Possibility Assessment of Reservoir Expansion in the Conterminous United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Research Area
2.2. Reservoir Expansion Metrics
3. Results and Discussion
3.1. Reservoir Expansion Efficiency Metric
3.2. Reservoir Expansion Feasibility Metric
3.3. Reservoir Expansion Usefulness Metric
3.4. Discussion
4. Summary and Conclusions
- The possible assessment of reservoir expansion should be investigated by considering efficiency, feasibility, and usefulness metrics together.
- From the efficiency metrics, Colorado, Utah, and California seem to be the best candidate states for reservoir expansion under historical conditions, while Texas’ reservoirs are mostly less than half full.
- From the feasibility metrics, most eastern states are suitable for an increase in the storage capacity of their reservoirs. In the western states, there are some reservoirs in which the inflow is greater than the usable storage.
- From the usefulness metrics, reservoir enlargement is not likely to be considered a useful solution in Texas, while it may be an effective option in California and Colorado.
- The expansion of U.S. reservoir capacity should not be known as a nationwide management strategy in planning for increasing the water supply reliability of U.S. regional water systems.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhadoriya, U.P.S.; Mishra, A.; Singh, R.; Chatterjee, C. Implications of climate change on water storage and filling time of a multipurpose reservoir in India. J. Hydrol. 2020, 590, 125542. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Maliva, R.; Missimer, T. Arid Lands Water Evaluation and Management; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783642291036. [Google Scholar]
- Gain, A.K.; Giupponi, C.; Renaud, F.G. Climate change adaptation and vulnerability assessment of water resources systems in developing countries: A generalized framework and a feasibility study in Bangladesh. Water 2012, 4, 345–366. [Google Scholar] [CrossRef] [Green Version]
- Steyaert, J.C.; Condon, L.E.; Turner, S.W.D.; Voisin, N. ResOpsUS, a dataset of historical reservoir operations in the contiguous United States. Sci. Data 2022, 9, 34. [Google Scholar] [CrossRef]
- Brunner, M.I.; Björnsen Gurung, A.; Zappa, M.; Zekollari, H.; Farinotti, D.; Stähli, M. Present and future water scarcity in Switzerland: Potential for alleviation through reservoirs and lakes. Sci. Total Environ. 2019, 666, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Joyce, L.A.; Blate, G.M.; Littell, J.S.; McNulty, S.G.; Millar, C.I.; Moser, S.C.; Neilson, R.P.; O’Halloran, K.; Peterson, D. Adaptation Options for Climate-Sensitive Ecosystems and Resources. Natl. Serv. Cent. Environ. Publ. 2008, 60, 129. [Google Scholar]
- Haro-Monteagudo, D.; Palazón, L.; Beguería, S. Long-term sustainability of large water resource systems under climate change: A cascade modeling approach. J. Hydrol. 2020, 582, 124546. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Meza, I.; Anderson, C.C.; Min, A.; Renaud, F.G.; Walz, Y.; Siebert, S.; Sebesvari, Z. Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. Environ. Res. Lett. 2019, 14, 083002. [Google Scholar] [CrossRef]
- Perry, D.M.; Praskievicz, S.J. A new era of big infrastructure? (Re)developing water storage in the U.S. West in the context of climate change and environmental regulation. Water Altern. 2017, 10, 437–454. [Google Scholar]
- Brown, T.C.; Mahat, V.; Ramirez, J.A. Adaptation to future water shortages in the United States caused by population growth and climate change. Earth’s Future 2019, 7, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Heidari, H. Shifts in hydro climatology of U.S. croplands. J. Ecol. Nat. Resour. 2022, 6, 000270. [Google Scholar] [CrossRef]
- Nover, D.M.; Dogan, M.S.; Ragatz, R.; Booth, L.; Medellín-Azuara, J.; Lund, J.R.; Viers, J.H. Does more storage give California more water? JAWRA J. Am. Water Resour. Assoc. 2019, 55, 759–771. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T. Vulnerability to water shortage under current and future water supply-demand conditions across U.S. river basins. Earth’s Future 2021, 9, e2021EF002278. [Google Scholar] [CrossRef]
- Dallman, S.; Ngo, M.; Laris, P.; Thien, D. Political ecology of emotion and sacred space: The Winnemem Wintu struggles with California water policy. Emot. Sp. Soc. 2013, 6, 33–43. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Wanders, N.; AghaKouchak, A.; Kuil, L.; Rangecroft, S.; Veldkamp, T.I.E.; Garcia, M.; van Oel, P.R.; Breinl, K.; Van Loon, A.F. Water shortages worsened by reservoir effects. Nat. Sustain. 2018, 1, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Kellner, E. The controversial debate on the role of water reservoirs in reducing water scarcity. Wiley Interdiscip. Rev. Water 2021, 8, e1514. [Google Scholar] [CrossRef]
- Vanderkelen, I.; van Lipzig, N.P.M.; Sacks, W.J.; Lawrence, D.M.; Clark, M.P.; Mizukami, N.; Pokhrel, Y.; Thiery, W. Simulating the impact of global reservoir expansion on the present-day climate. J. Geophys. Res. Atmos. 2021, 126, e2020JD034485. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T.; Sharvelle, S. Effects of urban development patterns on municipal water shortage. Front. Water 2021, 3, 694817. [Google Scholar] [CrossRef]
- Heidari, H. An Integrated Understanding of changes in the water budget and climate of various US sectors over the 21st Century. J. Earth Environ. Sci. Res. 2022, 4, 1–4. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T.; Kao, S.-C. Shifts in hydroclimatology of US megaregions in response to climate change. Environ. Res. Commun. 2021, 3, 065002. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T.; Kao, S.C. Assessing shifts in regional hydroclimatic conditions of U.S. river basins in response to climate change over the 21st century. Earth’s Future 2020, 8, e2020EF001657. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Yu, W.; Tian, D.; Bai, P. Response of streamflow to environmental changes: A Budyko-type analysis based on 144 river basins over China. Sci. Total Environ. 2019, 664, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Liu, S.; Zhu, Z.; Xu, Z.; Xiao, Q.; Ju, Q.; Zhang, Y.; Yang, X. Impact of lake/reservoir expansion and shrinkage on energy and water vapor fluxes in the surrounding area. J. Geophys. Res. Atmos. 2020, 125, e2020JD032833. [Google Scholar] [CrossRef]
- Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.; Forman, B. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins. Environ. Res. Lett. 2018, 13, 044026. [Google Scholar] [CrossRef]
- Vogel, R.M.; Bolognese, R.A. Storage-reliability-resilience-yield relations for over-year water supply systems. Water Resour. Res. 1995, 31, 645–654. [Google Scholar] [CrossRef]
- Vogel, R.M.; Lane, M.; Ravindiran, R.S.; Kirshen, P. Storage reservoir behavior in the United States. J. Water Resour. Plan. Manag. 1999, 125, 245–254. [Google Scholar] [CrossRef]
- Wiberg, D.; Strzepek, K.M. Development of Regional Economic Supply Curves for Surface Water Resources and Climate Change Assessments: A Case Study of China; IIASA: Laxenburg, Austria, 2005; ISBN 3704501433. [Google Scholar]
- Boehlert, B.; Solomon, S.; Strzepek, K.M. Water under a changing and uncertain climate: Lessons from climate model ensembles. J. Clim. 2015, 28, 9561–9582. [Google Scholar] [CrossRef]
- Gaupp, F.; Hall, J.; Dadson, S. The role of storage capacity in coping with intra- and inter-annual water variability in large river basins. Environ. Res. Lett. 2015, 10, 3943. [Google Scholar] [CrossRef]
- Chen, B.P.-T.; Chen, C.-S. Feasibility Assessment of a Water Supply Reliability Index for Water Resources Project Planning and Evaluation. Water 2019, 11, 1977. [Google Scholar] [CrossRef]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef] [Green Version]
- Naz, B.S.; Kao, S.C.; Ashfaq, M.; Rastogi, D.; Mei, R.; Bowling, L.C. Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations. Glob. Planet. Chang. 2016, 143, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Oubeidillah, A.A.; Kao, S.C.; Ashfaq, M.; Naz, B.S.; Tootle, G. A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US. Hydrol. Earth Syst. Sci. 2014, 18, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Heidari, H. Vulnerability of U.S. River Basins to Water Shortage over the 21st Century. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2021. [Google Scholar]
- Cherkauer, K.A.; Lettenmaier, D.P. Simulation of spatial variability in snow and frozen soil. J. Geophys. Res. D Atmos. 2003, 108, 8858. [Google Scholar] [CrossRef]
- Brakebill, J.W.; Wolock, D.M.; Terziotti, S.E. Digital hydrologic networks supporting applications related to spatially referenced regression modeling. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 916–932. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP2—A demand-, priority-, and preference-driven water planning model part 1: Model characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Brown, T.C.; Foti, R.; Ramirez, J.A. Projected freshwater withdrawals in the United States under a changing climate. Water Resour. Res. 2013, 49, 1259–1276. [Google Scholar] [CrossRef]
- Diehl, T.H.; Harris, M.A. Withdrawal and Consumption of Water by Thermoelectric Power Plants in the United States, 2010; United States Geological Survey: Reston, VA, USA, 2014; ISBN 9781411338517.
- Foti, R.; Ramirez, J.A.; Brown, T.C. Vulnerability of U.S. Water Supply to Shortage: A Technical Document Supporting the Forest Service 2010 RPA Assessment; U.S. Department of Agriculture: Washington, DC, USA, 2012.
- Jaeger, W.K.; Amos, A.; Bigelow, D.P.; Chang, H.; Conklin, D.R.; Haggerty, R.; Langpap, C.; Moore, K.; Mote, P.W.; Nolin, A.W.; et al. Finding water scarcity amid abundance using human–natural system models. Proc. Natl. Acad. Sci. USA 2017, 114, 11884–11889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gober, P.; Kirkwood, C.W. Vulnerability assessment of climate-induced water shortage in Phoenix. Proc. Natl. Acad. Sci. USA 2010, 107, 21295–21299. [Google Scholar] [CrossRef] [PubMed]
- Yigzaw, W.; Hossain, F. Water sustainability of large cities in the United States from the perspectives of population increase, anthropogenic activities, and climate change. Earth’s Future 2016, 4, 603–617. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Ghanbari, M.; Warziniack, T. A probabilistic approach for characterization of sub-annual socioeconomic drought Intensity-Duration-Frequency (IDF) relationships in a changing environment. Water 2020, 12, 1522. [Google Scholar] [CrossRef]
- Heidari, H.; Warziniack, T.; Brown, T.C.; Arabi, M. Impacts of climate change on hydroclimatic conditions of U.S. national forests and grasslands. Forests 2021, 12, 139. [Google Scholar] [CrossRef]
- Shahid, M.; Rahman, K.U. Identifying the annual and seasonal trends of hydrological and climatic variables in the Indus Basin Pakistan. Asia-Pacific J. Atmos. Sci. 2021, 57, 191–205. [Google Scholar] [CrossRef]
- Todd, C.R.; Lintermans, M.; Raymond, S.; Ryall, J. Assessing the impacts of reservoir expansion using a population model for a threatened riverine fish. Ecol. Indic. 2017, 80, 204–214. [Google Scholar] [CrossRef]
- Morris, G.L.; Fan, J. Design and management of dams, reservoirs, watersheds for sustainable use; a reservoir sedimentation. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari, H.; Francois, B.; Brown, C. Possibility Assessment of Reservoir Expansion in the Conterminous United States. Hydrology 2022, 9, 175. https://doi.org/10.3390/hydrology9100175
Heidari H, Francois B, Brown C. Possibility Assessment of Reservoir Expansion in the Conterminous United States. Hydrology. 2022; 9(10):175. https://doi.org/10.3390/hydrology9100175
Chicago/Turabian StyleHeidari, Hadi, Baptiste Francois, and Casey Brown. 2022. "Possibility Assessment of Reservoir Expansion in the Conterminous United States" Hydrology 9, no. 10: 175. https://doi.org/10.3390/hydrology9100175
APA StyleHeidari, H., Francois, B., & Brown, C. (2022). Possibility Assessment of Reservoir Expansion in the Conterminous United States. Hydrology, 9(10), 175. https://doi.org/10.3390/hydrology9100175