Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?
Abstract
:1. Introduction
1.1. Experience with Tahoe Rainfall & Runoff Simulations
1.2. Research Hypotheses and Objectives
- (a)
- determination of flow depths and Reynolds (Re) numbers for a range of slopes and flow rates and planar surface roughness conditions,
- (b)
- determination of fine-sand surface runoff, interflow and drainage rates for the range of slopes and flow rates considered in (a) in an effort to determine the combination of slope and onflow rates required to generate infiltration excess overland flow, and
- (c)
- development of a simple hillslope runoff-interflow model that includes basic soil hydraulic properties (effective conductivity and drainable porosities or yields) readily assessed in the field.
2. Experimental Methods
2.1. Theory—Laminar & Turbulent Overland Flow Equations
2.2. Experimental Apparatus and Measurement Methods
3. Results and Discussion
3.1. Laminar or Turbulent Sheet Flows, the Distinction Appears to be Important
3.2. Can Hillslope Drainage be Predicted from Simple Laboratory Measurements?
4. Summary and Conclusions—Impacts on Watershed Modeling Efforts
Conflicts of Interest
References
- Mirus, B.B.; Ebel, B.A.; Heppner, C.S.; Loague, K. Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic-response simulation. Water Resour. Res. 2011, 47, W00H10. [Google Scholar] [CrossRef]
- Mirus, B.B.; Loague, K. How runoff begins (and ends): Characterizing hydrologic response at the catchment scale. Water Resour. Res. 2013, 49, 1–20. [Google Scholar] [CrossRef]
- Jencso, K.G.; McGlynn, B.L. Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity, geology, and vegetation. Water Resour. Res. 2011, 47, W11527. [Google Scholar] [CrossRef]
- Grismer, M.E. Detecting Soil Disturbance/Restoration effects on Stream Sediment Loading in the Tahoe Basin—Modeling Predictions. Hydrol. Proc. 2012, 28, 161–170. [Google Scholar] [CrossRef]
- Grismer, M.E. Erosion Modeling for Land Management in the Tahoe Basin, USA: Scaling from plots to small forest catchments. Hydrol. Sci. J. 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Grismer, M.E.; Shnurrenberger, C.; Arst, R.; Hogan, M.P. Integrated Monitoring and Assessment of Soil Restoration Treatments in the Lake Tahoe Basin. Environ. Monit. Assess. 2009, 150, 365–383. [Google Scholar] [CrossRef] [PubMed]
- Grismer, M.E.; Hogan, M.P. Evaluation of Revegetation/Mulch Erosion Control Using Simulated Rainfall in the Lake Tahoe Basin: 1. Method Assessment. Land Degrad. Dev. 2013, 15, 573–588. [Google Scholar] [CrossRef]
- Grismer, M.E.; Hogan, M.P. Evaluation of Revegetation/Mulch Erosion Control Using Simulated Rainfall in the Lake Tahoe Basin: 2. Bare Soil Assessment. Land Degrad. Dev. 2005, 16, 397–404. [Google Scholar] [CrossRef]
- Grismer, M.E.; Hogan, M.P. Evaluation of Revegetation/Mulch Erosion Control Using Simulated Rainfall in the Lake Tahoe Basin: 3. Treatment Assessment. Land Degrad. Dev. 2005, 16, 489–501. [Google Scholar] [CrossRef]
- Ohara, N.; Kavvas, M.; Easton, D.; Dogrul, E.; Yoon, J.; Chen, Z. Role of snow in runoff processes in a subalpine hillslope: Field study in the Ward Creek Watershed, Lake Tahoe, California, during 2000 and 2001 water years. ASCE J. Hydrol. Eng. 2011, 16, 521–533. [Google Scholar] [CrossRef]
- Ebel, B.A.; Loague, K.; VanderKwaak, J.E.; Dietrich, W.E.; Montgomery, D.R.; Torres, R.; Anderson, S.P. Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 2. Physics-based simulations. Am. J. Sci. 2007, 307, 709–748. [Google Scholar] [CrossRef]
- Ebel, B.A.; Loague, K.; Dietrich, W.E.; Montgomery, D.R.; Torres, R.; Anderson, S.P.; Giambelluca, T.W. Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 1. Sprinkling experiments. Am. J. Sci. 2007, 307, 678–708. [Google Scholar] [CrossRef]
- Loague, K.; VanderKwaak, J.E. Simulating hydrologic-response for the R-5 catchment: Comparison of two models and the impact of the roads. Hydro. Process. 2002, 16, 1015–1032. [Google Scholar] [CrossRef]
- Loague, K.; Heppner, C.S.; Ebel, B.A.; VanderKwaak, J.E. The quixotic search for a comprehensive understanding of hydrologic response at the surface: Horton, Dunne, Dunton, and the role of concept development simulations. Hydrol. Proc. 2010, 24, 2499–2505. [Google Scholar] [CrossRef]
- Berger, C.; Schulze, M.; Rieke-Zapp, D.; Schlunegger, F. Rill development and soil erosion: A laboratory study of slope and rainfall intensity. Earth Surf. Proc. Land. 2010, 35, 1456–1467. [Google Scholar] [CrossRef]
- Tauro, F.; Grimaldi, S.; Petroselli, A.; Rulli, M.C.; Porfiri, M. Fluorescent particle tracers in surface hydrology: A proof of concept in a semi-natural hillslope. Hydrol. Earth Syst. Sci. 2012, 16, 2973–2983. [Google Scholar] [CrossRef]
- Ticehurst, J.L.; Cresswell, H.P.; McKenzie, N.J.; Glover, M.R. Interpreting soil and topographic properties to conceptualise hillslope hydrology. Geoderma 2007, 137, 279–292. [Google Scholar] [CrossRef]
- Carr, A.; Loague, K.; VanderKwaak, J.E. Hydrologic-response simulations for the North Fork of Caspar Creek: Second growth, clearcut, new growth, and CWE scenarios. Hydrol. Proc. 2014, 28, 1476–1494. [Google Scholar] [CrossRef]
- Lee, J.; Feng, X.; Faiia, A.; Posmentier, E.; Osterhuber, R.; Kirchner, J. Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water. Water Resour. Res. 2010, 46, W11512. [Google Scholar] [CrossRef]
- VanderKwaak, J.E.; Loague, K. Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour. Res. 2001, 37, 999–1013. [Google Scholar] [CrossRef]
- Jencso, K.G.; McGlynn, B.L.; Gooseff, M.N.; Wondzell, S.M.; Bencala, K.E.; Marshall, L.A. Hydrologic connectivity between landscapes and streams: Transferring reach-and plot-scale understanding to the catchment scale. Water Resour. Res. 2009, 45, W04428. [Google Scholar] [CrossRef]
- Vidon, P.G.F.; Hill, A.R. Landscape controls on nitrate removal in stream riparian zones. Water Resour. Res. 2004, 40, W03201. [Google Scholar] [CrossRef]
- Ocampo, C.J.; Sivapalan, M.; Oldham, C. Hydrological connectivity of upland-riparian zones in agricultural catchments: Implications for runoff generation and nitrate transport. J. Hydrol. 2006, 331, 643–658. [Google Scholar] [CrossRef]
- McGlynn, B.L.; McDonnell, J.J. Quantifying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resour. Res. 2003, 39, 1310. [Google Scholar] [CrossRef]
- McGlynn, B.L.; McDonnell, J.J. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resour. Res. 2003, 39, 1090. [Google Scholar] [CrossRef]
- Carlyle, G.C.; Hill, A.R. Groundwater phosphate dynamics in a river riparian zone: Effects of hydrologic flowpaths, lithology, and redox chemistry. J. Hydrol. 2001, 247, 151–168. [Google Scholar] [CrossRef]
- Jencso, K.G.; McGlynn, B.L.; Gooseff, M.N.; Bencala, K.E.; Wondzell, S.M. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources. Water Resour. Res. 2010, 46, W10524. [Google Scholar] [CrossRef]
- Dunne, T.; Black, R.D. Partial area contributions to storm runoff in a small New England watershed. Water Resour. Res. 1970, 6, 1296–1311. [Google Scholar] [CrossRef]
- Anderson, M.G.; Burt, T.P. The role of topography in controlling throughflow generation. Earth Surf. Process. Landf. 1978, 3, 331–334. [Google Scholar] [CrossRef]
- Beven, K.J. The hydrological response of headwater and sideslope areas. Hydrol. Sci. Bull. 1978, 23, 419–437. [Google Scholar] [CrossRef]
- Burt, T.P.; Butcher, D.P. Topographic controls of soil moisture distributions. J. Soil Sci. 1985, 36, 469–486. [Google Scholar] [CrossRef]
- Savenije, H.H.G. Topography driven conceptual modeling, FLEX-Topo. Hydrol. Earth Syst. Sci. 2010, 14, 2681–2692. [Google Scholar] [CrossRef]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol. Proc. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- McGlynn, B.L.; McDonnell, J.J.; Seibert, J.; Kendall, C. Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour. Res. 2004, 40, W07504. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J. The role of topography on catchment-scale water residence time. Water Resour. Res. 2005, 41, W05002. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Seibert, J.; McGuire, K.J.; Laudon, H.; Burns, D.A.; Dunn, S.M.; Soulsby, C. How does landscape structure influence catchment transit times across different geomorphic provinces? Hydrol. Proc. 2009, 23, 945–953. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Hibbert, A.R. Factors affecting the response of small watersheds to precipitation in humid areas. In Forest Hydrology; Sopper, W.E., Lull, H.W., Eds.; Pergamon: New York, NY, USA, 1967; pp. 275–291. [Google Scholar]
- Harr, R.D. Water flux in soil and subsoil on a steep forested slope. J. Hydrol. 1977, 33, 37–58. [Google Scholar] [CrossRef]
- Hopp, L.; McDonnell, J.J. Connectivity at the hillslope scale: Identifying interactions between storm size, bedrock permeability, slope angle and soil depth. J. Hydrol. 2009, 376, 378–391. [Google Scholar] [CrossRef]
- Grismer, M.E. Determination of watershed infiltration and erosion parameters from field Rainfall Simulation analyses. Hydrology 2016. submitted. [Google Scholar]
- Benjamin, T.B. Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 1957, 2, 554–574. [Google Scholar] [CrossRef]
- Singh, V.P. Is hydrology kinematic? Hydrol. Proc. 2002, 16, 667–716. [Google Scholar] [CrossRef]
- Loague, K. Rainfall-Runoff Modeling, in IAHS Benchmark Papers in Hydrology; McDonnell, J.J., Ed.; IAHS Press: Wallingford, UK, 2010; Volume 4, p. 506. [Google Scholar]
- Grismer, M.E. Pore-size distribution and infiltration. Soil Sci. 1986, 141, 249–260. [Google Scholar] [CrossRef]
- Loague, K.; Heppner, C.S.; Mirus, B.B.; Ebel, B.A.; Ran, Q.; Carr, A.E.; BeVille, S.H.; VanderKwaak, J.E. Physics-based hydrologic response simulation: Foundation for hydroecology and hydrogeomorphology. Hydrol. Proc. 2006, 20, 1231–1237. [Google Scholar] [CrossRef]
Slope (%) | Q (mm2/s) | Re | Predicted hlaminar (mm) | Bare Aluminum hmeas (mm) | #60 1 sandpaper hmeas (mm) | Apparent n |
---|---|---|---|---|---|---|
10.7 | 26.7 | 24 | 0.44 | 0.43–0.45 | 0.41–0.44 | 0.024 |
37.5 | 34 | 0.49 | 0.48–0.50 | 0.46–0.49 | 0.024 | |
46.7 | 42 | 0.53 | 0.52–0.54 | 0.50–0.53 | 0.024 | |
57.2 | 51 | 0.57 | 0.56–0.58 | 0.54–0.57 | 0.023 | |
20.6 | 26.7 | 24 | 0.36 | 0.35–0.37 | 0.33–0.36 | 0.029 |
37.5 | 34 | 0.40 | 0.39–0.41 | 0.37–0.39 | 0.026 | |
46.7 | 42 | 0.43 | 0.42–0.44 | 0.4–0.43 | 0.024 | |
57.2 | 51 | 0.46 | 0.45–0.47 | 0.44–0.47 | 0.022 | |
36.6 | 26.7 | 24 | 0.30 | 0.29–0.31 | 0.27–0.30 | 0.033 |
37.5 | 34 | 0.33 | 0.32–0.34 | 0.30–0.33 | 0.029 | |
46.7 | 42 | 0.36 | 0.35–0.37 | 0.33–0.36 | 0.026 | |
57.2 | 51 | 0.38 | 0.34–0.39 | 0.35–0.38 | 0.023 | |
51.8 | 26.7 | 24 | 0.27 | 0.26–0.28 | NA 2 | 0.028 |
37.5 | 34 | 0.30 | 0.29–0.30 | NA | 0.027 | |
46.7 | 42 | 0.32 | 0.31–0.33 | NA | 0.025 | |
57.2 | 51 | 0.35 | 0.34–0.36 | NA | 0.023 | |
66.2 | 26.7 | 24 | 0.25 | 0.22–0.26 | NA | 0.031 |
37.5 | 34 | 0.28 | 0.27–0.30 | NA | 0.029 | |
46.7 | 42 | 0.31 | 0.30–0.32 | NA | 0.028 | |
57.2 | 51 | 0.33 | 0.32–0.35 | NA | 0.025 |
Capillary Pressure Head (mm) | Volumetric Water Content 1 (m3/m3) | Apparent Specific Yield (%) |
---|---|---|
10–50 | 0.40 2 | 0 |
60–80 | 0.36 | 0 |
100 | 0.36 | 0 |
120 | 0.36 | 0 |
140 | 0.34 | 0.02 |
160 | 0.33 | 0.42 |
180 | 0.33 | 0.74 |
200 | 0.29 | 1.3 |
220 | 0.22 | 2.5 |
240 | 0.18 | 3.8 |
260 | 0.15 | 5.1 |
280 | 0.13 | 6.4 |
300 | 0.10 | 7.7 |
320 | 0.09 | 8.9 |
340 | 0.07 | 10.1 |
360 | 0.06 | 11.2 |
380 | 0.05 | 12.2 |
400 | 0.04 | 13.2 |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grismer, M.E. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows? Hydrology 2016, 3, 18. https://doi.org/10.3390/hydrology3020018
Grismer ME. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows? Hydrology. 2016; 3(2):18. https://doi.org/10.3390/hydrology3020018
Chicago/Turabian StyleGrismer, Mark E. 2016. "Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?" Hydrology 3, no. 2: 18. https://doi.org/10.3390/hydrology3020018
APA StyleGrismer, M. E. (2016). Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows? Hydrology, 3(2), 18. https://doi.org/10.3390/hydrology3020018