Rainwater Harvesting Potentials in Commercial Buildings in Dhaka: Reliability and Economic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Water Balance Model
2.4. Economic Analysis
2.5. Uncertainities, Shortcomings, and Scope of the Study
3. Results and Discussion
3.1. Reliability Analysis
3.2. Overflow Ratio
3.3. Water Use Pattern
3.4. Economic Analysis
3.5. Payback Period
3.6. Benefit–Cost Ratio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DWASA. Dhaka Water Supply and Sewerage Authority (DWASA); Annual Report 2019–2020; DWASA: Dhaka, Bangladesh, 2019. [Google Scholar]
- Okubo, K.; Alam-Khan, M.S.; Hassan, M.Q. Hydrological processes of adsorption, sedimentation, and infiltration into the lakebed during the 2004 urban flood in Dhaka city, Bangladesh. Environ. Earth Sci. 2009, 60, 95–106. [Google Scholar] [CrossRef]
- Alam-Imteaz, M.; Moniruzzaman, M. Potential impacts of climate change on future rainwater tank outcomes: A case study for Sydney. J. Clean. Prod. 2020, 273, 123095. [Google Scholar] [CrossRef]
- Ali, S.; Zhang, S.; Yue, T. Environmental and economic assessment of rainwater harvesting systems under five climatic conditions of Pakistan. J. Clean. Prod. 2020, 259, 120829. [Google Scholar] [CrossRef]
- Santos, C.S.; Imteaz, M.; Ghisi, E.; Matos, C. The effect of climate change on domestic Rainwater Harvesting. Sci. Total Environ. 2020, 729, 138967. [Google Scholar] [CrossRef] [PubMed]
- Marinoski, A.K.; Ghisi, E. Environmental performance of hybrid rainwater-greywater systems in residential buildings. Resour. Conserv. Recycl. 2019, 144, 100–114. [Google Scholar] [CrossRef]
- Wurthmann, K. Assessing storage requirements, water and energy savings, and costs associated with a residential rainwater harvesting system deployed across two counties in Southeast Florida. J. Environ. Manag. 2019, 252, 109673. [Google Scholar] [CrossRef]
- Marinoski, A.K.; Rupp, R.F.; Ghisi, E. Environmental benefit analysis of strategies for potable water savings in residential buildings. J. Environ. Manag. 2018, 206, 28–39. [Google Scholar] [CrossRef]
- Bashar, M.Z.I.; Karim, R.; Alam Imteaz, M. Reliability and economic analysis of urban rainwater harvesting: A comparative study within six major cities of Bangladesh. Resour. Conserv. Recycl. 2018, 133, 146–154. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Jing, X.; Wang, Y.; Wang, Y.; Yue, T. Water saving efficiency and reliability of rainwater harvesting systems in the context of climate change. J. Clean. Prod. 2018, 196, 1341–1355. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Imteaz, M.A. Generalized equations, climatic and spatial variabilities of potential rainwater savings: A case study for Sydney. Resour. Conserv. Recycl. 2017, 125, 139–156. [Google Scholar] [CrossRef]
- Khan, S.T.; Baksh, A.A.; Papon, T.I.; Ali, M.A. Rainwater Harvesting System: An Approach for Optimum Tank Size Design and Assessment of Efficiency. Int. J. Environ. Sci. Dev. 2017, 8, 37–43. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, S.; Zhang, J.; Wang, Y.; Wang, Y. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China. Resour. Conserv. Recycl. 2017, 126, 74–85. [Google Scholar] [CrossRef]
- Muklada, H.; Gilboa, Y.; Friedler, E.F. Stochastic modelling of the hydraulic performance of an onsite rainwater harvesting system in Mediterranean climate. Water Supply 2016, 16, 1614–1623. [Google Scholar] [CrossRef] [Green Version]
- Imteaz, M.A.; Paudel, U.; Matos, C.; Ahsan, A. Generalised equations for rainwater tank outcomes under different climate conditions: A case study for Adelaide. Int. J. Water 2016, 10, 301–314. [Google Scholar] [CrossRef]
- Karim, R.; Bashar, M.Z.I.; Alam-Imteaz, M. Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh. Resour. Conserv. Recycl. 2015, 104, 61–67. [Google Scholar] [CrossRef]
- Rahman, A.; Keane, J.; Alam-Imteaz, M. Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits. Resour. Conserv. Recycl. 2012, 61, 16–21. [Google Scholar] [CrossRef]
- Alam-Imteaz, M.; Shanableh, A.; Rahman, A.; Ahsan, A. Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia. Resour. Conserv. Recycl. 2011, 55, 1022–1029. [Google Scholar] [CrossRef]
- Jianbing, Z.; Changming, L.; Hongxing, Z. Cost–benefit analysis for urban rainwater harvesting in Beijing. Water Int. 2010, 35, 195–209. [Google Scholar] [CrossRef]
- Matos, C.; Bentes, I.; Santos, C.; Alam-Imteaz, M.; Pereira, S. Economic Analysis of a Rainwater Harvesting System in a Commercial Building. Water Resour. Manag. 2015, 29, 3971–3986. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.M.; Ingwersen, W.W.; Sojka, S. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. J. Clean. Prod. 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.F.; de Busk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.; Memon, F.; Butler, D. Performance of a large building rainwater harvesting system. Water Res. 2012, 46, 5127–5134. [Google Scholar] [CrossRef] [PubMed]
- BNBC. Bangladesh National Building Code, 2014; Housing and Building Research Institute; Ministry of Housing and Public Works: Dhaka, Bangladesh, 2014. [Google Scholar]
- Haq, K.A. Water Management in Dhaka. Int. J. Water Resour. Dev. 2006, 22, 291–311. [Google Scholar] [CrossRef]
- Population Density by City. Available online: https://ourworldindata.org/grapher/population-density-by-city?time=latest (accessed on 2 January 2021).
- Bird, J.; Li, Y.; Rahman, H.Z.; Rama, M.; Venables, A.J. Toward Great Dhaka: A New Urban Development Paradigm Eastward; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- World Population Review. Available online: https://worldpopulationreview.com/world-cities/dhaka-population (accessed on 2 January 2021).
- DWASA. Dhaka Water Supply and Sewerage Authority (DWASA); Annual Report, 2018–2019; DWASA: Dhaka, Bangladesh, 2018. [Google Scholar]
- Anwar, M.S. Potential for Water Conservation in Dhaka City. Master’s Thesis, Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, 2010. [Google Scholar]
- Alam-Imteaz, M.; Rahman, A.; Ahsan, A. Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne. Resour. Conserv. Recycl. 2012, 66, 1–7. [Google Scholar] [CrossRef]
- Alam-Imteaz, M.; Adeboye, O.B.; Rayburg, S.; Shanableh, A. Rainwater harvesting potential for southwest Nigeria using daily water balance model. Resour. Conserv. Recycl. 2012, 62, 51–55. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Karki, R.; Shamseldin, A.; Matos, C. eTank and contemporary online tools for rainwater tank outcomes analysis. Int. J. Comput. Aided Eng. Technol. 2017, 9, 372–384. [Google Scholar] [CrossRef]
- Mehrabadi, M.H.R.; Saghafian, B.; Haghighi, F. Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions. Resour. Conserv. Recycl. 2013, 73, 86–93. [Google Scholar] [CrossRef]
- Khastagir, A.; Jayasuriya, N. Optimal sizing of rainwater tanks for domestic water conservation. J. Hydrol. 2010, 381, 181–188. [Google Scholar] [CrossRef]
- Lade, O.; Oloke, D.; Chinyio, E.; Fullen, M. Use of multi-Criteria decision analysis methods for water supply problems: A Framework for improved rainwater harvesting. J. Envrion. Sci. Eng. A 2012, 1, 909–917. [Google Scholar]
Building Names | Catchment Area (m2) | Commercial Activities | Total Floors | Total Occupants | Tank Size (m3) | Installation Costs (BDT) * | Maintenance Costs (BDT/Year) ** |
---|---|---|---|---|---|---|---|
Evergreen Meher Tower | 315 | Offices, restaurant | 2 Basement +14 | 294 | 162 | 30,000 | 10,000 |
Green Landmark Tower | 452 | Offices, doctors’ offices | 2 Basement +13 | 392 | 109 | 40,000 | 13,000 |
Green Satmahal | 532 | Offices, bank, and restaurant | 2 Basement +14 | 496 | 114 | 45,000 | 15,000 |
Green City Regency | 562 | Offices, bank, and food court | 2 Basement +22 | 824 | 324 | 50,000 | 18,000 |
Green City Edge | 727 | Offices, bank, and restaurant | 2 Basement +15 | 727 | 566 | 60,000 | 20,000 |
Catchment Area (m2) | Climatic Condition | Annual Savings | % of Water Supplemented from Rainwater | |
---|---|---|---|---|
Water (kl/Year) | Energy (kWh/Year) | |||
315 | Wet year | 817.90 | 245.37 | 24.90 |
Normal year | 579.47 | 173.84 | 17.64 | |
Dry year | 331.41 | 99.42 | 10.09 | |
452 | Wet year | 1173.62 | 352.09 | 26.80 |
Normal year | 831.50 | 249.45 | 18.98 | |
Dry year | 475.55 | 142.67 | 10.86 | |
532 | Wet year | 1381.34 | 414.40 | 25.23 |
Normal year | 978.67 | 293.60 | 17.88 | |
Dry year | 559.72 | 167.92 | 10.22 | |
562 | Wet year | 1459.23 | 437.77 | 16.00 |
Normal year | 1033.86 | 310.16 | 11.33 | |
Dry year | 591.28 | 177.38 | 6.48 | |
727 | Wet year | 1887.66 | 566.30 | 23.50 |
Normal year | 1337.39 | 401.22 | 16.65 | |
Dry year | 764.88 | 229.46 | 9.53 |
Catchment Area (m2) | Annual Monetary Savings Water + Energy, (BDT/Year) | Payback Period Water + Energy, (Year) | Benefit–Cost Ratio Water + Energy |
---|---|---|---|
315 | 22,057 | 3.75 | 1.5 |
452 | 31,650 | 3.25 | 1.7 |
532 | 37,252 | 3.00 | 1.7 |
562 | 39,352 | 2.75 | 1.5 |
727 | 50,906 | 2.50 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, M.R.; Sakib, B.M.S.; Sakib, S.S.; Imteaz, M.A. Rainwater Harvesting Potentials in Commercial Buildings in Dhaka: Reliability and Economic Analysis. Hydrology 2021, 8, 9. https://doi.org/10.3390/hydrology8010009
Karim MR, Sakib BMS, Sakib SS, Imteaz MA. Rainwater Harvesting Potentials in Commercial Buildings in Dhaka: Reliability and Economic Analysis. Hydrology. 2021; 8(1):9. https://doi.org/10.3390/hydrology8010009
Chicago/Turabian StyleKarim, Md. Rezaul, B. M. Sadman Sakib, Sk. Sadman Sakib, and Monzur Alam Imteaz. 2021. "Rainwater Harvesting Potentials in Commercial Buildings in Dhaka: Reliability and Economic Analysis" Hydrology 8, no. 1: 9. https://doi.org/10.3390/hydrology8010009
APA StyleKarim, M. R., Sakib, B. M. S., Sakib, S. S., & Imteaz, M. A. (2021). Rainwater Harvesting Potentials in Commercial Buildings in Dhaka: Reliability and Economic Analysis. Hydrology, 8(1), 9. https://doi.org/10.3390/hydrology8010009