Using Stable Isotopes to Determine the Water Balance of Utah Lake (Utah, USA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isotope Analyses
2.2. GIS Analyses
2.3. Calculation of Utah Lake Hydrological Parameters
3. Results and Discussion
4. Conclusions
- (1)
- Streamflow in the inlets (i.e., in the Spanish Fork River, Hobble Creek, Provo River, and American Fork River) is dominated by groundwater. In turn, groundwater is recharged by winter precipitation.
- (2)
- No significant evaporation occurs in the inlets or in the artificial reservoirs of the Central Utah Water Project (i.e., Deer Creek, Jordanelle, Strawberry, Currant Creek, Upper Stillwater, and Starvation reservoirs).
- (3)
- Utah Lake is affected by significant evaporation.
- (4)
- Utah Lake is well mixed vertically but poorly mixed horizontally.
- (5)
- In Utah Lake, during the period of April to November, ~47% of the total water inflow is lost by evaporation.
- (6)
- The residence time of water in Utah Lake is ~0.5 calendar years.
- (7)
- The volume of groundwater inflow to Utah Lake during the period April to November appears to be ~700 million m3. Groundwater inflow might contribute for the ~70% of the total water input to the lake. Utah Lake might therefore be a groundwater-dominated lake.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- PSOMAS. Utah Lake TMDL: Pollutant Loading Assessment & Designated Beneficial Use Impairement Assessment; PSOMAS: Los Angeles, CA, USA, 2007. [Google Scholar]
- Brimhall, W.H.; Merritt, L.B. Geology of Utah Lake: Implications for resource management. Great Basin Nat. Mem. 1981, 5, 24–42. [Google Scholar]
- Fuhriman, D.K.; Merritt, L.B.; Miller, A.W.; Stock, H.S. Hydrology and water quality of Utah Lake. Great Basin Nat. Mem. 1981, 5, 43–67. [Google Scholar]
- US Department of the Interior. Utah Lake Drainage Basin Water Delivery System. Available online: https://www.cupcao.gov/bonneville/uldbwds.html (accessed on 17 April 2020).
- Utah Division of Water Rights. Utah Lake Interim Water Distribution Plan. Available online: https://www.waterrights.utah.gov/wrinfo/policy/ut_lake/plan.htm (accessed on 20 April 2020).
- Baskin, R.L.; Spangler, L.E.; Holmes, W.F. Physical Characteristics and Quality of Water from Selected Springs and Wells in the Lincoln Point-Bird Island Area, Utah Lake, Utah; US Department of the Interior, US Geological Survey: Reston, WV, USA, 1994; Volume 93.
- Dustin, J.D. Hydrogeology of Utah Lake with emphasis on Goshen Bay: Provo, Utah. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 1978. [Google Scholar]
- Carling, G.T.; Tingey, D.G.; Fernandez, D.P.; Nelson, S.T.; Aanderud, Z.T.; Goodsell, T.H.; Chapman, T.R. Evaluating natural and anthropogenic trace element inputs along an alpine to urban gradient in the Provo River, Utah, USA. Appl. Geochem. 2015, 63, 398–412. [Google Scholar] [CrossRef] [Green Version]
- Randall, M.C.; Carling, G.T.; Dastrup, D.B.; Miller, T.; Nelson, S.T.; Rey, K.A.; Hansen, N.C.; Bickmore, B.R.; Aanderud, Z.T. Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake. PLoS ONE 2019, 14, e0212238. [Google Scholar] [CrossRef]
- MacDonald, G.M. Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beniston, M.; Stoffel, M. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 2014, 493, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Merritt, L. Utah Lake, a Few Considerations. Unpubl. Lett. 3p 2004. [Google Scholar]
- Brooks, J.R.; Gibson, J.J.; Birks, S.J.; Weber, M.H.; Rodecap, K.D.; Stoddard, J.L. Stable isotope estimates of evaporation: Inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol. Oceanogr. 2014, 59, 2150–2165. [Google Scholar] [CrossRef] [Green Version]
- Jasechko, S.; Gibson, J.J.; Edwards, T.W. Stable isotope mass balance of the Laurentian Great Lakes. J. Great Lakes Res. 2014, 40, 336–346. [Google Scholar] [CrossRef]
- Gibson, J.; Reid, R. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. J. Hydrol. 2014, 519, 2148–2164. [Google Scholar]
- Gibson, J.; Birks, S.; Jeffries, D.; Yi, Y. Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys. J. Hydrol. 2017, 544, 500–510. [Google Scholar]
- Xiao, W.; Wen, X.; Wang, W.; Xiao, Q.; Xu, J.; Cao, C.; Xu, J.; Hu, C.; Shen, J.; Liu, S. Spatial distribution and temporal variability of stable water isotopes in a large and shallow lake. Isot. Environ. Health Stud. 2016, 52, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Sacks, L.A.; Lee, T.M.; Swancar, A. The suitability of a simplified isotope-balance approach to quantify transient groundwater–lake interactions over a decade with climatic extremes. J. Hydrol. 2014, 519, 3042–3053. [Google Scholar] [CrossRef] [Green Version]
- Krabbenhoft, D.P.; Bowser, C.J.; Anderson, M.P.; Valley, J.W. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method. Water Resour. Res. 1990, 26, 2445–2453. [Google Scholar] [CrossRef]
- Isokangas, E.; Rozanski, K.; Rossi, P.; Ronkanen, A.-K.; Kløve, B. Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach. Hydrol. Earth Syst. Sci. 2015, 19, 1247–1262. [Google Scholar] [CrossRef] [Green Version]
- Yehdeghoa, B.; Rozanski, K.; Zojer, H.; Stichler, W. Interaction of dredging lakes with the adjacentgroundwater field: An isotope study. J. Hydrol. 1997, 192, 247–270. [Google Scholar] [CrossRef]
- Elmarami, H.; Meyer, H.; Massmann, G. Combined approach of isotope mass balance and hydrological water balance methods to constrain the sources of lake water as exemplified on the small dimictic lake Silbersee, northern Germany. Isot. Environ. Health Stud. 2017, 53, 184–197. [Google Scholar] [CrossRef]
- Longinelli, A.; Stenni, B.; Genoni, L.; Flora, O.; Defrancesco, C.; Pellegrini, G. A stable isotope study of the Garda lake, northern Italy: Its hydrological balance. J. Hydrol. 2008, 360, 103–116. [Google Scholar] [CrossRef]
- Pham, S.V.; Leavitt, P.R.; McGowan, S.; Peres-Neto, P. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnol. Oceanogr. 2008, 53, 728–742. [Google Scholar] [CrossRef] [Green Version]
- Romo, S.; Soria, J.; Fernandez, F.; Ouahid, Y.; Baron-Sola, A. Water residence time and the dynamics of toxic cyanobacteria. Freshw. Biol. 2013, 58, 513–522. [Google Scholar] [CrossRef]
- Gröning, M.; Lutz, H.O.; Roller-Lutz, Z.; Kralik, M.; Gourcy, L.; Pöltenstein, L. A simple rain collector preventing water re-evaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples. J. Hydrol. 2012, 448–449, 195–200. [Google Scholar]
- NCDC. Surface Data-Global Summary of the Day:1957–2009. Available online: http://www.ncdc.noaa.gov/ (accessed on 21 April 2020).
- United States Geological Survey. USGS Water Data for the Nation. Available online: https://waterdata.usgs.gov/nwis (accessed on 17 April 2020).
- Utah, T.U.o. Mesowest. Available online: https://mesowest.utah.edu/index.html (accessed on 17 April 2020).
- Wawro, P.R. Utah Lake Bathymetric Contour Lines. Available online: http://www.arcgis.com/home/item.html?id=03c0d9b15175479594acca6c6527fad4 (accessed on 17 April 2020).
- Topography, O. State of Utah Acquired LiDAR Data—Wasatch Front. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.122014.26912.1 (accessed on 17 April 2020).
- Dincer, T. The use of oxygen 18 and deuterium concentrations in the water balance of lakes. Water Resour. Res. 1968, 4, 1289–1306. [Google Scholar] [CrossRef]
- Gibson, J.J.; Birks, S.J.; Yi, Y. Stable isotope mass balance of lakes: A contemporary perspective. Quat. Sci. Rev. 2016, 131, 316–328. [Google Scholar] [CrossRef]
- Horita, J.; Wesolowski, D.J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 1994, 58, 3425–3437. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Simplified versions for the Penman evaporation equation using routine weather data. J. Hydrol. 2006, 331, 690–702. [Google Scholar] [CrossRef]
- Craig, H.; Gordon, L.I. Deuterium and Oxygen-18 Isotope Variations in the Ocean and Marine Atmosphere; Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare: Pisa, Italy, 1965; p. 222. [Google Scholar]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. Available online: http://www.iaea.org/water (accessed on 28 August 2020).
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Hayes, J. Fractionation et al.: An introduction to isotopic measurements and terminology. Spectra 1982, 8, 3–8. [Google Scholar]
- Wilson, K.B.; Baldocchi, D.D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 2000, 100, 1–18. [Google Scholar] [CrossRef]
- Stahl, M.O.; Gehring, J.; Jameel, Y. Isotopic variation in groundwater across the conterminous United States–Insight into hydrologic processes. Hydrol. Process. 2020, 34, 3506–3523. [Google Scholar] [CrossRef]
- Winograd, I.J.; Riggs, A.C.; Coplen, T.B. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeol. J. 1998, 6, 77–93. [Google Scholar] [CrossRef]
- Bowen, G. The online isotopes in precipitation calculator. Version OIPC 3.1. 2018. Available online: https://wateriso.utah.edu/waterisotopes/pages/data_access/form.html (accessed on 22 October 2020).
- McMahon, P.; Plummer, L.; Böhlke, J.; Shapiro, S.; Hinkle, S. A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeol. J. 2011, 19, 779. [Google Scholar] [CrossRef]
- Anderson, P.B. Hydrogeology of Recharge Areas and Water Quality of the Principal Aquifers Along the Wasatch Front and Adjacent Areas, Utah; US Department of the Interior, US Geological Survey: Reston, WV, USA, 1994; Volume 93.
- Sanjinez Guzman, V.A.; Langevin, C.P.; Richards, R.; Stockfleth, C.T.; Ulibarri, M.J.; Emerman, S.H. Hydrology of Big Spring, Fairfield, Utah: A Prelude to Native American Archaeology. In Proceedings of the GSA Annual Meeting 2017, Seattle, WA, USA, 22–25 October 2017. [Google Scholar]
- Henderson, A.K.; Shuman, B.N. Hydrogen and oxygen isotopic compositions of lake water in the western United States. GSA Bull. 2009, 121, 1179–1189. [Google Scholar] [CrossRef]
- Fraterrigo, J.M.; Downing, J.A. The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems 2008, 11, 1021–1034. [Google Scholar] [CrossRef]
- Anderson, N.J.; Harriman, R.; Ryves, D.; Patrick, S. Dominant factors controlling variability in the ionic composition of West Greenland lakes. Arct. Antarct. Alp. Res. 2001, 33, 418–425. [Google Scholar] [CrossRef]
- Wolfe, B.B.; Karst-Riddoch, T.L.; Hall, R.I.; Edwards, T.W.; English, M.C.; Palmini, R.; McGowan, S.; Leavitt, P.R.; Vardy, S.R. Classification of hydrological regimes of northern floodplain basins (Peace–Athabasca Delta, Canada) from analysis of stable isotopes (δ18O, δ2H) and water chemistry. Hydrol. Process. Int. J. 2007, 21, 151–168. [Google Scholar] [CrossRef]
- Sokal, M.A.; Hall, R.I.; Wolfe, B.B. Relationships between hydrological and limnological conditions in lakes of the Slave River Delta (NWT, Canada) and quantification of their roles on sedimentary diatom assemblages. J. Paleolimnol. 2008, 39, 533–550. [Google Scholar] [CrossRef]
- Skrzypek, G.; Mydłowski, A.; Dogramaci, S.; Hedley, P.; Gibson, J.J.; Grierson, P.F. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J. Hydrol. 2015, 523, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Mercer, J.J.; Liefert, D.T.; Williams, D.G. Atmospheric vapour and precipitation are not in isotopic equilibrium in a continental mountain environment. Hydrol. Process. 2020, 34, 3078–3101. [Google Scholar] [CrossRef]
- Mayr, C.; Lücke, A.; Stichler, W.; Trimborn, P.; Ercolano, B.; Oliva, G.; Ohlendorf, C.; Soto, J.; Fey, M.; Haberzettl, T. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H). J. Hydrol. 2007, 334, 53–63. [Google Scholar] [CrossRef]
- Fiorella, R.P.; West, J.B.; Bowen, G.J. Biased estimates of the isotope ratios of steady-state evaporation from the assumption of equilibrium between vapour and precipitation. Hydrol. Process. 2019, 33, 2576–2590. [Google Scholar] [CrossRef]
- Downing, B.D.; Bergamaschi, B.A.; Kendall, C.; Kraus, T.E.; Dennis, K.J.; Carter, J.A.; Von Dessonneck, T.S. Using continuous underway isotope measurements to map water residence time in hydrodynamically complex tidal environments. Environ. Sci. Technol. 2016, 50, 13387–13396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obertegger, U.; Flaim, G.; Braioni, M.G.; Sommaruga, R.; Corradini, F.; Borsato, A. Water residence time as a driving force of zooplankton structure and succession. Aquat. Sci. 2007, 69, 575–583. [Google Scholar] [CrossRef]
- Kaste, Ø.; Stoddard, J.L.; Henriksen, A. Implication of lake water residence time on the classification of Norwegian surface water sites into progressive stages of nitrogen saturation. Water Air Soil Pollut. 2003, 142, 409–424. [Google Scholar] [CrossRef]
- Lerman, A. Eutrophication and water quality of lakes: Control by water residence time and transport to sediments. Hydrol. Sci. J. 1974, 19, 25–34. [Google Scholar] [CrossRef]
- Selvendiran, P.; Driscoll, C.T.; Montesdeoca, M.R.; Choi, H.-D.; Holsen, T.M. Mercury dynamics and transport in two Adirondack lakes. Limnol. Oceanogr. 2009, 54, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Rippey, B.; Rose, C.L.; Douglas, R.W. A model for lead, zinc, and copper in lakes. Limnol. Oceanogr. 2004, 49, 2256–2264. [Google Scholar] [CrossRef]
- Commission, U.L. Water Levels. Available online: http://utahlakecommission.org/water-levels/ (accessed on 17 April 2020).
- Abu-Hmeidan, H.Y.; Williams, G.P.; Miller, A.W. Characterizing total phosphorus in current and geologic utah lake sediments: Implications for water quality management issues. Hydrology 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Belanger, T.; Mikutel, D.; Churchill, P. Groundwater seepage nutrient loading in a Florida lake. Water Res. 1985, 19, 773–781. [Google Scholar] [CrossRef]
- Kang, W.-J.; Kolasa, K.; Rials, M. Groundwater inflow and associated transport of phosphorus to a hypereutrophic lake. Environ. Geol. 2005, 47, 565–575. [Google Scholar] [CrossRef]
- Kidmose, J.; Nilsson, B.; Engesgaard, P.; Frandsen, M.; Karan, S.; Landkildehus, F.; Søndergaard, M.; Jeppesen, E. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): Implications for lake ecological state and restoration. Hydrogeol. J. 2013, 21, 1787–1802. [Google Scholar] [CrossRef]
- Brock, T.D.; Lee, D.R.; Janes, D.; Winek, D. Groundwater seepage as a nutrient source to a drainage lake; Lake Mendota, Wisconsin. Water Res. 1982, 16, 1255–1263. [Google Scholar] [CrossRef]
- Hagerthey, S.E.; Kerfoot, W.C. Groundwater flow influences the biomass and nutrient ratios of epibenthic algae in a north temperate seepage lake. Limnol. Oceanogr. 1998, 43, 1227–1242. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Chen, C.; Ding, J.-Q.; Hou, A.; Li, Y.; Niu, Z.-B.; Su, X.-Y.; Xu, Y.-J.; Laws, E.A. The 2007 water crisis in Wuxi, China: Analysis of the origin. J. Hazard. Mater. 2010, 182, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Holman, I.P.; Whelan, M.J.; Howden, N.J.; Bellamy, P.H.; Willby, N.; Rivas-Casado, M.; McConvey, P. Phosphorus in groundwater—An overlooked contributor to eutrophication? Hydrol. Process. Int. J. 2008, 22, 5121–5127. [Google Scholar] [CrossRef]
- Anderson, R.; Naftz, D.; Day-Lewis, F.; Henderson, R.; Rosenberry, D.; Stolp, B.; Jewell, P. Quantity and quality of groundwater discharge in a hypersaline lake environment. J. Hydrol. 2014, 512, 177–194. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguas-Araguas, L.; Gonfiantini, R. Isotopic paterns in modern global precipitation. In Climate Change in Continental Isotopic Records; American Geophysical Union: Washington, DC, USA, 1993; Volume 78, pp. 1–36. [Google Scholar]
Latitude (°N) | Longitude (°W) | n samples | Avg. δ2H (‰) | SD | Range | Avg. δ18O (‰) | SD | Range | XGW | |
---|---|---|---|---|---|---|---|---|---|---|
Meteoric Precipitation | 40.2778 | 111.7147 | 12 | −90.2 | 27.9 | 102.9 | −12.73 | 3.06 | 11.06 | |
Well Water and Hot Spring | ||||||||||
Well Water | 40.24 | 111.7175 | 27 | −126.2 | 0.7 | 4 | −17.08 | 0.23 | 1.19 | |
Saratoga Springs Hot Spring | 40.3531 | 111.9 | 25 | −125.6 | 0.5 | 2.7 | −16.66 | 0.16 | 0.76 | |
Rivers | ||||||||||
Spanish Fork River | 40.1503 | 111.7264 | 26 | −112.3 | 2.9 | 10.7 | −14.69 | 0.54 | 2.4 | 0.49 |
Hobble Creek | 40.1789 | 111.6381 | 27 | −114.4 | 8.4 | 19.3 | −15.17 | 1.58 | 4.08 | 0.62 |
Provo River | 40.2381 | 111.7217 | 26 | −118.8 | 0.9 | 3.3 | −16.07 | 0.32 | 1.4 | 0.87 |
American Fork River | 40.355 | 111.8014 | 26 | −119.9 | 1.4 | 4.3 | −16.54 | 0.42 | 1.41 | 0.98 |
Jordan River | 40.3567 | 111.8989 | 26 | −90.4 | 14 | 60 | −10.75 | 2.66 | 10.94 | |
Utah Lake | 40.3161 | 111.7656 | 26 | −76 | 10.2 | 37.7 | −8.32 | 1.87 | 7.05 |
Elevation Range (m) | % of Utah Lake Watershed |
---|---|
1330–2000 | 49 |
2000–2500 | 34 |
2500–3000 | 15 |
3000–3640 | 2 |
Parameter | Value |
---|---|
Average Air Temperature in April—Nov. 2015 (T; °C) | 14.50 |
Average Relative Humidity in April—Nov. 2015 (h) | 0.53 |
Liquid Water-Water Vapor Kinetic Isotope Separation for H Isotopes (2εK; ‰) | 6.25 |
Liquid Water-Water Vapor Equilibrium Isotope Separation for H Isotopes (2ε+; ‰) | 91.02 |
Liquid Water-Water Vapor Kinetic Isotope Separation for O Isotopes (18εK; ‰) | 7.10 |
Liquid Water-Water Vapor Equilibrium Isotope Separation for O Isotopes (18ε+; ‰) | 10.28 |
Fractionation Factor for H Isotopes (2α+) | 1.091023 |
Fractionation Factor for O Isotopes (18α+) | 1.010284 |
Limiting H Isotope Composition of the Lake (δ2H*; ‰) | 24.7 |
Limiting O Isotope Composition of the Lake (δ18O*; ‰) | 13.46 |
m for H Isotopes (2m) | 0.8105 |
m for O Isotopes (18m) | 0.9519 |
Steady State H Isotope Composition of the Lake (δ2HL; ‰) | −69.3 |
Steady State O Isotope Composition of the Lake (δ18OL; ‰) | −7.15 |
H Isotope Composition of the Input Water (δ2HI; ‰) | −112.1 |
O Isotope Composition of the Input Water (δ18OI; ‰) | −15.17 |
Measured H Isotope Composition of Atmospheric Water Vapor (δ2HA; ‰) | −159.1 |
Measured O Isotope Composition of Atmospheric Water Vapor (δ18OA; ‰) | −21.56 |
Average Volume of Water in Utah Lake in Apr—Nov. 2015 (V; m3) | 527,670,841 |
Average Rate of Evaporation from Utah Lake in Apr—Nov. 2015 (Er; mm·day−1) | 5.53 |
Total Volume of Water Evaporated from Utah Lake in April—Nov. 2015 (E; m3) | 396,187,719.4 |
Total Volume of Meteoric Precipitation Fallen on Utah Lake in April—Nov. 2015 (P; m3) | 59,643,279 |
H Isotope Composition of Meteoric Precipitation (δ2HP; ‰) | −79.4 |
O Isotope Composition of Meteoric Precipitation (δ18OP; ‰) | −11.30 |
Total Volume of Surface Water Inflow in April-Nov. 2015 (Si; m3) | 198,849,024 |
H Isotope Composition of the Surface Water Inflow (δ2HSi; ‰) | −114.5 |
O Isotope Composition of the Surface Water Inflow (δ18OSi; ‰) | −15.18 |
H Isotope Composition of the Groundwater Inflow (δ2HGi; ‰) | −123.0 |
O Isotope Composition of the Groundwater Inflow (δ18OGi; ‰) | −16.33 |
H Isotope Composition of Evaporating Water (δ2HE; ‰) | −186.9 |
O Isotope Composition of Evaporating Water (δ18OE; ‰) | −26.73 |
Inflows | 106 m3 |
---|---|
Spanish Fork River | 126.53 |
Provo River | 38.80 |
American Fork River | 19.29 |
Hobble Creek | 14.23 |
Meteoric Precipitation | 59.64 |
Groundwater | 666.66 |
Total Inflows | 925 |
Outflows | |
Evaporation | 396.19 |
Jordan River | 351.64 |
Groundwater | 177.33 |
Total Outflows | 925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanazzi, A.; Wang, W.; Peterson, H.; Emerman, S.H. Using Stable Isotopes to Determine the Water Balance of Utah Lake (Utah, USA). Hydrology 2020, 7, 88. https://doi.org/10.3390/hydrology7040088
Zanazzi A, Wang W, Peterson H, Emerman SH. Using Stable Isotopes to Determine the Water Balance of Utah Lake (Utah, USA). Hydrology. 2020; 7(4):88. https://doi.org/10.3390/hydrology7040088
Chicago/Turabian StyleZanazzi, Alessandro, Weihong Wang, Hannah Peterson, and Steven H. Emerman. 2020. "Using Stable Isotopes to Determine the Water Balance of Utah Lake (Utah, USA)" Hydrology 7, no. 4: 88. https://doi.org/10.3390/hydrology7040088
APA StyleZanazzi, A., Wang, W., Peterson, H., & Emerman, S. H. (2020). Using Stable Isotopes to Determine the Water Balance of Utah Lake (Utah, USA). Hydrology, 7(4), 88. https://doi.org/10.3390/hydrology7040088