Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.2. Radar Data
2.3. Rainfall Data
2.4. Methodology
2.4.1. Rain Gauge Interpolation
2.4.2. Radar Dataset Development
2.4.3. Z-R Relationship Development
2.4.4. Validation Methods
- 1.
- Probability of Detection (POD) (Berens et al. [22]) is the ratio of hits (a) to the total number of hits and miss (a + b).
- 2.
- False-alarm ratio (FAR) (Mason et al. [23]) accounts for the number of false alarms (c) compared to the number of hits and false alarms (a + c).
- 3.
- Probability of false detection (POFD) (Berens et al. [22]) is the ratio of false alarms (c) to the number of false alarms and correct rejections (c + d).
- 4.
- Threat score (TS) (Wilks, [24]) is ratio of hits (a) to observed yes (rain) events plus false alarms (a + b + c)
2.4.5. Rain Gauge Interpolation Category Merging using Spatial Association of Radar
2.4.6. Statistical Verification and Evaluation Methods to Compare Radar with Rain Gauge Stations
3. Results
3.1. Statistics Validation based Contingency Tables
3.2. Result of using Spatial Methods to Interpolate Rainfall over Chi Basin
3.3. Bias Correction Validation Results
3.4. Rainfall Intensities Maps Derived from Meteorology Radar
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Wilson, J.W.; Brandes, E.A. Radar measurement of rainfall a summary. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1058. [Google Scholar] [CrossRef]
- Joss, J.; Waldvogel, A.; Collier, C. Precipitation measurement and hydrology. In Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference; American Meteorological Society: Boston, MA, USA, 1990; pp. 577–606. [Google Scholar]
- Uijlenhoet, R. Raindrop size distribution and radar reflectivity-rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci. 2001, 5, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Chumchean, S.; Seed, A.; Sharma, A. An operational approach for classifying storms in real-time radar rainfall estimation. J. Hydrol. 2008, 363, 1–17. [Google Scholar] [CrossRef]
- Chumchean, S.; Sharma, A.; Seed, A. Radar rainfall error variance and its impact on radar rainfall calibration. Phys. Chem. Earth Parts A/B/C 2003, 28, 27–39. [Google Scholar] [CrossRef]
- Berne, A.; Krajewski, W.F. Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour. 2013, 51, 357–366. [Google Scholar] [CrossRef]
- Ciach, G.J.; Krajewski, W.F.; Villarini, G. Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with nexrad data. J. Hydrometeorol. 2007, 8, 1325–1347. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986; Volume 26. [Google Scholar]
- Mehrotra, R.; Sharma, A. A nonparametric stochastic downscaling framework for daily rainfall at multiple locations. J. Geophys. Res. Atmos. 2006, 111, D15101. [Google Scholar] [CrossRef]
- Hwang, Y.; Clark, M.; Rajagopalan, B.; Leavesley, G. Spatial interpolation schemes of daily precipitation for hydrologic modeling. Stoch. Environ. Res. Risk Assess. 2012, 26, 295–320. [Google Scholar] [CrossRef]
- Syed, K.H.; Goodrich, D.C.; Myers, D.E.; Sorooshian, S. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. J. Hydrol. 2003, 271, 1–21. [Google Scholar] [CrossRef]
- Rabiei, E.; Haberlandt, U. Applying bias correction for merging rain gauge and radar data. J. Hydrol. 2015, 522, 544–557. [Google Scholar] [CrossRef]
- Hasan, M.M.; Sharma, A.; Johnson, F.; Mariethoz, G.; Seed, A. Merging radar and in situ rainfall measurements: An assessment of different combination algorithms. Water Resour. Res. 2016, 52, 8384–8398. [Google Scholar] [CrossRef]
- Hasan, M.M.; Sharma, A.; Mariethoz, G.; Johnson, F.; Seed, A. Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework. Adv. Water Resour. 2016, 97, 205–218. [Google Scholar] [CrossRef]
- Barnes, S.L. A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor. 1963, 3, 396–409. [Google Scholar] [CrossRef]
- Barnes, S.L. Mesoscale objective analysis using weighted time-series observations. In NOAA Technical Memorandum; National Severe Storms Laboratory: Norman, OK, USA, 1964. [Google Scholar]
- Morris, W.E.; Smith, P.J. Cyclolysis: A diagnosis of two extratropical cyclones. Mon. Weather Rev. 2001, 129, 2714. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Yi, X. Improvement in the methods for removing isolated non-meteorological echoes and ground clutter in CINRAD. J. Meteor. Res. 2018, 32, 584–597. [Google Scholar] [CrossRef]
- Elo, C.A. Correcting and Quantifying Radar Data; Technical Report; Norwegian Meteorological Institute: Oslo, Norway, 2012. [Google Scholar]
- Goudenhoofdt, E.; Delobbe, L. Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci. 2009, 13, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Berens, A.P. NDE Reliability Data Analysis. In ASM Handbook; ASM International: Materials Park, OH, USA, 1994; Volume 17. [Google Scholar]
- Mason, I. Dependence of the critical success index on sample climate and threshold probability. Aust. Meteorol. Mag. 1989, 37, 75–81. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; 676p. [Google Scholar]
- Ochoa-Rodriguez, S.; Wang, L.P.; Willems, P.; Onof, C. A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resour. Res. 2019, 55, 6356–6391. [Google Scholar] [CrossRef]
- Wang, L.P.; Ochoa-Rodríguez, S.; Simões, N.E.; Onof, C.; Maksimović, C. Radar-rain gauge data combination techniques: A revision and analysis of their suitability for urban hydrology. Water Sci. Technol. 2013, 68, 737–747. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F.; Krajewski, W.F. Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches. Adv. Water Resour. 2008, 31, 1674–1686. [Google Scholar] [CrossRef]
- Boddy, R.; Gordon, S. Statistical Methods in Practice: For Scientists and Technologists. In Statistical Methods in Practice; John Wiley & Sons, Ltd.: Chichester, UK, 2009. [Google Scholar]
- Yates, E.; Anquetin, S.; Ducrocq, V.; Creutin, J.-D.; Ricard, D.; Chancibault, K. Point and areal validation of forecast precipitation fields. Meteorol. Appl. 2006, 13, 1–20. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Tong, Z.; Jiang, Y.; Zhang, Z.; Zhang, J.; Zhou, Y.; Li, J.; Liu, F.; Liu, J. Statistical Characteristics of Raindrop Size Distribution during Rainy Seasons in Northwest China, Hindawi. Adv. Meteorol. 2021, 2021, 6667786. [Google Scholar] [CrossRef]
- Thurai, M.; Gatlin, P.N.; Bringi, V.N. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmos. Res. 2016, 169, 416–423. [Google Scholar] [CrossRef]
Estimated Rainfall from Radar (Forecast) 2 Radar Combined Field | |||
---|---|---|---|
(Rain) Yes | (No Rain) No | ||
Rain gauge station (observation) 129 stations | Yes (rain) | a (YY) (Hit) | b (YN) (Miss) |
No (No rain) | c (NY) (False alarm) | d (NN) (Correct negative) |
ME | MAE | RMSE | R2 | |
---|---|---|---|---|
Z = 137.8R1.124 | 0.694 | 1.221 | 3.540 | 0.795 |
Marshall Palmer | −1.591 | 1.806 | 5.6458 | 0.783 |
Summer Deep Convection | −1.858 | 1.888 | 5.654 | 0.753 |
Month | Hit (a) | Miss (b) | Corr. Rejection (d) | False Alarm (c) | POD a/(a + b) | TS (CSI) a/(a + b + c) | FAR c/(a + c) | POFD c/(c + d) |
---|---|---|---|---|---|---|---|---|
June 2018 | 384 | 47 | 2706 | 683 | 0.891 | 0.345 | 0.640 | 0.202 |
July 2018 | 433 | 37 | 2897 | 569 | 0.921 | 0.417 | 0.568 | 0.164 |
August 2018 | 248 | 38 | 3010 | 665 | 0.867 | 0.261 | 0.728 | 0.181 |
September 2018 | 300 | 31 | 2866 | 500 | 0.906 | 0.361 | 0.625 | 0.149 |
June 2019 | 727 | 98 | 2425 | 613 | 0.881 | 0.506 | 0.457 | 0.202 |
July 2019 | 844 | 162 | 2188 | 689 | 0.839 | 0.498 | 0.449 | 0.239 |
August 2019 | 1368 | 158 | 1890 | 277 | 0.896 | 0.759 | 0.168 | 0.128 |
September 2019 | 837 | 149 | 2008 | 422 | 0.849 | 0.594 | 0.335 | 0.174 |
MAE | RMSE | |||||
---|---|---|---|---|---|---|
Kriging | Min. C. | IDW | Kriging | Min. C. | IDW | |
June 2018 | 0.0040 | 0.1475 | 0.2091 | 0.0062 | 0.4401 | 0.6763 |
July 2018 | 0.0053 | 0.1681 | 0.2205 | 0.0085 | 0.4719 | 0.6531 |
August 2018 | 0.0027 | 0.0785 | 0.1196 | 0.0043 | 0.2499 | 0.4337 |
September 2018 | 0.0039 | 0.1493 | 0.2149 | 0.0062 | 0.4910 | 0.7283 |
June 2019 | 0.0089 | 0.1848 | 0.2831 | 0.0130 | 0.5027 | 0.7922 |
July 2019 | 0.0125 | 0.1946 | 0.3012 | 0.0176 | 0.4686 | 0.7505 |
August 2019 | 0.0694 | 1.2790 | 1.9069 | 0.0918 | 2.7272 | 3.9253 |
September 2019 | 0.0296 | 0.3681 | 0.5510 | 0.0395 | 0.7876 | 1.2253 |
Average | 0.0170 | 0.3212 | 0.4758 | 0.0234 | 0.7674 | 1.1481 |
Kriging | Min. C. | IDW | ||||
Correlation coefficient | 0.9577 | 0.9459 | 0.9382 |
After Bias Correction | Before Bias Correction | |||||
---|---|---|---|---|---|---|
Month, Year | ME | MAE | RMSE | ME | MAE | RMSE |
June 2018 | 0.5723 | 1.9512 | 2.0412 | −1.06551 | 2.9195 | 4.3778 |
July 2018 | 1.7635 | 2.2447 | 3.0762 | −1.33043 | 3.2471 | 5.0064 |
August 2018 | 1.6142 | 3.3556 | 9.0136 | −0.58802 | 6.3269 | 16.8122 |
September 2018 | 1.5790 | 2.4199 | 6.1905 | −1.0701 | 5.0421 | 11.0725 |
June 2019 | 0.4525 | 0.0890 | 1.7440 | −1.68827 | 0.9429 | 2.7882 |
July 2019 | 0.7961 | 0.8021 | 2.1942 | −2.10078 | 2.1979 | 4.4130 |
August 2019 | 0.7096 | 2.9302 | 8.3030 | −13.4169 | 5.7401 | 16.4306 |
September 2019 | 0.9794 | 1.9269 | 5.6937 | −4.45185 | 3.0547 | 11.0647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Areerachakul, N.; Prongnuch, S.; Longsomboon, P.; Kandasamy, J. Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin. Hydrology 2022, 9, 178. https://doi.org/10.3390/hydrology9100178
Areerachakul N, Prongnuch S, Longsomboon P, Kandasamy J. Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin. Hydrology. 2022; 9(10):178. https://doi.org/10.3390/hydrology9100178
Chicago/Turabian StyleAreerachakul, Nathaporn, Sethakarn Prongnuch, Peeranat Longsomboon, and Jaya Kandasamy. 2022. "Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin" Hydrology 9, no. 10: 178. https://doi.org/10.3390/hydrology9100178
APA StyleAreerachakul, N., Prongnuch, S., Longsomboon, P., & Kandasamy, J. (2022). Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin. Hydrology, 9(10), 178. https://doi.org/10.3390/hydrology9100178