Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region
Abstract
:1. Introduction
- What is the impact of one-way versus two-way coupled land-atmosphere modeling on the skill of the precipitation forecasts produced for the Mediterranean region?
- Does any difference in precipitation forecast skill translate into improvements in streamflow forecasting skill from uncoupled versus coupled hydrologic modeling systems?
2. The Study Area
3. Methodology
3.1. The WRF Model Configuration in This Study
- “mp7”, the Goddard microphysics scheme
- “mp8”, the Thompson scheme
- “mp10”, the Morrison double-moment scheme.
3.2. The Hydrological Models: WRF-Hydro and HEC-HMS
3.3. WRF-Hydro and HEC-HMS Calibration and Validation Process
3.3.1. WRF-Hydro Calibration
3.3.2. HEC-HMS Calibration
4. Model Experiments
- -
- Observed hourly rain gauge data as was described in Section 3.3.
- -
- Simulated 3 km hourly WRF-only precipitation in uncoupled mode based on initial conditions from GFS reanalysis data (FNL). The NCEP Final Operational Global Analysis meteorological data at 0.25 and 0.5 degrees based on GFS reanalysis are available at: http://rda.ucar.edu/datasets/ds083.2/.
- -
- Simulated hourly precipitation from the fully coupled WRF/WRF-Hydro at 3 km resolution (HEC-HMS has not been coupled to the WRF atmospheric model). In the coupled WRF/WRF-Hydro modeling system, the fluxes from the land surface feed back to the atmosphere and may evolve to impact the precipitation fields in the model.
5. Results
5.1. Observed Verses Simulated Precipitation
5.2. Observed Versus Simulated Hydrographs Using Precipitation from Different Sources
5.3. Season-Long Validation of the Hydrologic Forecasts during the 2014/2015 Rainy Season
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Llasat-Botija, M.; Llasat, M.C.; López, L. Natural hazards and the press in the western Mediterranean region. Adv. Geosci. 2007, 12, 81–85. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing climate. Nature 2001, 415, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; McGlynn, B.L.; Harman, C.J.; Gupta, H.V.; Kumar, P.; Rao, P.S.C.; Basu, N.B.; Wilson, J.S. The future of hydrology: An evolving science for a changing world. Water Resour. Res. 2010. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Hirabayashi, Y.; Kanae, S. River floods in the changing climate—Observations and projections. Water Resour. Manag. 2010, 24, 2633–2646. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Alexander, L.V.; Hegerl, G.C.; Knutson, T.R.; Kossin, J.P.; Naveau, P.; Zhang, X. Climate extremes: Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In Climate Science for Serving Society; Springer: Dordrecht, The Netherlands, 2013; pp. 339–389. [Google Scholar]
- Andersen, T.K.; Marshall, S.J. Floods in a Changing Climate. Geogr. Compass 2013, 7, 95–115. [Google Scholar] [CrossRef]
- Törnros, T.; Menzel, L. Addressing drought conditions under current and future climates in the Jordan River region. Hydrol. Earth Syst. Sci. 2014, 18, 305–318. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Xiaowei, Q.; Zhang, T.; Pegion, P. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Smiatek, G.; Kunstmann, H.; Heckl, A. High resolution climate change simulations for the Jordan River Area. J. Geophys. Res. Atmos. 2011. [Google Scholar] [CrossRef]
- Smiatek, G.; Kaspar, S.; Kunstmann, H. Hydrological climate change impact analysis for the Figeh Spring in Damascus area, Syria. J. Hydrometeorol. 2013, 14, I577–I593. [Google Scholar] [CrossRef]
- Smiatek, G.; Kunstmann, H.; Heckl, A. High-Resolution Climate Change Impact Analysis on Expected Future Water Availability in the Upper Jordan Catchment and the Middle East. J. Hydrometeorol. 2014. [Google Scholar] [CrossRef]
- Yosef, Y.; Saaroni, H.; Alpert, P. Trends in daily rainfall Intensity over Israel 1950/1–2003/4. Open Atmos. Sci. J. 2009, 3, 196–203. [Google Scholar] [CrossRef]
- Samuels, R.; Smiatek, G.; Krichak, S.; Kunstmann, H.; Alpert, P. Extreme value indicators in highly resolved climate change simulations for the Jordan River area. J. Geophys. Res. Atmos. 2011. [Google Scholar] [CrossRef]
- Bronstert, A.; Niehoff, D.; Bürger, G. Effects of climate and land-use change on storm runoff generation: Present knowledge and modeling capabilities. Hydrol. Process. 2002, 16, 509–529. [Google Scholar] [CrossRef]
- Chang, H.; Franczyk, J. Climate Change, Land-Use Change, and Floods: Toward an Integrated Assessment. Geogr. Compass 2008, 2, 1549–1579. [Google Scholar] [CrossRef]
- Githui, F.; Mutua, F.; Bauwens, W. Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): Case study of Nzoia catchment, Kenya. Hydrol. Sci. J. 2010, 54, 899–908. [Google Scholar] [CrossRef]
- Delgado, J.; Llorens, P.; Nord, G.; Calder, I.R.; Gallart, F. Modelling the hydrological response of a Mediterranean medium-sized headwater basin subject to land cover change: The Cardener River basin (NE Spain). J. Hydrol. 2010, 383, 125–134. [Google Scholar] [CrossRef]
- Kalantari, Z.; Lyon, S.W.; Folkeson, L.; French, H.K.; Stolte, J.; Jansson, P.E.; Sassner, M. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Sci. Total Environ. 2014, 466, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Younis, J.; Anquetin, S.; Thielen, J. The benefit of high-resolution operational weather forecasts for flash flood warning. Hydrol. Earth Syst. Sci. 2008, 12, 1039–1051. [Google Scholar] [CrossRef]
- Cloke, H.L.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [Google Scholar] [CrossRef]
- Shih, D.S.; Chen, C.H.; Yeh, G.T. Improving our understanding of flood forecasting using earlier hydro-meteorological intelligence. J. Hydrol. 2014, 512, 470–481. [Google Scholar] [CrossRef]
- Fiori, E.; Comellas, A.; Molini, L.; Rebora, N.; Siccardi, F.; Gochis, D.J.; Tanelli, S.; Parodi, A. Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmos. Res. 2014, 138, 13–29. [Google Scholar] [CrossRef]
- Saaroni, H.; Halfon, N.; Ziv, B.; Alpert, P.; Kutiel, H. Links between the rainfall regime in Israel and location and intensity of Cyprus lows. Int. J. Climatol. 2010, 30, 1014–1025. [Google Scholar] [CrossRef]
- Givati, A.; Lynn, B.; Liu, Y.; Rimmer, A. Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River. J. Appl. Meteorol. Clim. 2012, 51, 285–299. [Google Scholar] [CrossRef]
- Givati, A.; Sapir, G. Simulating 1% Probability Hydrograph at the Ayalon Basin Using the HEC-HMS; Special Hydrological Report; Israel Hydrological Service: Jerusalem, Israel, 2014. [Google Scholar]
- Rahimi, M.; Saghafian, B.; Azadi, M.; Sedghi, H. Flood forecasting in arid and semi-arid region using continuous hydrological modeling. World Appl. Sci. J. 2010, 10, 645–654. [Google Scholar]
- Yucel, I.; Keskin, F. Assessment of flash flood events using remote sensing and atmospheric model-derived precipitation in a hydrological model. Int. Assoc. Hydrol. Sci. 2011, 344, 245–251. [Google Scholar]
- Ratnayake, U.; Sachindra, D.A.; Nandalal, K.D.W. Rainfall forecasting for flood prediction in the Nilwala basin. In Proceedings of the International Conference on Sustainable Built Environment (ICSBE-2010), Kandy, Sri Lanka, 13–14 December 2010.
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Jasper, K.; Gurtz, J.; Lang, H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J. Hydrol. 2002, 267, 40–52. [Google Scholar] [CrossRef]
- Seuffert, G.; Gross, P.; Simmer, C.; Wood, E.F. The influence of hydrologic modelling on the predicted local weather: Two-way coupling of a mesoscale land surface model and a land surface hydrologic model. J. Hydrometeorol. 2002, 3, 505–523. [Google Scholar] [CrossRef]
- Yanhong, G.; Guodong, C.; Wenrui, C.; Fei, C.; Gochis, D.; Wei, Y. Coupling of Enhanced Land Surface Hydrology with Atmospheric Mesoscale Model and Its Implement in Heihe River Basin. Adv. Earth Sci. 2006, 21, 1283–1292. [Google Scholar]
- Bouilloud, L.; Chancibault, K.; Vincendon, B.; Ducrocq, V.; Habets, F.; Saulnier, G.M.; Noilhan, J. Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation. J. Hydrometeorol. 2010, 11, 315–333. [Google Scholar] [CrossRef]
- Wang, L.; Koike, T.; Wang, M.; Liu, J.; Sun, J.; Lu, H.; Xu, X. Use of Integrated Observations to Improve 0–36 h Flood Forecasting: Development and Application of a Coupled Atmosphere-Hydrology System in the Nanpan River Basin, China. J. Meteorol. Soc. Jpn. 2012, 90, 131–144. [Google Scholar] [CrossRef]
- Marty, R.; Zin, I.; Obled, C. Sensitivity of hydrological ensemble forecasts to different sources and temporal resolutions of probabilistic quantitative precipitation forecasts: Flash flood case studies in the Cévennes-Vivarais region (Southern France). Hydrol. Process. 2013, 27, 33–44. [Google Scholar] [CrossRef]
- Zabel, F.; Mauser, W. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol. Earth Syst. Sci. 2013, 17, 1705–1714. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vivoni, E.R.; Gochis, D.J. Limits to flood forecasting in the Colorado Front Range for two summer convection periods using radar nowcasting and a distributed hydrologic model. J. Hydrometeorol. 2013, 14, 1075–1097. [Google Scholar] [CrossRef]
- Wagner, S.; Fersch, B.; Yuan, F.; Yu, Z.; Kunstmann, H. Fully-Coupled Atmospheric-Hydrological Modeling at Regional and Long-term Scales: Development, Application and Analysis of WRF-HMS. Water Recour. Res. 2016. [Google Scholar] [CrossRef]
- Senatore, A.; Mendicino, G.; Gochis, D.J.; Yu, W.; Yates, D.N.; Kunstmann, H. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst. 2015. [Google Scholar] [CrossRef]
- Alpert, P.; Neeman, B.U.; Shay-El, Y. Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 1990, 42, 65–77. [Google Scholar] [CrossRef]
- Goldreich, Y. The Climate of Israel, Observations, Research and Applications; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; p. 298. [Google Scholar]
- Ohana-Levi, N.; Karnieli, A.M.; Egozi, R.; Givati, A.; Peeters, A. Modeling the effects of land-cover change on rainfall-runoff relationships in a semi-arid, Eastern Mediterranean watershed. Adv. Meteorol. 2015. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.O. The WRF Single-Moment 6-ClassMicrophysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Hong, S.Y.; Lim, J.O.; Lee, Y.H.; Ha, J.C.; Kim, H.W.; Ham, S.-J.; Dudhia, J. Evaluation of the WRF Double-Moment 6-Class Microphysics Scheme for Precipitating Convection. Adv. Meteorol. 2010. [Google Scholar] [CrossRef]
- Gochis, D.J.; Yu, W.; Yates, D.N. The WRF-Hydro Model Technical Description and User’s Guide, Version 1.0; NCAR Technical Document; National Center for Atmospheric Research: Boulder, CO, USA, 2013; p. 120. Available online: http://www.ral.ucar.edu/projects/wrf_hydro/ (accessed on 28 April 2016).
- Gochis, D.J.; Chen, F. Hydrological Enhancements to the Community North Land Surface Model; NCAR/TN-454+STR, NCAR Technical Note, Research Applications Program; National Center for Atmospheric Research: Boulder, CO, USA, 2003. [Google Scholar]
- Ek, M.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Operational Deployment of a Physics-Based Distributed Rainfall-Runoff Model for Flood Forecasting in Taiwan. Available online: http://www.vieuxinc.com/Docs/floodwarning_taiwanpreprint.pdf (accessed on 3 May 2016).
- U.S. Army Corps of Engineers (USACE). HEC-HMS Hydrologic Modeling System User’s Manual; Hydrologic Engineering Center: Davis, CA, USA, 2008. [Google Scholar]
- Lu, Y.G.; Wong, W.D. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Schaake, J.C.; Koren, V.I.; Duan, Q.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. 1996. [Google Scholar] [CrossRef]
- Yucel, I.; Onena, A.; Yilmazb, K.K.; Gochisc, D.J. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W.; Zhang, F.; Odins, A.; Myoung, B. Extreme rainfall events in Texas: Patterns and predictability. Phys. Geogr. 2005, 26, 340–364. [Google Scholar] [CrossRef]
- Kunstmann, H.; Fersch, B.; Rummler, T.; Wagner, S.; Arnault, J.; Senatore, A.; Gochis, D. Towards Fully Coupled Atmosphere-Hydrology Model Systems: Recent Developments and Performance Evaluation for Different Climate Regions. Geophys. Res. Abstr. 2015. [Google Scholar] [CrossRef]
Precipitation Type | Mean (mm) | Min. (mm) | Max. (mm) | Range (mm) | STD (mm) | Correlation (R) | RMSE |
---|---|---|---|---|---|---|---|
Observed January 2013 | 216.0 | 153.0 | 263.9 | 110.9 | 14.7 | ||
One way January 2013 | 183.1 | 146.9 | 228.4 | 81.5 | 17.7 | 0.85 | 16.0 |
Two way January 2013 | 185.7 | 134.9 | 249.4 | 114.4 | 30.8 | 0.89 | 12.2 |
Observed December 2013 | 209.4 | 175.6 | 248.1 | 72.5 | 13.6 | ||
One way December 2013 | 170.2 | 134.9 | 202.1 | 67.2 | 15.3 | 0.80 | 30.0 |
Two way December 2013 | 174.8 | 144.6 | 218.2 | 73.6 | 13.4 | 0.85 | 24.0 |
Runoff Type | Peak Discharge (cms) | Storm Runoff Volume (mcm) | Correlation (R) | Nash–Sutcliffe | RMSE |
---|---|---|---|---|---|
January 2013 | |||||
observed Hydrograph | 397.0 | 32.2 | |||
WRF-Hydro based on observed precipitation | 385.7 | 26.0 | 0.92 | 0.79 | 38.9 |
HEC_HMS based on observed precipitation | 378.4 | 34.2 | 0.97 | 0.93 | 21.0 |
HEC_HMS based on WRF precipitation | 272.1 | 20.2 | 0.68 | 0.44 | 49.6 |
WRF—one way | 283.0 | 16.7 | 0.76 | 0.46 | 52.2 |
WRF—two way | 366.5 | 18.5 | 0.80 | 0.57 | 47.4 |
December 2013 | |||||
observed Hydrograph | 181.8 | 13.4 | |||
WRF-Hydro based on observed precipitation | 159.2 | 10.3 | 0.89 | 0.81 | 25.0 |
HEC_HMS based on observed precipitation | 188.6 | 11.3 | 0.90 | 0.83 | 24.2 |
HEC_HMS based on WRF precipitation | 144.7 | 10.3 | 0.62 | 0.46 | 41.6 |
WRF—one way | 162.7 | 9.3 | 0.71 | 0.53 | 38.9 |
WRF—two way | 232.7 | 11.3 | 0.75 | 0.61 | 35.6 |
Runoff Type | Correlation (R) | Nash–Sutcliffe |
---|---|---|
HEC_HMS based on observed precipitation | 0.87 | 0.76 |
HEC_HMS based on WRF one way precipitation | 0.63 | 0.43 |
HEC_HMS based on WRF two way precipitation | 0.68 | 0.47 |
WRF-Hydro two way precipitation | 0.67 | 0.46 |
Basin/Country | Cloud Types | NS—Derived with Observed Precipitation | NS—Derived with Two-Way Coupled WRF/WRF-Hydro Precipitation |
---|---|---|---|
Ayalon, Israel | Winter: convective + orographic | 0.76 | 0.42 |
Crati, Italy Senatore et al. (2015) [41] | Summer: convective | 0.80 | 0.47 |
Ammer, Germany Kunstmann et al. (2015) [56] | Summer: convective | 0.86 | 0.49 |
Sissilli, West African Kunstmann et al. (2015) [56] | Summer: convective | 0.49 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Givati, A.; Gochis, D.; Rummler, T.; Kunstmann, H. Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology 2016, 3, 19. https://doi.org/10.3390/hydrology3020019
Givati A, Gochis D, Rummler T, Kunstmann H. Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology. 2016; 3(2):19. https://doi.org/10.3390/hydrology3020019
Chicago/Turabian StyleGivati, Amir, David Gochis, Thomas Rummler, and Harald Kunstmann. 2016. "Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region" Hydrology 3, no. 2: 19. https://doi.org/10.3390/hydrology3020019
APA StyleGivati, A., Gochis, D., Rummler, T., & Kunstmann, H. (2016). Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology, 3(2), 19. https://doi.org/10.3390/hydrology3020019