Impact of Urbanization on Large Wood Sizes and Associated Recruitment Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. In-stream surveys
2.2.2. LW Recruitment Zone Distribution
2.2.3. Correlation Analysis
3. Results
3.1. In-stream Surveys
3.2. LW Recruitment Zone Distribution
3.3. Correlation Analysis.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roth, N.E.; Allan, J.D.; Erickson, D.L. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landsc. Ecol. 1996, 11, 141–156. [Google Scholar] [CrossRef]
- Angradi, T.R.; Schweiger, E.W.; Bolgrien, D.W.; Ismert, P.; Selle, T. Bank stabilization, riparian land use and the distribution of large woody debris in a regulated reach of the upper Missouri River, North Dakota, USA. River Res. Appl. 2004, 20, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Costigan, K.H.; Daniels, M.D. Spatial pattern, density and characteristics of large wood in Connecticut Streams: Implications for stream restoration priorities in southern New England. River Res. Appl. 2013, 29, 161–171. [Google Scholar] [CrossRef]
- Wohl, E.; Bledsoe, B.P.; Fausch, K.D.; Kramer, N.; Bestgen, K.R.; Gooseff, M.N. Management of Large Wood in Streams: An Overview and Proposed Framework for Hazard Evaluation. J. Am. Water Resour. Assoc. 2016, 52, 315–335. [Google Scholar] [CrossRef]
- Kail, J.; Hering, D.; Muhar, S.; Gerhard, M.; Preis, S. The use of large wood in stream restoration: Experiences from 50 projects in Germany and Austria. J. Appl. Ecol. 2007, 44, 1145–1155. [Google Scholar] [CrossRef]
- Latterell, J.J.; Naiman, R.J. Sources and dynamics of large logs in a temperate floodplain river. Ecol. Appl. 2007, 17, 1127–1141. [Google Scholar] [CrossRef] [PubMed]
- Magilligan, F.J.; Nislow, K.H.; Fischer, G.B.; Wright, J.; Mackey, G.; Laser, M. The geomorphic function and characteristics of large woody debris in low-gradient rivers, coastal Maine, USA. Geomorphology 2008, 97, 467–482. [Google Scholar] [CrossRef]
- Lassettre, N.S.; Kondolf, G.M. Large woody debris in urban stream channels: Redefining the problem. River Res. Appl. 2012, 28, 1477–1487. [Google Scholar] [CrossRef]
- Lienkaemaper, G.W.; Swanson, F.J. Dynamics of large woody debris in streams in old growth Douglas-fir forests. Can. J. For. Res. 1987, 17, 150–156. [Google Scholar] [CrossRef]
- Bahuguna, D.; Mitchell, S.J.; Miquelajauregui, Y. Windthrow and recruitment of large woody debris in riparian stands. For. Ecol. Manag. 2010, 259, 2048–2055. [Google Scholar] [CrossRef]
- Daniels, M.D. Distribution and dynamics of large woody debris and organic matter in a low-energy meandering stream. Geomorphology 2006, 77, 286–298. [Google Scholar] [CrossRef]
- Kasprak, A.; Magilligan, F.J.; Nislow, K.H.; Snyder, N.P. A LIDAR-derived evaluation of watershed-scale large woody debris sources and recruitment mechanisms: Coastal Maine, USA. River Res. Appl. 2012, 28, 1462–1476. [Google Scholar] [CrossRef] [Green Version]
- Tecle, A.; Bojonell, H.A.; King, J.G. Effects of harvesting headwater forest watersheds on woody debris and stream channel characteristics. J. Ariz. Nev. Acad. Sci. 2001, 33, 98–112. [Google Scholar]
- Wohl, E.; Scott, D.N. Wood and sediment storage and dynamics in river corridors. Earth Surf. Process. Landf. 2017, 42, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, A.H.; Cardenas, M.B. Effect of experimental wood addition on hyporheic exchange and thermal dynamics in a losing meadow stream. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Wagenhoff, A.; Olsen, D.A. Does large woody debris affect the hyporheic ecology of a small New Zealand pasture stream? N. Z. J. Mar. Freshw. Res. 2004, 48, 547–559. [Google Scholar] [CrossRef]
- Keller, E.A.; Swanson, F.J. Effects of large organic material on channel form and fluvial processes. Earth Surf. Process. 1979, 4, 361–380. [Google Scholar] [CrossRef]
- Mao, L.; Ugalde, F.; Iroumé, A.; Lacy, S.N. The Effects of Replacing Native Forest on the Quantity and Impacts of In-Channel Pieces of Large Wood in Chilean Streams. River Res. Appl. 2017, 33, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Guyette, R.P.; Cole, W.G.; Dey, D.C.; Muzika, R.M. Perspectives on the age and distribution of large wood in riparian carbon pools. Can. J. Fish. Aquat. Sci. 2002, 59, 578–585. [Google Scholar] [CrossRef]
- Madej, M.A. Redwoods, restoration, and implications for carbon budgets. Geomorphology 2010, 116, 264–273. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Abbe, T.B. Influence of logjam-formed hard points on the formation of valley-bottom landforms in an old-growth forest valley, Queets River, Washington, USA. Quat. Res. 2006, 65, 147–155. [Google Scholar] [CrossRef]
- Wohl, E. A legacy of absence: Wood removal in US rivers. Prog. Phys. Geogr. 2014, 38, 637–663. [Google Scholar] [CrossRef]
- Wang, Y.C.; Larsen, C.P.S.; Kronenfeld, B.J. Effects of clearance and fragmentation on forest compositional change and recovery after 200 years in western New York. Plant Ecol. 2010, 208, 245–258. [Google Scholar] [CrossRef]
- Comiti, F.; Andreolia, A.; Lenzia, M.A.; Mao, L. Spatial density and characteristics of woody debris in five mountain rivers of the Dolomites. Geomorphology 2006, 78, 44–63. [Google Scholar] [CrossRef]
- Cordova, J.M.; Rosi-Marshall, E.J.; Yamamuro, A.M.; Lamberti, G.A. Quantity, controls and functions of large woody debris in Midwestern USA streams. River Res. Appl. 2007, 23, 21–33. [Google Scholar] [CrossRef]
- Iroumé, A.; Mao, L.; Ulloa, H.; Ruz, C.; Andreoli, A. Large wood volume and longitudinal distribution in channel segments draining catchments with different land use, Chile. Open J. Mod. Hydrol. 2014, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Rinella, D.J.; Booz, M.; Bogan, D.L.; Boggs, K.; Sturdy, M.; Rinella, M.J. Large woody debris and salmonid habitat in the Anchor River basin, Alaska, following an extensive spruce beetle (Dendroctonus rufipennis) outbreak. Northwest Sci. 2009, 83, 57–69. [Google Scholar] [CrossRef]
- Buffalo Niagara Waterkeeper. Healthy Niagara: Niagara River Management Plan (Phase 1). Available online: https://bnwaterkeeper.org/projects/healthyniagara (accessed on 13 October 2020).
- Smith, M.P.; Schiff, R.; Olivero, A.; MacBroom, J.G. The Active River Area: A Conservation Framework for Protecting Rivers and Streams; The Nature Conservancy: Boston, MA, USA, 2008. [Google Scholar]
- Wallerstein, N.P.; Thorne, C.R. Influence of large woody debris on morphological evolution of incised, sand-bed channels. Geomorphology 2004, 57, 53–73. [Google Scholar] [CrossRef]
- USDA-NRCS Geospatial Data Gateway. Available online: https://datagateway.nrcs.usda.gov (accessed on 13 October 2020).
- Wang, Y.C.; Kronenfeld, B.J.; Larsen, C.P.S. Spatial distribution of forest landscape change in western New York from presettlement to the present. Can. J. For. Res. 2009, 39, 76–88. [Google Scholar] [CrossRef]
- Larsen, C.P.S.; Kronenfeld, B.J.; Wang, Y.C. Forest composition: More altered by future climate change than by Euro-American settlement in western New York and Pennsylvania. Phys. Geogr. 2012, 33, 3–20. [Google Scholar] [CrossRef]
- Malanson, G.P. Riparian Landscapes; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Orewole, M.O.; Alaigba, D.B.; Oviasu, O. Riparian corridors encroachment and flood risk assessment in Ile-Ife: A GIS perspective. Open Trans. Geosci. 2015, 2. [Google Scholar] [CrossRef]
- Ouyang, W.; Song, K.; Wang, X.; Hao, F. Non-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamics. Ecol. Indic. 2014, 45, 579–589. [Google Scholar] [CrossRef]
- Tournebize, J.; Chaumont, C.; Mander, U. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 2017, 103, 415–425. [Google Scholar] [CrossRef]
- Kasahara, T.; Hill, A.R. Effects of riffle-step restoration on hyporheic zone chemistry in N-rich lowland streams. Can. J. Fish. Aquat. Sci. 2005, 63, 120–133. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Sudduth, E.B.; Palmer, M.A.; Allan, J.D.; Meyer, J.L.; Alexander, G.; Follstad-Shah, J.; Hassett, B.; Jenkinson, R.; Lave, R.; et al. Restoring rivers one reach at a time: Results from a survey of U.S. river restoration practitioners. Restor. Ecol. 2007, 15, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Craig, L.S.; Palmer, M.A.; Richardson, D.C.; Filoso, S.; Bernhardt, E.S.; Bledsoe, B.P. Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ. 2008, 6, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Passeport, E.; Vidon, P.; Forshay, K.; Harris, L.; Lazar, J.; Kaushal, S.S.; Kellogg, D.Q.; Mayer, P.M.; Stander, E. Ecological engineering practices for the reduction of non-point source N in human influenced landscapes: A guide for watershed managers. Environ. Manag. J. 2013, 51, 392–413. [Google Scholar] [CrossRef]
- Gallisdorfer, M.S.; Bennett, S.J.; Atkinson, J.F.; Ghaneeizad, S.M.; Brooks, A.P.; Simon, A.; Langendoen, E.J. Physical Scale Model Designs for Engineered Log Jams in Rivers. J. Hydro-Environ. Res. 2014, 8, 115–128. [Google Scholar] [CrossRef]
Watershed Area (km2) | Pop. Density (ppl./km2) | % Agr. | % Forested | % Develop | % Wetland | % Open Water | % Imperv. Cover | LW Recruitment Zone (km2) | |
---|---|---|---|---|---|---|---|---|---|
Upper Tonawanda Creek | 515 | 55 | 50 | 34 | 8 | 5 | 3 | 3.3 | 120 |
Murder Creek | 189 | 48 | 51 | 25 | 4 | 17 | 3 | 3.3 | 47 |
Middle Tonawanda Creek | 320 | 54 | 54 | 22 | 5 | 17 | 2 | 3.4 | 59 |
Ellicott Creek | 311 | 602 | 25 | 23 | 37 | 11 | 4 | 14.7 | 58 |
Lower Tonawanda Creek | 319 | 307 | 39 | 23 | 22 | 11 | 5 | 8.4 | 33 |
Niagara River | 397 | 905 | 18 | 15 | 51 | 6 | 10 | 23.3 | 37 |
Aquatic Habitat Viability Rating | Identified Threats | |
---|---|---|
Upper Tonawanda Creek | Good | Lack of riparian buffers, agricultural runoff, barriers to fish movement |
Murder Creek | Good | Lack of riparian buffers, runoff, failing septic systems (nutrients) |
Middle Tonawanda Creek | Fair-good | Lack of riparian buffers, runoff |
Ellicott Creek | Fair | Channelization, lack of riparian buffers, runoff |
Lower Tonawanda Creek | Fair | Lack of riparian buffers, runoff, channelization, invasive species |
Niagara River | Poor-fair | Erosion, bank failure, siltation, lack of riparian buffers |
Total LW Recruitment Zone (km2) | Forested LW Recruitment Zone (km2) | Percent Forested LW Recruitment Zone | |
---|---|---|---|
Upper Tonawanda Creek | 62.5 | 17.1 | 27.3 |
Murder Creek | 33.9 | 2.9 | 8.6 |
Middle Tonawanda Creek | 38 | 5.1 | 13.4 |
Ellicott Creek | 25.8 | 3.8 | 14.6 |
Lower Tonawanda Creek | 22.9 | 2.3 | 10 |
Niagara River | 21.9 | 1.5 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, M.T.; Vidon, P.G. Impact of Urbanization on Large Wood Sizes and Associated Recruitment Zones. Hydrology 2020, 7, 89. https://doi.org/10.3390/hydrology7040089
Allen MT, Vidon PG. Impact of Urbanization on Large Wood Sizes and Associated Recruitment Zones. Hydrology. 2020; 7(4):89. https://doi.org/10.3390/hydrology7040089
Chicago/Turabian StyleAllen, Matthew T., and Philippe G. Vidon. 2020. "Impact of Urbanization on Large Wood Sizes and Associated Recruitment Zones" Hydrology 7, no. 4: 89. https://doi.org/10.3390/hydrology7040089
APA StyleAllen, M. T., & Vidon, P. G. (2020). Impact of Urbanization on Large Wood Sizes and Associated Recruitment Zones. Hydrology, 7(4), 89. https://doi.org/10.3390/hydrology7040089