Evaluation of Analytical Solutions Based on the Assumption of One-Dimensional Groundwater Flow Using Numerical Solutions for Two-Dimensional Flows
Abstract
1. Introduction
2. The Groundwater Flow Simulation Models
2.1. Numerical Flow Simulation—A Short Outline of the Boundary Element Method
2.2. Analytical Groundwater Flow Simulation
3. The Fictitious Flow Field
4. Simulation Results
4.1. Analytical Approach
4.2. Results of the BEM Simulation
4.3. Comparison of Analytical and Numerical Results
Additional Investigation
5. Additional Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Node | φ (m) | q (-) | Flow Rate (m3/s) |
---|---|---|---|
Zone 1 | |||
1 (37.5, 0.0) | 19.04 | 0.0000 | 0.0000 |
2 (112.5, 0.0) | 16.90 | 0.0000 | 0.0000 |
3 (187.5, 0.0) | 14.68 | 0.0000 | 0.0000 |
4 (262.5,0.0) | 12.28 | 0.0000 | 0.0000 |
5 (300.0, 25.0) | 11.14 | −0.0371 | −0.00186 |
6 (300.0, 75.0) | 11.23 | −0.0323 | −0.00162 |
7 (300.0, 125.0) | 11.40 | −0.0326 | −0.00163 |
8 (300.0, 175.0) | 11.67 | −0.0405 | −0.00203 |
9 (262.5, 200.0) | 13.11 | 0.0116 | 0.00087 |
10 (187.5, 200.0) | 15.29 | 0.0062 | 0.00047 |
11 (112.5, 200.0) | 17.27 | 0.0037 | 0.00028 |
12 (37.5, 200.0) | 19.16 | 0.0011 | 0.00008 |
13 (0.0, 175.0) | 20.00 | 0.0273 | 0.00137 |
14 (0.0, 125.0) | 20.00 | 0.0252 | 0.00126 |
15 (0.0, 75.0) | 20.00 | 0.0259 | 0.00130 |
16 (0.0, 25.0) | 20.00 | 0.0304 | 0.00152 |
Zone 2 | |||
5 (300.0, 25.0) | 11.14 | 0.0074 | 0.00186 |
6 (300.0, 75.0) | 11.23 | 0.0065 | 0.00162 |
7 (300.0, 125.0) | 11.40 | 0.0065 | 0.00163 |
8 (300.0, 175.0) | 11.67 | 0.0081 | 0.00203 |
17 (337.5, 0.0) | 10.88 | 0.0000 | 0.0000 |
18 (412.5, 0.0) | 10.19 | 0.0000 | 0.0000 |
19 (487.5, 0.0) | 9.35 | 0.0000 | 0.0000 |
20 (562.5, 0.0) | 8.36 | 0.0000 | 0.0000 |
21 (600.0, 25.0) | 7.86 | −0.0163 | −0.00407 |
22 (600.0, 75.0) | 7.92 | −0.0143 | −0.00358 |
23 (600.0, 125.0) | 8.04 | −0.0147 | −0.00367 |
24 (600.0, 175.0) | 8.23 | −0.0190 | −0.00474 |
25 (562.5, 200.0) | 8.95 | 0.0081 | 0.00304 |
26 (487.5, 200.0) | 9.83 | 0.0039 | 0.00147 |
27 (412.5, 200.0) | 10.70 | 0.0043 | 0.00159 |
28 (337.5, 200.0) | 11.56 | 0.0076 | 0.00285 |
Zone 3 | |||
21 (600.0, 25.0) | 7.86 | 0.0272 | 0.00407 |
22 (600.0, 75.0) | 7.92 | 0.0239 | 0.00358 |
23 (600.0, 125.0) | 8.04 | 0.0245 | 0.00367 |
24 (600.0, 175.0) | 8.23 | 0.0316 | 0.00474 |
29 (637.5, 0.0) | 6.99 | 0.0000 | 0.0000 |
30 (712.5, 0.0) | 5.01 | 0.0000 | 0.0000 |
31 (787.5, 0.0) | 2.99 | 0.0000 | 0.0000 |
32 (862.5, 0.0) | 0.94 | 0.0000 | 0.0000 |
33 (900.0, 25.0) | 0.00 | −0.00298 | −0.00446 |
34 (900.0, 75.0) | 0.00 | −0.0258 | −0.00388 |
35 (900.0, 125.0) | 0.00 | −0.0259 | −0.00389 |
36 (900.0, 175.0) | 0.00 | −0.0300 | −0.00450 |
37 (862.5, 200.0) | 0.95 | 0.0000 | 0.00001 |
38 (787.5, 200.0) | 3.03 | 0.0001 | 0.00003 |
39 (712.5, 200.0) | 5.13 | 0.0005 | 0.00011 |
40 (637.5, 200.0) | 7.31 | 0.0023 | 0.00053 |
Zone 4 | |||
9 (262.5, 200.0) | 13.11 | −0.0058 | −0.00087 |
10 (187.5, 200.0) | 15.29 | −0.0031 | −0.00047 |
11 (112.5, 200.0) | 17.27 | −0.0058 | −0.00028 |
12 (37.5, 200.0) | 19.16 | −0.0006 | −0.00008 |
41 (300.0, 225.0) | 12.25 | −0.0325 | −0.00325 |
42 (300.0, 275.0) | 12.61 | −0.0269 | −0.00269 |
43 (300.0, 325.0) | 12.99 | −0.0281 | −0.00281 |
44 (300.0, 375.0) | 13.42 | - 0.0442 | −0.00442 |
45 (262.5, 400.0) | 15.14 | 0.0254 | 0.00381 |
46 (187.5, 400.0) | 16.56 | 0.0085 | 0.00128 |
47 (112.5, 400.0) | 17.95 | 0.0044 | 0.00067 |
48 (37.5, 400.0) | 19.36 | 0.0012 | 0.00019 |
49 (0.0, 375.0) | 20.00 | 0.0210 | 0.00210 |
50 (0.0, 325.0) | 20.00 | 0.0202 | 0.00202 |
51 (0.0, 275.0) | 20.00 | 0.0216 | 0.00216 |
52 (0.0, 225.0) | 20.00 | 0.0265 | 0.00265 |
Zone 5 | |||
25 (562.5, 200.0) | 8.95 | −0.0101 | −0.00304 |
26 (487.5, 200.0) | 9.83 | −0.0049 | −0.00147 |
27 (412.5, 200.0) | 10.70 | −0.0053 | −0.00159 |
28 (337.5, 200.0) | 11.55 | −0.0095 | −0.00285 |
41 (300.0, 225.0) | 12.25 | 0.0162 | 0.00325 |
42 (300.0, 275.0) | 12.61 | 0.0134 | 0.00269 |
43 (300.0, 325.0) | 12.99 | 0.0141 | 0.00281 |
44 (300.0, 375.0) | 13.42 | 0.0221 | 0.00442 |
53 (600.0, 225.0) | 8.94 | −0.0057 | −0.00114 |
54 (600.0, 275.0) | 9.23 | −0.0048 | −0.00097 |
55 (600.0, 325.0) | 9.35 | −0.0051 | −0.00102 |
56 (600.0, 375.0) | 9.27 | −0.0080 | −0.00159 |
57 (562.5, 400.0) | 9.48 | −0.0040 | −0.00120 |
58 (487.5, 400.0) | 10.42 | −0.0001 | −0.00004 |
59 (412.5, 400.0) | 11.53 | 0.0012 | 0.00035 |
60 (337.5, 400.0) | 12.88 | 0.0046 | 0.00138 |
Zone 6 | |||
37 (862.5, 200.0) | 0.95 | −0.0001 | −0.00001 |
38 (787.5, 200.0) | 3.03 | −0.0008 | −0.00003 |
39 (712.5, 200.0) | 5.13 | −0.0028 | −0.00011 |
40 (637.5, 200.0) | 7.31 | −0.0141 | −0.00053 |
53 (600.0, 225.0) | 8.94 | 0.0458 | 0.00114 |
54 (600.0, 275.0) | 9.23 | 0.0386 | 0.00097 |
55 (600.0, 325.0) | 9.35 | 0.0409 | 0.00102 |
56 (600.0, 375.0) | 9.27 | 0.0636 | 0.00159 |
61 (900.0, 225.0) | 0.00 | −0.0301 | −0.00075 |
62 (900.0, 275.0) | 0.00 | −0.0261 | −0.00065 |
63 (900.0, 325.0) | 0.00 | −0.0258 | −0.00064 |
64 (900.0, 375.0) | 0.00 | −0.0288 | −0.00072 |
65 (862.5, 400.0) | 0.89 | −0.0007 | −0.00003 |
66 (787.5, 400.0) | 2.87 | −0.0026 | −0.00010 |
67 (712.5, 400.0) | 4.89 | −0.0058 | −0.00022 |
68 (637.5, 400.0) | 7.06 | −0.0253 | −0.00095 |
Zone 7 | |||
45 (262.5, 400.0) | 15.14 | −0.0169 | −0.00381 |
46 (187.5, 400.0) | 16.56 | −0.0057 | −0.00128 |
47 (112.5, 400.0) | 17.95 | −0.0030 | −0.00067 |
48 (37.5, 400.0) | 19.36 | −0.0008 | −0.00019 |
69 (300.0, 425.0) | 15.14 | −0.0095 | −0.00143 |
70 (300.0, 475.0) | 15.73 | −0.0063 | −0.00094 |
71 (300.0, 525.0) | 16.08 | −0.0060 | −0.00091 |
72 (300.0, 575.0) | 16.24 | −0.0069 | −0.00103 |
73 (262.5, 600.0) | 16.51 | 0.0000 | 0.0000 |
74 (187.5, 600.0) | 17.30 | 0.0000 | 0.0000 |
75 (112.5, 600.0) | 18.32 | 0.0000 | 0.0000 |
76 (37.5, 600.0) | 19.46 | 0.0000 | 0.0000 |
77 (0.0, 575.0) | 20.00 | 0.0171 | 0.00256 |
78 (0.0, 525.0) | 20.00 | 0.0153 | 0.00229 |
79 (0.0, 475.0) | 20.00 | 0.0160 | 0.00240 |
80 (0.0, 425.0) | 20.00 | 0.0199 | 0.00299 |
Zone 8 | |||
57 (562.5, 400.0) | 9.48 | 0.0319 | 0.00120 |
58 (487.5, 400.0) | 10.42 | 0.0011 | 0.00004 |
59 (412.5, 400.0) | 11.53 | −0.0093 | −0.00035 |
60 (337.5, 400.0) | 12.88 | −0.0368 | −0.00138 |
69 (300.0, 425.0) | 15.14 | 0.0572 | 0.00143 |
70 (300.0, 475.0) | 15.73 | 0.0376 | 0.00094 |
71 (300.0, 525.0) | 16.08 | 0.0362 | 0.00091 |
72 (300.0, 575.0) | 16.24 | 0.0413 | 0.00103 |
81 (600.0, 425.0) | 7.57 | −0.0484 | −0.00121 |
82 (600.0, 475.0) | 7.03 | −0.0335 | −0.00084 |
83 (600.0, 525.0) | 6.74 | −0.0329 | −0.00082 |
84 (600.0, 575.0) | 6.60 | −0.0380 | −0.00095 |
85 (562.5, 600.0) | 7.75 | 0.0000 | 0.0000 |
86 (487.5, 600.0) | 10.14 | 0.0000 | 0.0000 |
87 (412.5, 600.0) | 12.46 | 0.0000 | 0.0000 |
88 (337.5, 600.0) | 14.99 | 0.0000 | 0.0000 |
Zone 9 | |||
65 (862.5, 400.0) | 0.89 | 0.0003 | 0.00003 |
66 (787.5, 400.0) | 2.87 | 0.0013 | 0.00010 |
67 (712.5, 400.0) | 4.89 | 0.0029 | 0.00022 |
68 (637.5, 400.0) | 7.06 | 0.0127 | 0.00095 |
81 (600.0, 425.0) | 7.57 | 0.0242 | 0.00121 |
82 (600.0, 475.0) | 7.03 | 0.0167 | 0.00084 |
83 (600.0, 525.0) | 6.74 | 0.0165 | 0.00082 |
84 (600.0, 575.0) | 6.60 | 0.0190 | 0.00095 |
89 (900.0, 425.0) | 0.00 | −0.0282 | −0.00141 |
90 (900.0, 475.0) | 0.00 | −0.0238 | −0.00119 |
91 (900.0, 525.0) | 0.00 | −0.0234 | −0.00117 |
92 (900.0, 575.0) | 0.00 | −0.027 | −0.00133 |
93 (862.5, 600.0) | 0.84 | 0.0000 | 0.0000 |
94 (787.5, 600.0) | 2.66 | 0.0000 | 0.0000 |
95 (712.5, 600.0) | 4.39 | 0.0000 | 0.0000 |
96 (637.5, 600.0) | 5.96 | 0.0000 | 0.0000 |
References
- de Marsily, G.; Delay, F.; Teles, V.; Schafmeister, M.T. Some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeol. J. 1998, 6, 115–130. [Google Scholar] [CrossRef]
- Plato. Timaeus, 360 BC. Available online: https://scaife.perseus.org/reader/urn:cts:greekLit:tlg0059.tlg031.perseus-eng2:29 (accessed on 1 July 2025).
- Bear, J. Hydraulics of Groundwater; Dover Publications: Mineola, NY, USA, 1979. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall. Inc.: Englewood Cliffs, NJ, USA, 1979; pp. 30–34. [Google Scholar]
- Katsifarakis, K.L.; Petala, Z. Combining genetic algorithms and boundary elements to optimize coastal aquifers’ management. J. Hydrol. 2006, 327, 200–207. [Google Scholar] [CrossRef]
- Moutsopoulos, K.N.; Tsihrintzis, V.A. Analytical Solutions and Simulation Approaches for Double Permeability Aquifers. Water Resour. Manag. 2009, 23, 395–415. [Google Scholar] [CrossRef]
- Brebbia, C.A. The Boundary Element Method for Engineers; Pentech Press: London, UK, 1978. [Google Scholar]
- Kirkup, S. The Boundary Element Method in Acoustics: A Survey. Appl. Sci. 2019, 9, 1642. [Google Scholar] [CrossRef]
- Kleanthous, A.; Baran, A.J.; Betcke, T.; Hewett, D.P.; Westbrook, C.D. An application of the boundary element method (BEM) to the calculation of the single-scattering properties of very complex ice crystals in the microwave and sub-millimetre regions of the electromagnetic spectrum. J. Quant. Spectrosc. Radiat. Transf. 2024, 312, 108793. [Google Scholar] [CrossRef]
- Xu, Y.; Jackson, R.L. Boundary element method (BEM) applied to the rough surface contact vs. BEM in computational mechanics. Friction 2019, 7, 359–371. [Google Scholar] [CrossRef]
- Katsifarakis, K.L. Boundary conditions for mathematical model of flows through fractured rocks. Adv. Water Resour. 1994, 17, 265–267. [Google Scholar] [CrossRef]
- El Harrouni, K.; Ouazar, D.; Walters, G.A.; Cheng, A.H.-D. Groundwater optimization and parameter estimation by genetic algorithm and dual reciprocity boundary element method. Eng. Anal. Bound. Elem. 1996, 18, 287–296. [Google Scholar] [CrossRef]
- Lesnic, D.; Elliott, L.; Ingham, D.B. A boundary element method for the determination of the transmissivity of a heterogeneous aquifer in groundwater flow systems. Eng. Anal. Bound. Elem. 1998, 21, 223–234. [Google Scholar] [CrossRef]
- Katsifarakis, K.L.; Karpouzos, D.K.; Theodossiou, N. Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems. Eng. Anal. Bound. Elem. 1999, 23, 555–565. [Google Scholar] [CrossRef]
- Luo, W.; Wang, J.; Wang, L.; Zhou, Y. An alternative BEM for simulating the flow behavior of a leaky confined fractured aquifer with the use of the semianalytical approach. Water Resour. Res. 2020, 56, e2019WR026581. [Google Scholar] [CrossRef]
- Liu, Y.J.; Mukherjee, S.; Nishimura, N.; Schanz, M.; Ye, W.; Sutradhar, A.; Pan, E.; Dumont, N.A.; Frangi, A.; Saez, A. Recent Advances and Emerging Applications of the Boundary Element Method. ASME. Appl. Mech. Rev. 2011, 64, 030802. [Google Scholar] [CrossRef]
- Zabala, I.; Henriques, J.C.C.; Kelly, T.E.; Ricci, P.P.; Blanco, J.M. Post-processing techniques to improve the results of hydrodynamic Boundary Element Method solvers. Ocean Eng. 2024, 295, 116913. [Google Scholar] [CrossRef]
- Katsikadelis, J.T. The Boundary Element Method for Engineers and Scientists. Theory and Applications, 2nd ed.; Elsevier: London, UK, 2016. [Google Scholar]
- Gwinner, J.; Stephan, E.P. Advanced Boundary Element Methods. Treatment of Boundary Value, Transmission and Contact Problems; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Polubarinova-Kochina, P.Y. Theory of Groundwater Movement; Roger De Wiest, J.M., Translator; Princeton University Press: Princeton, NJ, USA, 1962; Chapter 8. [Google Scholar]
- Chakrabarty, D. Extended Inequality Satisfied by Pythagorean Classical Means. Partn. Univ. Int. Innov. J. 2024, 2, 13–18. [Google Scholar] [CrossRef]
Zone Number | Transmissivity (m2/s) | Zone Number | Transmissivity (m2/s) | Zone Number | Transmissivity (m2/s) |
---|---|---|---|---|---|
1 | 0.001 | 2 | 0.005 | 3 | 0.003 |
4 | 0.002 | 5 | 0.004 | 6 | 0.0005 |
7 | 0.003 | 8 | 0.0005 | 9 | 0.001 |
Zone Number | Transmissivity (m2/s) | Zone Number | Transmissivity (m2/s) | Zone Number | Transmissivity (m2/s) |
---|---|---|---|---|---|
1 | 0.001 | 2 | 0.002 | 3 | 0.003 |
4 | 0.005 | 5 | 0.004 | 6 | 0.0005 |
7 | 0.003 | 8 | 0.0005 | 9 | 0.001 |
Zone Number | Prj | Zone Number | Prj | Zone Number | Prj |
---|---|---|---|---|---|
1 | 0.00068 | 2 | 0.00133 | 3 | 0.00001 |
4 | 0.00086 | 5 | −0.00143 | 6 | −0.00108 |
7 | −0.00126 | 8 | −0.00031 | 9 | 0.00040 |
Zone Number | Transmissivity (m2/s) | Zone Number | Transmissivity (m2/s) | Zone Number | Transmissivity (m2/s) |
---|---|---|---|---|---|
1 | 0.001 | 2 | 0.009 | 3 | 0.003 |
4 | 0.002 | 5 | 0.004 | 6 | 0.0001 |
7 | 0.008 | 8 | 0.0002 | 9 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsifarakis, K.L.; Kontos, Y.N.; Keremidis, O. Evaluation of Analytical Solutions Based on the Assumption of One-Dimensional Groundwater Flow Using Numerical Solutions for Two-Dimensional Flows. Hydrology 2025, 12, 226. https://doi.org/10.3390/hydrology12090226
Katsifarakis KL, Kontos YN, Keremidis O. Evaluation of Analytical Solutions Based on the Assumption of One-Dimensional Groundwater Flow Using Numerical Solutions for Two-Dimensional Flows. Hydrology. 2025; 12(9):226. https://doi.org/10.3390/hydrology12090226
Chicago/Turabian StyleKatsifarakis, Konstantinos L., Yiannis N. Kontos, and Odysseas Keremidis. 2025. "Evaluation of Analytical Solutions Based on the Assumption of One-Dimensional Groundwater Flow Using Numerical Solutions for Two-Dimensional Flows" Hydrology 12, no. 9: 226. https://doi.org/10.3390/hydrology12090226
APA StyleKatsifarakis, K. L., Kontos, Y. N., & Keremidis, O. (2025). Evaluation of Analytical Solutions Based on the Assumption of One-Dimensional Groundwater Flow Using Numerical Solutions for Two-Dimensional Flows. Hydrology, 12(9), 226. https://doi.org/10.3390/hydrology12090226