. K., Gunathilake, M. B., Samarasinghe, J. T., Confesor, R., Muttil, N., & Rathnayake, U. (2022). Comparison of Calibration Approaches of the Soil and Water Assessment Tool (SWAT) Model in a Tropical Watershed. Hydrology, 9(10), 183. https://doi.org/10.3390/hydrology9100183