Downscaling WGHM-Based Groundwater Storage Using Random Forest Method: A Regional Study over Qazvin Plain, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Pre-Processing Data
2.2.1. WGHM Hydrologic Model
2.2.2. ERA5-Land Model
2.2.3. IMERG-GPM V06b
2.2.4. Well Observations
2.3. Model Development
Downscaling
- Preparation Phase
- Spatially resample the auxiliary variables.
- Transform the actual values to anomalies.
- Upscale high spatial resolution auxiliary data (0.1-degree) to the GWS spatial resolution (0.5-degree). Then, Pre, E, SRO, SSRO, snow depth, soil moisture, and STL auxiliary (predictors) monthly time series were shifted from 1 to 10 time steps. The lag was enforced because the variables may have a seasonal relationship with GW changes. The selection of the lag time was based on the correlation coefficient of each variable with GWSA. Predictors were shifted according to their highest correlation values between GWS and the predictors. Generally, the time lag can be identified empirically.
- Select a p-value that corresponds to the 0.05 significance level as a criterion to reject the null hypothesis. It should be noted that some high-resolution variables did not show a statistically significant relationship with GWSA, and hence were not involved in the downscaling model.
- Model construction (training phase)
- Prediction Phase
3. Results
3.1. Groundwater Validation
3.2. Trend Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Güntner, A. Towards an Operational Copernicus Service: A Global Gravity-based Groundwater Product (G3P). In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2020; Volume 2020, p. H079-06. [Google Scholar]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 2008, 12, 863–885. [Google Scholar] [CrossRef] [Green Version]
- Turkeltaub, T.; Bel, G. The effects of rain and evapotranspiration statistics on groundwater recharge estimations under semi-arid environments. Hydrol. Earth Syst. Sci. Discuss. 2022, 1–23. [Google Scholar] [CrossRef]
- Herrera-Pantoja, M.; Hiscock, K.M. The effects of climate change on potential groundwater recharge in Great Britain. Hydrol. Process. 2008, 22, 73–86. [Google Scholar] [CrossRef]
- Sahoo, S.; Chakraborty, S.; Pham, Q.B.; Sharifi, E.; Sammen, S.S.; Vojtek, M.; Vojteková, J.; Elkhrachy, I.; Costache, R.; Linh, N.T.T. Recognition of district-wise groundwater stress zones using the GLDAS-2 catchment land surface model during lean season in the Indian state of West Bengal. Acta Geophys. 2021, 69, 175–198. [Google Scholar] [CrossRef]
- doostan, reza Analysis of Drought Researches of Iran. J. Spat. Anal. Environ. Hazarts 2020, 6, 53–94. [CrossRef]
- Samani, S. Analyzing the Groundwater Resources Sustainability Management plan in Iran through Comparative Studies. Groundw. Sustain. Dev. 2021, 12, 100521. [Google Scholar] [CrossRef]
- Saemian, P.; Tourian, M.J.; AghaKouchak, A.; Madani, K.; Sneeuw, N. How much water did Iran lose over the last two decades? J. Hydrol. Reg. Stud. 2022, 41, 101095. [Google Scholar] [CrossRef]
- Taghizadeh, E.; Ahmadi-Givi, F.; Brocca, L.; Sharifi, E. Evaluation of satellite/reanalysis precipitation products over Iran. Int. J. Remote Sens. 2021, 42, 3474–3497. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Werth, S.; Güntner, A.; Petrovic, S.; Schmidt, R. Integration of GRACE mass variations into a global hydrological model. Earth Planet. Sci. Lett. 2009, 277, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Werth, S.; Güntner, A. Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol. Earth Syst. Sci. 2010, 14, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.; Forootan, E.; van Dijk, A.I.J.M.; Müller Schmied, H.; Crosbie, R.S.; Kusche, J.; Döll, P. Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model. Remote Sens. Environ. 2018, 204, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Müller Schmied, H.; Caceres, D.; Eisner, S.; Flörke, M.; Herbert, C.; Niemann, C.; Asali Peiris, T.; Popat, E.; Theodor Portmann, F.; Reinecke, R.; et al. The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev. 2021, 14, 1037–1079. [Google Scholar] [CrossRef]
- van der Knijff, J.M.; Younis, J.; de Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 2010, 24, 189–212. [Google Scholar] [CrossRef]
- Sutanudjaja, E.H.; Van Beek, R.; Wanders, N.; Wada, Y.; Bosmans, J.H.C.; Drost, N.; Van Der Ent, R.J.; De Graaf, I.E.M.; Hoch, J.M.; De Jong, K. PCR-GLOBWB 2: A 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 2018, 11, 2429–2453. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Beaudoing, H.K.; Teng, W.L.; Vollmer, B.E. Global Land data assimilation system (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC). In Proceedings of the ASPRS 2009 Annual Conference, Baltimore, MD, USA, 9–13 March 2009. [Google Scholar]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, G.; Liu, F.; Zhang, D.; Zhang, X.; Chen, S. Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model. Hydrogeol. J. 2022, 30, 947–963. [Google Scholar] [CrossRef]
- Yin, W.; Hu, L.; Zhang, M.; Wang, J.; Han, S.C. Statistical Downscaling of GRACE-Derived Groundwater Storage Using ET Data in the North China Plain. J. Geophys. Res. Atmos. 2018, 123, 5973–5987. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res. 2016, 121, 2110–2129. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Shi, Y.; Song, L. Spatial downscaling of monthly TRMM precipitation based on EVI and other geospatial variables over the Tibetan Plateau from 2001 to 2012. Mt. Res. Dev. 2015, 35, 180–194. [Google Scholar] [CrossRef]
- Chaney, N.W.; Wood, E.F.; McBratney, A.B.; Hempel, J.W.; Nauman, T.W.; Brungard, C.W.; Odgers, N.P. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 2016, 274, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Pang, B.; Yue, J.; Zhao, G.; Xu, Z. Statistical downscaling of temperature with the random forest model. Adv. Meteorol. 2017, 2017, 7265178. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Rahimi Rahbar, S.R. Downscaling of Groundwater Images Using Machine Learning Techniques, The University of Applied Sciences Campus Vienna. 2022. Available online: https://pub.fh-campuswien.ac.at/obvfcwhs/content/titleinfo/7884456 (accessed on 7 September 2022).
- Barahimi, M.; Shahverdi, K. Updating and Reviewing of the Document of National Water in Ghazvin and Fomanat Plains. J. Water Soil Sci. 2018, 22, 199–209. [Google Scholar] [CrossRef]
- Abkhan Consulting Engineers. Water Resources Balance Report Studies of Qazvin: The Study Areas of the Salt Lake Watershed; Abkhan Consulting Engineers: Tehran, Iran, 2013; Available online: https://www.abkhan-co.com/en.html (accessed on 19 June 2021).
- Babaee, S.; Mousavi, Z.; Masoumi, Z.; Malekshah, A.H.; Roostaei, M.; Aflaki, M. Land subsidence from interferometric SAR and groundwater patterns in the Qazvin plain, Iran. Int. J. Remote Sens. 2020, 41, 4780–4798. [Google Scholar] [CrossRef]
- Sanginabadi, H. Groundwater Regional Risk Analysis during Droughts and Determination of Warning Thresholds, 2019. Ph.D. Thesis, Islamic Azad University, Science and Research Branch, Tehran, Iran, 2019. [Google Scholar]
- Muñoz-Sabater, J. ERA5-Land hourly data from 1950 to 1980. Copernicus Clim. Chang. Serv. Clim. Data Store 2021. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Rajagopal, M. SHARPEN: A scheme to restore the distribution of averaged precipitation fields. J. Hydrometeorol. 2021, 22, 2105–2116. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 2016, 37, 357–395. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Zhang, Z.; Rateb, A.; Sun, A.; Wiese, D.; Save, H.; Beaudoing, H.; Lo, M.H.; Müller-Schmied, H.; Döll, P. Tracking seasonal fluctuations in land water storage using global models and GRACE satellites. Geophys. Res. Lett. 2019, 46, 5254–5264. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Jasinski, M.F.; Shellito, P.J. Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data. Hydrol. Earth Syst. Sci. 2021, 25, 4185–4208. [Google Scholar] [CrossRef]
- Vishwakarma, B.D.; Zhang, J.; Sneeuw, N. Downscaling GRACE total water storage change using partial least squares regression. Sci. Data 2021, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S. Algorithm Theoretical Basis Document (ATBD) Version 06. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), NASA. 2019. Available online: https//pmm.nasa.gov/data-access/downloads/gpm (accessed on 4 December 2019).
- Vadiati, M.; Rajabi Yami, Z.; Eskandari, E.; Nakhaei, M.; Kisi, O. Application of artificial intelligence models for prediction of groundwater level fluctuations: Case study (Tehran-Karaj alluvial aquifer). Environ. Monit. Assess. 2022, 194, 619. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dastjerdi, S.Z.; Sharifi, E.; Rahbar, R.; Saghafian, B. Downscaling WGHM-Based Groundwater Storage Using Random Forest Method: A Regional Study over Qazvin Plain, Iran. Hydrology 2022, 9, 179. https://doi.org/10.3390/hydrology9100179
Dastjerdi SZ, Sharifi E, Rahbar R, Saghafian B. Downscaling WGHM-Based Groundwater Storage Using Random Forest Method: A Regional Study over Qazvin Plain, Iran. Hydrology. 2022; 9(10):179. https://doi.org/10.3390/hydrology9100179
Chicago/Turabian StyleDastjerdi, Soroush Zarghami, Ehsan Sharifi, Rozita Rahbar, and Bahram Saghafian. 2022. "Downscaling WGHM-Based Groundwater Storage Using Random Forest Method: A Regional Study over Qazvin Plain, Iran" Hydrology 9, no. 10: 179. https://doi.org/10.3390/hydrology9100179
APA StyleDastjerdi, S. Z., Sharifi, E., Rahbar, R., & Saghafian, B. (2022). Downscaling WGHM-Based Groundwater Storage Using Random Forest Method: A Regional Study over Qazvin Plain, Iran. Hydrology, 9(10), 179. https://doi.org/10.3390/hydrology9100179