Anthropogenic River Segmentation Case Study: Bahlui River from Romania
Abstract
1. Introduction
- -
- Unlike previous studies that focus on water quality and typically examine the Bahlui River as a unified hydrological system, this work introduces a novel conceptual framework that treats river segments as individual watercourses.
- -
- Anthropogenic stressors delimit the analyzed river segments. This segmentation approach allows for understanding how human interventions create localized impacts that do not necessarily propagate throughout the entire river system.
- -
- For each segment, water quality indicators are linked with the river’s discharge in an integrated flow–nutrient–pollution analysis.
- -
- The seasonal and annual variations across each segment are presented for twelve years, offering a detailed view of how fragmentation affects long-term water quality patterns.
2. Materials and Methods
2.1. Research Area, Anthropogenic Amendments, and Segmentation Strategy
2.1.1. Research Area
2.1.2. Anthropogenic Amendments
2.1.3. Segmentation Strategy
2.2. Sampling Sites, Monitored Parameters, Analyzed Period
2.3. River Load Calculation Approach Methods: Theoretical Background, Selected Equation, Statistical Analysis
3. Results and Discussion
3.1. Fragmentation Impact on Nutrient Dynamics and Organic Pollution Load: Seasonal Variation
3.1.1. River Spring-Pârcovaci Dam (S1–S2)
3.1.2. Pârcovaci Dam-Tansa Dam (S2–S3)
3.1.3. Tansa Dam-Podu Iloaiei Dam (S3–S4)
3.1.4. Podu Iloaiei Dam-Iași WWTP (S4–S6)
3.2. Fragmentation Impact on Nutrient Dynamics and Organic Pollution Load: Annual Report
3.3. River Segmentation by Dams: Some Benefits and Drawbacks
4. Conclusions
- Localized impacts remain contained within specific segments rather than propagating throughout the entire river system. Statistical analyses reveal that nutrient and pollution data often do not follow typical patterns and vary greatly, highlighting the importance of considering occasional events and specific river sections when evaluating water quality. The standard deviations frequently surpass the means, indicating that extreme events have a significant influence on the overall nutrient and pollution budgets.
- Each segment exhibits different seasonal patterns and response mechanisms to anthropogenic and environmental stressors. The upstream area, mostly forested, indicates that natural nutrient sources vary seasonally, with autumn having the highest phosphorus levels due to “first flush” events and winter showing increased nitrogen levels. This baseline understanding is vital for distinguishing between natural and anthropogenic contributions in downstream sections. Furthermore, the analysis shows that urban development and wastewater treatment plant discharges elevate nutrient and organic pollution levels, highlighting significant human impacts on water quality.
- Unforeseen events (floods and WWTP discharges) affect only specific segments without impacting the entire river.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Cappellen, P.; Maavara, T. Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 2016, 16, 106–111. [Google Scholar] [CrossRef]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Yuan, Q.; Xing, X.; Hu, B.; Gan, J.; Zheng, Y.; Liu, Y. Effect of river damming on nutrient transport and transformation and its countermeasures. Front. Mar. Sci. 2022, 9, 1078216. [Google Scholar] [CrossRef]
- Yan, X.; Chen, Y.; Sun, H.; Chen, Q.; Zhang, J.; Zhi, W. River Damming Impacts on Carbon Emissions Should Be Revisited in the Context of the Aquatic Continuum Concept. Environ. Sci. Technol. 2024, 58, 17529–17531. [Google Scholar] [CrossRef] [PubMed]
- Spinti, R.A.; Condon, L.E.; Zhang, J. The evolution of dam induced river fragmentation in the United States. Nat. Commun. 2023, 14, 3820. [Google Scholar] [CrossRef]
- Jumani, S.; Deitch, M.J.; Kaplan, D.; Anderson, E.P.; Krishnaswamy, J.; Lecours, V.; Whiles, M.R. River fragmentation and flow alteration metrics: A review of methods and directions for future research. Environ. Res. Lett. 2020, 15, 123009. [Google Scholar] [CrossRef]
- Kamidis, N.; Koutrakis, E.; Sapounidis, A.; Sylaios, G. Impact of river damming on downstream hydrology and hydrochemistry: The case of lower Nestos River catchment (NE. Greece). Water 2021, 13, 2832. [Google Scholar] [CrossRef]
- Gan, J.-W.; Wang, X.; Yuan, Q.-S.; Xing, X.-L.; Liu, S.; Du, C.-G.; Zheng, Y.-R.; Liu, Y.-X. Impact of damming on nutrient transport and transformation in river systems: A review. Water Sci. Eng. 2024, 18, 209–220. [Google Scholar] [CrossRef]
- Kowal, J.L.; Funk, A.; Unfer, G.; Baldan, D.; Haidvogl, G.; Hauer, C.; Ferreira, M.T.; Branco, P.; Schinegger, R.; Hein, T. River continuum disruptions in a highly altered system: The perspective of potamodromous fish. Ecol. Indic. 2024, 164, 112130. [Google Scholar] [CrossRef]
- Maavara, T.; Chen, Q.; Van Meter, K.; Brown, L.E.; Zhang, J.; Ni, J.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116. [Google Scholar] [CrossRef]
- Panagiotou, A.; Zogaris, S.; Dimitriou, E.; Mentzafou, A.; Tsihrintzis, V.A. Anthropogenic barriers to longitudinal river connectivity in Greece: A review. Ecohydrol. Hydrobiol. 2022, 22, 295–309. [Google Scholar] [CrossRef]
- Powers, S.M.; Robertson, D.M.; Stanley, E.H. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes. Hydrol. Process. 2014, 28, 5919–5937. [Google Scholar] [CrossRef]
- Shi, W.; Qin, B. Sediment and nutrient trapping by river dams: A critical review based on 15-year big data. Curr. Pollut. Rep. 2023, 9, 165–173. [Google Scholar] [CrossRef]
- Szatten, D.; Habel, M.; Babiński, Z. Influence of hydrologic alteration on sediment, dissolved load and nutrient downstream transfer continuity in a river: Example Lower Brda River Cascade Dams (Poland). Resources 2021, 10, 70. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Isik, S.; Dogan, E.; Kalin, L.; Sasal, M.; Agiralioglu, N. Effects of anthropogenic activities on the Lower Sakarya River. Catena 2008, 75, 172–181. [Google Scholar] [CrossRef]
- Papadaki, C.; Dimitriou, E. River Flow Alterations Caused by Intense Anthropogenic Uses and Future Climate Variability Implications in the Balkans. Hydrology 2021, 8, 7. [Google Scholar] [CrossRef]
- Zurita, A.; Aguayo, M.; Arriagada, P.; Figueroa, R.; Díaz, M.E.; Stehr, A. Modeling Biological Oxygen Demand Load Capacity in a Data-Scarce Basin with Important Anthropogenic Interventions. Water 2021, 13, 2379. [Google Scholar] [CrossRef]
- Luo, Z.; Shao, Q.; Liu, H. Comparative evaluation of river water quality and ecological changes at upstream and downstream sites of dams/sluices in different regulation scenarios. J. Hydrol. 2021, 597, 126290. [Google Scholar] [CrossRef]
- Yin, S.; Gao, G.; Li, Y.; Xu, Y.J.; Turner, R.E.; Ran, L.; Wang, X.; Fu, B. Long-term trends of streamflow, sediment load and nutrient fluxes from the Mississippi River Basin: Impacts of climate change and human activities. J. Hydrol. 2023, 616, 128822. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Du, E.; Sun, Y.; Zhang, J.; Liu, Z.; Song, C. The dominant mechanisms of nutrient cycling in high-dam reservoirs: Retention, transport or transformation? Environ. Res. Lett. 2024, 19, 124024. [Google Scholar] [CrossRef]
- Finkler, N.R.; Gücker, B.; Boëchat, I.G.; Ferreira, M.S.; Tanaka, M.O.; Cunha, D.G.F. Riparian Land Use and Hydrological Connectivity Influence Nutrient Retention in Tropical Rivers Receiving Wastewater Treatment Plant Discharge. Front. Environ. Sci. 2021, 9, 709922. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Corenblit, D.; García de Jalón, D.; González del Tánago, M.; Grabowski, R.C.; O’Hare, M.T.; Szewczyk, M. A Conceptual Model of Vegetation–hydrogeomorphology Interactions Within River Corridors. River Res. Appl. 2016, 32, 142–163. [Google Scholar] [CrossRef]
- Juwana, I.; Nugroho, D. The Improvement of Cipunagara River Quality (BOD Parameter) Based on Pollution Load Analysis of Domestic, Agriculture, Farming and Industrial Activities; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012031. [Google Scholar]
- Zang, C.; Liu, J.; Wang, X.; Liu, Q.; Zhang, X. Evaluating water ecological health in dam-impacted river: A new approach framework. Ecol. Indic. 2024, 161, 111998. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Stanford, J.; Ward, J.V. The serial discontinuity concept of lotic ecosystems. In Dynamics of Lotic Ecosystems; Bartell, S.M., Fontaine, T.D., Eds.; Ann Arbor Science: Ann Arbor, MI, USA, 1983; Chapter 2; pp. 29–42. [Google Scholar]
- Vázquez-Tarrío, D.; Tal, M.; Camenen, B.; Piégay, H. Effects of continuous embankments and successive run-of-the-river dams on bedload transport capacities along the Rhône River, France. Sci. Total Environ. 2019, 658, 1375–1389. [Google Scholar] [CrossRef]
- Dang, T.H.; Coynel, A.; Orange, D.; Blanc, G.; Etcheber, H.; Le, L.A. Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): Temporal variability and dam-reservoir impact. Sci. Total Environ. 2010, 408, 4654–4664. [Google Scholar] [CrossRef]
- Jorge, G.; Albert, P. Sediment dynamics and hydrodynamics in the lower course of a river highly regulated by dams: The Ebro River. Sedimentology 1992, 39, 567–579. [Google Scholar] [CrossRef]
- Tang, X.; Li, R.; Wang, D.; Jing, Z.; Zhang, W. Reservoir flood regulation affects nutrient transport through altering water and sediment conditions. Water Res. 2023, 233, 119728. [Google Scholar] [CrossRef]
- Webster, B.C.; Waters, M.N.; Golladay, S.W. Alterations to sediment nutrient deposition and transport along a six reservoir sequence. Sci. Total Environ. 2021, 785, 147246. [Google Scholar] [CrossRef]
- Sferratore, A.; Billen, G.; Garnier, J.; Smedberg, E.; Humborg, C.; Rahm, L. Modelling nutrient fluxes from sub-arctic basins: Comparison of pristine vs. dammed rivers. J. Mar. Syst. 2008, 73, 236–249. [Google Scholar] [CrossRef]
- Zhao, Q.; Hong, Z.; Jing, Y.; Lu, M.; Geng, Z.; Qiu, P.; Wang, P.; Lu, X.; Ding, S. Spatial and temporal changes in nutrients associated with dam regulation of the Yellow River. CATENA 2022, 217, 106425. [Google Scholar] [CrossRef]
- Bor, A.; Elçi, Ş. Impacts of construction of dam on the flow regimes and water quality: A case study from Turkey. Int. J. Environ. Sci. Technol. 2022, 19, 4069–4086. [Google Scholar] [CrossRef]
- Feng, L.; Hu, P.; Chen, M.-m.; Li, B.-L. Quantifying cumulative changes in water quality caused by small floodgates in Taihu Lake Basin—A case in Wuxi. Sci. Total Environ. 2023, 900, 165608. [Google Scholar] [CrossRef]
- Wei, G.; Yang, Z.; Cui, B.; Li, B.; Chen, H.; Bai, J.; Dong, S. Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resour. Manag. 2009, 23, 1763–1780. [Google Scholar] [CrossRef]
- Aristi, I.; Arroita, M.; Larrañaga, A.; Ponsatí, L.; Sabater, S.; von Schiller, D.; Elosegi, A.; Acuña, V. Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshw. Biol. 2014, 59, 1816–1829. [Google Scholar] [CrossRef]
- Guo, J.; Shi, X.; Ke, S.; Li, Y.; Hu, C.; Zwain, H.M.; Gu, J.; Chunyun, Z.; Li, A.; Shenghong, L. Climate Change Critique on Dams and Anthropogenic Impact to Mediterranean Mountains for Freshwater Ecosystem-a Review. Pol. J. Environ. Stud. 2023, 32, 2981–2992. [Google Scholar]
- Marcoie, N.; Chihaia, Ș.; Hrăniciuc, T.A.; Balan, C.D.; Drăgoi, E.N.; Nechita, M.-T. Linking Nutrient Dynamics with Urbanization Degree and Flood Control Reservoirs on the Bahlui River. Water 2024, 16, 1322. [Google Scholar] [CrossRef]
- Ludikhuize, D.; Savin, A.; Schropp, M. A Sobek Model for the Bahlui River; Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling (RWS, RIZA): Lelystad, The Netherlands, 2004; 49p. [Google Scholar]
- Boariu, C.; Crăciun, I.; Giurma-Handley, C.-R.; Hrăniciuc, T.-A. Assessment of the impact of riverbed design on water quality--the case study of Bahlui River, Iaşi, Romania. Environ. Eng. Manag. J. 2013, 12, 625–635. [Google Scholar] [CrossRef]
- Crenganiş, L.M.; Telişcă, M. GIS application in water resources management and environmental engineering. Glob. J. Adv. Pure Appl. Sci. 2013, 1, 657–664. [Google Scholar]
- Barjoveanu, G.; Teodosiu, C.; Cojocariu, C.; Augustijn, D.; Craciun, I. Instruments for integrated water resources management: Water quality modeling for sustainable wastewater management. Environ. Eng. Manag. J. 2013, 12, 1679–1690. [Google Scholar] [CrossRef]
- Mihu-Pintilie, A.; Romanescu, G. Determining the potential hydrological risk associated to maximum flow in small hydrological subbasins with torrential character of the river Bahlui. Present Environ. Sustain. Dev. 2011, 5, 255–266. [Google Scholar]
- Minea, I. Minimum discharge in Bahlui basin and associated hydrologic risks. Aerul. Si Apa. Compon. Ale Mediu. 2010, 508–515. [Google Scholar]
- Minea, I. The evaluation of the water chemistry and quality for the lakes from the south of the Hilly Plain of Jijia (Bahlui drainage basin). Lakes Reserv. Ponds 2010, 4, 131–144. [Google Scholar]
- Boariu, C.; Bofu, C. Bahlui River Recreation Area Arrangement. Bul. Institutului Politeh. Din lasi. Sect. Constr. Arhit. 2015, 61, 23–32. [Google Scholar]
- Niculita, M.; Boca, B.; Minea, I. Analysis of Parcovaci and Ciurbesti (Iasi County, Romania) reservoirs sedimentation. In Proceedings of the 14th International Multidisciplinary Scientific GeoConference SGEM 2014, Albena, Bulgaria, 17–26 June 2014; pp. 43–50. [Google Scholar]
- Agapie, M.I.; Luca, M. Settlement monitoring of the earth dams by performance periodical topo-geodetic measurements. Present Environ. Sustain. Dev. 2020, 14, 99–109. [Google Scholar]
- Administration, P.-B.W.B. The Situation of the Accumulations in Iasi County Under the Administration of the A.B.A Prut-Bârlad—S.G.A. Iaşi. Available online: https://arhiva.isujis.ro/wp-content/uploads/2021/10/anexa-2-SITUATIA-ACUMULARILOR.Pdf (accessed on 22 March 2021).
- Parliament, R. Law on the Approval of the National Territory Planning Plan—Section III—Protected Areas; Official Monitor: Bucharest, Romania, 2000.
- Paliament, R. The Emergency Ordinance for the Amendment of Law No. 5/2000 Regarding the Approval of the National Territorial Planning Plan—Section III—Protected Areas; Official Monitor: Bucharest, Romania, 2016.
- Dughilă, A.; Iancu, O.G.; Râșcanu, I.D. Geochemical evaluation of quality indicators for the water of the Tansa Lake from the Jijia catchment, Romania. Carpathian J. Earth Environ. Sci. 2012, 7, 79–88. [Google Scholar]
- Stoleriu, A.F.; Breaban, I.G.; Stoleriu, A.P. Assessing Water Quality from Tansa Barrier Lake (Romania) Using Sentinel-2 Data. Int. Multidiscip. Sci. GeoConference SGEM 2021, 21, 247–254. [Google Scholar]
- Amarandei, C.; Negru, A.-G.; Soroaga, L.-V.; Cucu-Man, S.-M.; Olariu, R.-I.; Arsene, C. Assessment of surface water quality in the Podu Iloaiei Dam Lake (North-Eastern Romania): Potential implications for aquaculture activities in the area. Water 2021, 13, 2395. [Google Scholar] [CrossRef]
- Musteață, G.; Balan, I.; Pricop, C.; Balan, I. Studii privind siguranța în exploatare a acumulării Podu Iloaiei Studies regarding the safety in operation of Podu Iloaiei reservoir. In Proceedings of the INHGA—Scientific Conference, Bucharest, Romania, 10–11 November 2014; pp. 1–9. [Google Scholar]
- Soroaga, L.V.; Amarandei, C.; Negru, A.G.; Olariu, R.I.; Arsene, C. Assessment of the anthropogenic impact and distribution of potentially toxic and rare earth elements in lake sediments from North-Eastern Romania. Toxics 2022, 10, 242. [Google Scholar] [CrossRef]
- Decision no. 663 of 14 September 2016 on the Establishment of the Protected Natural Area Regime and the Declaration of the Special Avifauna Protection Areas as an Integral Part of the European Ecological Network Natura 2000 in Romania; Official Monitor: Bucharest, Romania, 2016.
- Prăjanu, C.-C.; Toma, D.; Vîrlan, C.-M.; Marcoie, N. Studies related to the biological treatment of wastewater within the wastewater treatment plant of Iași City. Ovidius Univ. Ann. Constanta-Ser. Civ. Eng. 2018, 20, 57–64. [Google Scholar] [CrossRef]
- Prăjanu, C.-C.; Stătescu, F.; Toma, D.; Toma, C.-M.V. Recognition and determination of hydrodynamic deficiencies in the bioreactors of a real wastewater treatment plant by a comprehensive approach: Live analysis using computational fluid dynamics. Environ. Eng. Manag. J. 2021, 20, 495–506. [Google Scholar] [CrossRef]
- Shehab, Z.N.; Farhhan, A.F.; Faisal, R.M. Spatial variation influence of landscape patterns on surface water quality across an urbanized watershed in Mosul city, Iraq. Sustain. Water Resour. Manag. 2024, 10, 181. [Google Scholar] [CrossRef]
- Nardini, A.; Yépez, S.; Mazzorana, B.; Ulloa, H.; Bejarano, M.D.; Laraque, A. A Systematic, Automated Approach for River Segmentation Tested on the Magdalena River (Colombia) and the Baker River (Chile). Water 2020, 12, 2827. [Google Scholar] [CrossRef]
- Parker, C.; Clifford, N.J.; Thorne, C.R. Automatic Delineation Of Functional River Reach Boundaries For River Research And Applications. River Res. Appl. 2012, 28, 1708–1725. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Reach_(geography) (accessed on 2 February 2025).
- Minea, I. Changes in the land use in the last century in the South part of Moldovia Plain. Sci. Papers Ser. A Agronomy 2011, 54, 155–159. [Google Scholar]
- Cohn, T.A. Estimating contaminant loads in rivers: An application of adjusted maximum likelihood to type 1 censored data. Water Resour. Res. 2005, 41, W07003. [Google Scholar] [CrossRef]
- Walling, D.E.; Webb, B.W. Estimating the discharge of contaminants to coastal waters by rivers: Some cautionary comments. Mar. Pollut. Bull. 1985, 16, 488–492. [Google Scholar] [CrossRef]
- Littlewood, I.G. Estimating Contaminant Loads in Rivers: A Review; Institute of Hydrology: Wallingford, UK, 1992. [Google Scholar]
- Phillips, J.M.; Webb, B.W.; Walling, D.E.; Leeks, G.J.L. Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrol. Process. 1999, 13, 1035–1050. [Google Scholar] [CrossRef]
- Fabian, P.S.; Kwon, H.-H.; Vithanage, M.; Lee, J.-H. Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: A review. Environ. Res. 2023, 225, 115617. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, Z.; Maavara, T.; Slowinski, S.; Van Cappellen, P. Effects of damming on river nitrogen fluxes: A global analysis. Glob. Biogeochem. Cycles 2019, 33, 1339–1357. [Google Scholar] [CrossRef]
- Bussi, G.; Janes, V.; Whitehead, P.G.; Dadson, S.J.; Holman, I.P. Dynamic response of land use and river nutrient concentration to long-term climatic changes. Sci. Total Environ. 2017, 590–591, 818–831. [Google Scholar] [CrossRef]
- Moatar, F.; Meybeck, M. Compared performances of different algorithms for estimating annual nutrient loads discharged by the eutrophic River Loire. Hydrol. Process. Int. J. 2005, 19, 429–444. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Y.; Xu, M.; Li, Z.; Qin, S. Optimizing Sampling Strategies for Estimating Riverine Nutrient Loads in the Yiluo River Watershed, China. Water 2024, 16, 1506. [Google Scholar] [CrossRef]
- Hudon, C.; Carignan, R. Cumulative impacts of hydrology and human activities on water quality in the St. Lawrence River (Lake Saint-Pierre, Quebec, Canada). Can. J. Fish. Aquat. Sci. 2008, 65, 1165–1180. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, A.I.; Jover, E.; Bodineau, L.; Albaigés, J.; Bayona, J.M. Organic contaminant loads into the Western Mediterranean Sea: Estimate of Ebro River inputs. Chemosphere 2006, 65, 224–236. [Google Scholar] [CrossRef]
- Boylan, G.L.; Cho, B.R. The Normal Probability Plot as a Tool for Understanding Data: A Shape Analysis from the Perspective of Skewness, Kurtosis, and Variability. Qual. Reliab. Eng. Int. 2012, 28, 249–264. [Google Scholar] [CrossRef]
- Duchesne, L.; Ouimet, R.; Camiré, C.; Houle, D. Seasonal nutrient transfers by foliar resorption, leaching, and litter fall in a northern hardwood forest at Lake Clair Watershed, Quebec, Canada. Can. J. For. Res. 2001, 31, 333–344. [Google Scholar] [CrossRef]
- Coppolino, J.; Munford, K.E.; Macrae, M.; Glasauer, S. Shifts in soil phosphorus fractions during seasonal transitions in a riparian floodplain wetland. Front. Environ. Sci. 2022, 10, 983129. [Google Scholar] [CrossRef]
- Breabăn, I.G.; Stan, O.C. The Influence of the Anthropogenic Activities on the Bahlui Water Quality, Holboca Section (Iassy county). Semin. Geogr. D. Cantemir 2006, 26, 169–179. [Google Scholar]
- Larsen, A.; Larsen, J.R.; Lane, S.N. Dam builders and their works: Beaver influences on the structure and function of river corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth-Sci. Rev. 2021, 218, 103623. [Google Scholar] [CrossRef]
- Pearce, C.; Vidon, P.; Lautz, L.; Kelleher, C.; Davis, J. Impact of beaver dam analogues on hydrology in a semi-arid floodplain. Hydrol. Process. 2021, 35, e14275. [Google Scholar] [CrossRef]
- Wohl, E.; Inamdar, S. Beaver Versus Human: The Big Differences in Small Dams. WIREs Water 2025, 12, e70019. [Google Scholar] [CrossRef]
Reservoir Name | Coordinates | Watercourse | Dam Elevation, m | Canopy Length, m | Normal Storage Capacity, m3∙106 | Water Surface, m2∙104 | Year of Completion |
---|---|---|---|---|---|---|---|
Accumulation Pârcovaci (A1) | 47°27′19″ N 26°48′47″ E | Bahlui | 25 | 290 | 2.75 | 48 | 1984 |
Tansa Lake (A2) | 47°17′30″ N 27°4′49″ E | Bahlui | 14.2 | 4890 | 6.79 | 289 | 1974 |
Accumulation Podu Iloaiei (A3) | 47.196842° N 27.191161° E | Bahlueț | 14.1 | 640 | 3.699 | 240.9 | 1964 |
Segment No. | 1st Segment | 2nd Segment | 3rd Segment | 4th Segment | |
---|---|---|---|---|---|
Range | S1–S2 | S2–S3 | S3–S4 | S4–S6 | |
Length (km) | 11.5 | 37.5 | 40 | 30 | |
Anthropogenic elements | A1 | A1, A2 | A2, A3 | A3, A4 | |
Reach stream | inlet | Natural | Direct dam controlled | Direct dam controlled | Indirect dam controlled |
outlet | Direct dam controlled | Direct dam controlled | Indirect dam controlled | Natural, influenced by the Iasi WWTP discharge | |
Land use | Forest, aquaculture | Vineyards, orchards, agriculture, and pastures | Agriculture, aquaculture, pastures, animal farms | Agriculture, highly urbanized area |
S1–S2 | NT (t/Season) | PT (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2011 | 4.06 | 0.12 | 4.00 | 3.81 | 0.14 | 0.00 | 0.27 | 2.16 |
2012 | - | 0.27 | 0.15 | 5.03 | - | 0.03 | 0.01 | 0.52 |
2013 | 7.31 | 1.59 | 2.23 | 0.52 | 1.47 | 0.02 | 0.05 | 0.03 |
2014 | 3.69 | 0.20 | 0.39 | 0.31 | 0.08 | 0.04 | 0.04 | 0.01 |
2015 | 0.24 | 0.20 | 0.19 | 1.32 | 0.01 | 0.01 | 0.01 | 0.05 |
2016 | 0.13 | 2.29 | 0.43 | 0.31 | 0.01 | 0.19 | 0.04 | 0.03 |
2017 | 1.02 | 0.71 | 0.62 | 0.63 | 0.25 | 0.07 | 0.01 | 0.02 |
2018 | 0.61 | 0.38 | 0.39 | 0.22 | 0.04 | 0.13 | 0.06 | 0.13 |
2019 | 0.26 | 0.23 | 0.79 | 0.29 | 0.19 | 0.08 | 0.64 | 0.04 |
2020 | 0.35 | 0.32 | 0.33 | 0.36 | 0.09 | 0.05 | 0.08 | 0.06 |
2021 | 0.30 | - | 6.15 | 0.14 | 0.04 | - | 0.20 | 0.01 |
2022 | 0.14 | 0.15 | 0.29 | 0.15 | 0.01 | 0.01 | 0.06 | 0.00 |
S1–S2 | COD (t/Season) | BOD (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2011 | 83.38 | 4.12 | 99.90 | 84.46 | 32.81 | 1.55 | 49.75 | 34.68 |
2012 | - | 5.92 | 8.00 | 321.17 | 2.09 | 2.96 | 115.76 | |
2013 | 200.52 | 12.55 | 17.95 | 10.91 | 57.35 | 2.92 | 5.38 | 2.43 |
2014 | 204.48 | 17.19 | 15.29 | 12.32 | 38.01 | 2.84 | 2.21 | 0.78 |
2015 | 3.66 | 4.85 | 8.88 | 32.20 | 0.57 | 1.01 | 1.25 | 5.96 |
2016 | 6.77 | 208.91 | 11.49 | 14.55 | 2.19 | 46.53 | 3.69 | 4.57 |
2017 | 26.62 | 16.81 | 14.63 | 14.75 | 8.47 | 5.38 | 4.46 | 5.15 |
2018 | 5.37 | 9.30 | 12.00 | 6.02 | 1.69 | 3.68 | 4.35 | 2.16 |
2019 | 4.38 | 10.94 | 67.21 | 10.72 | 1.51 | 3.59 | 23.56 | 3.47 |
2020 | 11.22 | 13.82 | 11.28 | 14.64 | 3.52 | 4.48 | 4.82 | 6.93 |
2021 | 10.29 | - | 220.26 | 11.81 | 4.82 | - | 105.65 | 5.98 |
2022 | 15.65 | 13.73 | 13.23 | 13.69 | 4.94 | 2.11 | 1.86 | 1.65 |
S2–S3 | NT (t/Season) | PT (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2015 | 78.77 | 4.96 | 0.20 | 1.87 | 0.74 | 0.09 | 0.02 | 0.04 |
2016 | 2.22 | 0.46 | 13.89 | 43.28 | 0.03 | 0.01 | 3.27 | 11.77 |
2017 | 2.87 | 38.48 | 1.06 | 1.32 | 0.04 | 1.86 | 0.07 | 0.18 |
2018 | 8.14 | 4.46 | 3.06 | 27.03 | 0.16 | 0.24 | 0.19 | 3.90 |
2019 | 6.03 | 6.71 | 4.76 | 4.22 | 0.30 | 0.39 | 0.28 | 0.28 |
2020 | 9.83 | 9.51 | 5.40 | 7.13 | 0.15 | 0.17 | 0.29 | 0.45 |
2021 | 12.25 | 16.54 | 21.80 | 1.82 | 0.21 | 0.86 | 4.69 | 0.36 |
2022 | 13.45 | 3.31 | 1.99 | 12.51 | 0.24 | 3.31 | 0.62 | 0.94 |
S2–S3 | COD (t/Season) | BOD (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2015 | 289.55 | 35.97 | 3.47 | 3.67 | 26.50 | 2.44 | 1.22 | 2.22 |
2016 | 3.08 | 2.46 | 341.28 | 732.34 | 0.98 | 0.88 | 125.31 | 257.05 |
2017 | 9.72 | 333.19 | 9.05 | 18.67 | 2.94 | 113.55 | 2.66 | 6.44 |
2018 | 12.26 | 29.30 | 15.36 | 532.69 | 4.38 | 9.75 | 4.71 | 198.62 |
2019 | 18.44 | 63.82 | 41.60 | 36.04 | 5.92 | 20.63 | 12.78 | 12.70 |
2020 | 29.63 | 18.94 | 38.60 | 92.18 | 13.32 | 8.33 | 19.31 | 40.88 |
2021 | 37.08 | 363.15 | 194.21 | 59.25 | 15.36 | 141.95 | 75.91 | 27.60 |
2022 | 36.38 | 49.47 | 53.08 | 183.19 | 16.99 | 23.63 | 20.07 | 53.25 |
S3–S4 | NT (t/Season) | PT (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2011 | 40.37 | 44.56 | 4.50 | 18.02 | 2.82 | 6.95 | 1.96 | 0.60 |
2012 | 9.58 | 11.18 | 2.34 | 0.48 | 1.09 | 0.22 | ||
2013 | 8.34 | 23.07 | 11.84 | 24.36 | 0.52 | 4.52 | 2.13 | 2.66 |
2014 | 19.57 | 28.68 | 2.89 | 1.12 | 7.50 | 0.17 | ||
2015 | 56.92 | 42.83 | 1.77 | 16.32 | 18.91 | 4.48 | 0.19 | 1.39 |
2016 | 4.86 | 17.47 | 1.71 | 11.57 | 0.19 | 1.14 | 0.18 | 1.57 |
2017 | 3.77 | 0.94 | 4.38 | 0.11 | 0.11 | 0.17 | - | |
2018 | 9.94 | 7.49 | 5.95 | 24.35 | 0.50 | 1.76 | 0.52 | 8.42 |
2019 | 13.73 | 30.61 | 7.34 | 10.85 | 0.75 | 3.69 | 1.52 | 1.32 |
2020 | 11.36 | 7.51 | 4.42 | 14.90 | 0.39 | 0.50 | 0.44 | 1.65 |
2021 | 9.45 | 19.11 | 11.63 | 9.96 | 0.20 | 1.45 | 2.60 | 0.83 |
2022 | 11.02 | 2.31 | 0.55 | 1.77 | 0.20 | 0.32 | 0.12 | 0.23 |
S3–S4 | COD (t/Season) | BOD (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2011 | 151.02 | 513.27 | 111.29 | 138.87 | 74.63 | 166.96 | 37.49 | 49.50 |
2012 | 59.60 | 190.84 | 33.63 | 20.84 | 61.09 | 10.86 | ||
2013 | 39.05 | 371.92 | 346.83 | 587.53 | 13.71 | 227.03 | 79.08 | 76.77 |
2014 | 132.12 | 795.45 | 25.63 | 18.33 | 145.08 | 5.48 | ||
2015 | 533.40 | 534.64 | 58.89 | 237.90 | 101.11 | 135.66 | 13.17 | 38.98 |
2016 | 62.94 | 229.82 | 15.47 | 192.64 | 21.58 | 84.24 | 8.84 | 56.53 |
2017 | 19.66 | 14.96 | 32.45 | 6.33 | 4.54 | 9.73 | ||
2018 | 29.15 | 60.16 | 70.32 | 485.28 | 9.38 | 20.59 | 24.12 | 186.86 |
2019 | 75.08 | 505.94 | 91.69 | 145.75 | 24.52 | 183.80 | 31.56 | 48.42 |
2020 | 78.79 | 56.73 | 47.05 | 176.99 | 31.65 | 18.95 | 25.74 | 83.96 |
2021 | 37.31 | 89.44 | 222.22 | 132.05 | 16.73 | 31.23 | 99.22 | 57.58 |
2022 | 37.67 | 25.81 | 7.58 | 37.61 | 15.57 | 3.36 | 0.94 | 12.03 |
S4–S6 | NT (t/Season) | PT (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2011 | 268.70 | 259.70 | 162.87 | 230.16 | 26.32 | 30.72 | 23.11 | 26.08 |
2012 | 255.05 | 222.14 | 244.12 | 183.81 | 24.56 | 25.18 | 22.15 | 22.69 |
2013 | 284.19 | 286.47 | 240.36 | 322.27 | 12.10 | 31.79 | 27.53 | 29.98 |
2014 | 295.53 | 529.08 | 259.07 | 181.62 | 22.52 | 81.12 | 30.11 | 27.87 |
2015 | 370.32 | 238.23 | 81.92 | 134.19 | 69.44 | 33.20 | 25.14 | 16.40 |
2016 | 127.05 | 112.67 | 104.73 | 459.00 | 9.05 | 5.55 | 7.29 | 49.78 |
2017 | 108.10 | 205.96 | 83.69 | 168.73 | 4.90 | 14.48 | 12.50 | 14.83 |
2018 | 223.27 | 99.93 | 201.34 | 170.96 | 29.51 | 17.32 | 16.22 | 36.25 |
2019 | 301.61 | 324.64 | 76.03 | 170.95 | 31.72 | 25.54 | 14.68 | 20.28 |
2020 | 133.81 | 189.62 | 96.81 | 99.72 | 22.97 | 23.07 | 12.15 | 10.91 |
2021 | 157.09 | 142.16 | 144.69 | 210.75 | 12.70 | 18.16 | 19.24 | 13.26 |
2022 | 181.09 | 138.39 | 147.26 | 214.04 | 18.93 | 14.48 | 24.19 | 17.39 |
S4–S6 | COD (t/Season) | BOD (t/Season) | ||||||
---|---|---|---|---|---|---|---|---|
Year | 1. Winter | 2. Spring | 3. Summer | 4. Autumn | 1. Winter | 2. Spring | 3. Summer | 4. Autumn |
2011 | 1218.74 | 1238.94 | 727.90 | 834.59 | 386.56 | 494.74 | 260.81 | 263.42 |
2012 | 283.39 | 327.71 | 381.10 | 275.71 | 117.13 | 152.66 | 135.13 | 102.24 |
2013 | 379.54 | 1407.91 | 1312.56 | 801.92 | 132.01 | 719.68 | 209.81 | 99.93 |
2014 | 708.19 | 5593.43 | 1138.84 | 1144.13 | 192.95 | 1047.26 | 43.23 | 191.13 |
2015 | 1015.08 | 1921.31 | 291.88 | 651.33 | 182.52 | 307.39 | 55.60 | 115.85 |
2016 | 437.05 | 298.12 | 385.25 | 4244.60 | 144.52 | 110.95 | 131.08 | 1456.77 |
2017 | 306.77 | 1779.65 | 336.86 | 1273.19 | 105.55 | 450.54 | 105.57 | 436.52 |
2018 | 595.75 | 990.31 | 805.10 | 797.08 | 191.22 | 314.28 | 285.33 | 310.17 |
2019 | 1007.70 | 1680.02 | 483.68 | 1304.99 | 342.61 | 561.07 | 155.59 | 437.19 |
2020 | 456.08 | 721.17 | 411.66 | 424.75 | 151.45 | 236.07 | 174.40 | 200.75 |
2021 | 439.19 | 555.15 | 870.17 | 657.01 | 189.72 | 214.98 | 361.30 | 294.44 |
2022 | 410.50 | 473.75 | 609.00 | 376.06 | 192.24 | 74.54 | 127.28 | 45.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcoie, N.; Toma, I.O.; Chihaia, Ș.; Hrăniciuc, T.A.; Toma, D.; Balan, C.D.; Drăgoi, E.N.; Nechita, M.-T. Anthropogenic River Segmentation Case Study: Bahlui River from Romania. Hydrology 2025, 12, 224. https://doi.org/10.3390/hydrology12090224
Marcoie N, Toma IO, Chihaia Ș, Hrăniciuc TA, Toma D, Balan CD, Drăgoi EN, Nechita M-T. Anthropogenic River Segmentation Case Study: Bahlui River from Romania. Hydrology. 2025; 12(9):224. https://doi.org/10.3390/hydrology12090224
Chicago/Turabian StyleMarcoie, Nicolae, Ionuț Ovidiu Toma, Șerban Chihaia, Tomi Alexandrel Hrăniciuc, Daniel Toma, Cătălin Dumitrel Balan, Elena Niculina Drăgoi, and Mircea-Teodor Nechita. 2025. "Anthropogenic River Segmentation Case Study: Bahlui River from Romania" Hydrology 12, no. 9: 224. https://doi.org/10.3390/hydrology12090224
APA StyleMarcoie, N., Toma, I. O., Chihaia, Ș., Hrăniciuc, T. A., Toma, D., Balan, C. D., Drăgoi, E. N., & Nechita, M.-T. (2025). Anthropogenic River Segmentation Case Study: Bahlui River from Romania. Hydrology, 12(9), 224. https://doi.org/10.3390/hydrology12090224