Hydrogeochemical Characterization of an Intermontane Aquifer Contaminated with Arsenic and Fluoride via Clustering Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrogeology
2.3. Sampling and Laboratory Analysis
2.4. Data Analysis
2.4.1. Multivariate Analysis and Hydrogeochemical Diagrams
2.4.2. Geographical Information Systems (GIS)
3. Results and Discussion
3.1. Basic Statistical Analysis and Piper Diagram
3.2. Grouping Tendency
3.2.1. Hierarchical Clustering Algorithm (40 Wells)
3.2.2. Dataset k-Means Algorithm (40-Well Original Dataset)
3.2.3. Comparison between Clustering Methods (40 Wells)
3.2.4. Comparison between Clustering Methods (34 Wells)
3.3. Clustering Quality Computation
3.4. Hydrogeochemical Analysis
3.5. As and F Co-Occurrence in the Valle del Guadiana Aquifer
3.6. Groundwater Management and Risk Mitigation in the Case of As and F Co-Occurrence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdul, K.S.M.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M.C.S. Arsenic and Human Health Effects: A Review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Arsenic. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic#:~:text=Long%2Dterm%20exposure%20to%20arsenic,increased%20deaths%20in%20young%20adults (accessed on 21 August 2023).
- Hurtado-Jiménez, R.; Gardea-Torresdey, J.L. Arsenic in Drinking Water in the Los Altos de Jalisco Region of Mexico. Rev. Panam. Salud Pública 2006, 20, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Chakraborty, R.; Bundschuh, J.; Bhattacharya, P.; Parvez, F. Health Effects of Arsenic Exposure in Latin America: An Overview of the Past Eight Years of Research. Sci. Total Environ. 2020, 710, 136071. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Loira, B.; Cebrián, M.E.; López-Carrillo, L. Arsenic Exposure in Northern Mexican Women. Salud Publica Mex. 2020, 62, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, J.; Aguilar-Barajas, I.; Farias, P.; Knappett, P.S.K.; Torres-Martínez, J.A.; Hoogesteger, J.; Lara, R.H.; Ramírez-Mendoza, R.A.; Mora, A. Hydrochemical Controls on Arsenic Contamination and Its Health Risks in the Comarca Lagunera Region (Mexico): Implications of the Scientific Evidence for Public Health Policy. Sci. Total Environ. 2023, 857, 159347. [Google Scholar] [CrossRef] [PubMed]
- Solanki, Y.S.; Agarwal, M.; Gupta, A.B.; Gupta, S.; Shukla, P. Fluoride Occurrences, Health Problems, Detection, and Remediation Methods for Drinking Water: A Comprehensive Review. Sci. Total Environ. 2022, 807, 150601. [Google Scholar] [CrossRef] [PubMed]
- Hug, S.J.; Winkel, L.H.E.; Voegelin, A.; Berg, M.; Johnson, A.C. Arsenic and Other Geogenic Contaminants in Groundwater—A Global Challenge. Chimia 2020, 74, 524. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.K.; Tripathi, P. Arsenic and Fluoride Contamination in Groundwater: A Review of Global Scenarios with Special Reference to India. Groundw. Sustain. Dev. 2021, 13, 100576. [Google Scholar] [CrossRef]
- Peel, H.R.; Balogun, F.O.; Bowers, C.A.; Miller, C.T.; Obeidy, C.S.; Polizzotto, M.L.; Tashnia, S.U.; Vinson, D.S.; Duckworth, O.W. Towards Understanding Factors Affecting Arsenic, Chromium, and Vanadium Mobility in the Subsurface. Water 2022, 14, 3687. [Google Scholar] [CrossRef]
- Ortiz Pérez, M.D. Panorama de La Calidad de Agua de Consumo Humano En México. In Hacia el Cumplimiento del Derecho Humano al Agua. Arsénico y Fluoruro en Agua: Riesgos y Perspectivas Desde la Sociedad Civil y la Academia en México; Del Razo, L.M., Ledón, J.M., Velasco, M.N., Eds.; UNAM-Instituto de Geofísica: Ciudad de México, Mexico, 2021; pp. 19–22. [Google Scholar]
- Ortiz, D.; Castro, L.; Turrubiates, F.; Milan, J.; Díaz-Barriga, F. Assessment of the Exposure to Fluoride from Drinking Water in Durango, Mexico, Using a Geographic Information System. Fluoride 1998, 31, 183–187. [Google Scholar]
- Pérez-Vázquez, F.J.; González-Martell, A.D.; Fernández-Macias, J.C.; Rocha-Amador, D.O.; González-Palomo, A.K.; Ilizaliturri-Hernández, C.A.; González-Mille, D.J.; Cilia-Lopez, V.G. Health Risk Assessment in Children Living in an Urban Area with Hydrofluorosis: San Luis Potosí Mexico Case Study. J. Trace Elem. Med. Biol. 2021, 68, 126863. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Gómez, V.M.; Alarcón-Herrera, M.T.; Gutiérrez, M.; López, D.N. Fluoride and Arsenic in an Alluvial Aquifer System in Chihuahua, Mexico: Contaminant Levels, Potential Sources, and Co-Occurrence. Water Air Soil Pollut. 2013, 224, 1433. [Google Scholar] [CrossRef]
- Valdez-Alegría, C.J.; Fuentes-Rivas, R.M.; García-Rivas, J.L.; Fonseca-Montes de Oca, R.M.G.; García-Gaitán, B. Presence and Distribution of Fluoride Ions in Groundwater for Human in a Semiconfined Volcanic Aquifer. Resources 2019, 8, 116. [Google Scholar] [CrossRef]
- Armienta, M.A.; Segovia, N. Arsenic and Fluoride in the Groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Navarro, O.; González, J.; Júnez-Ferreira, H.E.; Bautista, C.-F.; Cardona, A. Correlation of Arsenic and Fluoride in the Groundwater for Human Consumption in a Semiarid Region of Mexico. Procedia Eng. 2017, 186, 333–340. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Alarcón-Herrera, M.T.; Gaytán-Alarcón, A.P. Arsenic and Fluorine in Groundwater in Northern Mexico: Spatial Distribution and Enrichment Factors. Environ. Monit. Assess. 2023, 195, 212. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.; Torres-Martínez, J.A.; Moreau, C.; Bertrand, G.; Mahlknecht, J. Mapping Salinization and Trace Element Abundance (Including as and Other Metalloids) in the Groundwater of North-Central Mexico Using a Double-Clustering Approach. Water Res. 2021, 205, 117709. [Google Scholar] [CrossRef] [PubMed]
- Muniz, D.H.F.; Oliveira-Filho, E.C. Multivariate Statistical Analysis for Water Quality Assessment: A Review of Research Published between 2001 and 2020. Hydrology 2023, 10, 196. [Google Scholar] [CrossRef]
- Bastianoni, A.; Guastaldi, E.; Barbagli, A.; Bernardinetti, S.; Zirulia, A.; Brancale, M.; Colonna, T. Multivariate Analysis Applied to Aquifer Hydrogeochemical Evaluation: A Case Study in the Coastal Significant Subterranean Water Body between “Cecina River and San Vincenzo”, Tuscany (Italy). Appl. Sci. 2021, 11, 7595. [Google Scholar] [CrossRef]
- Bu, J.; Liu, W.; Pan, Z.; Ling, K. Comparative Study of Hydrochemical Classification Based on Different Hierarchical Cluster Analysis Methods. Int. J. Environ. Res. Public Health 2020, 17, 9515. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.W.; Wan, L.; Han, G.; Guo, H. Hydrogeochemical Characterization of Groundwater Flow Systems in the Discharge Area of a River Basin. J. Hydrol. 2015, 527, 433–441. [Google Scholar] [CrossRef]
- Wunsch, A.; Liesch, T.; Broda, S. Feature-Based Groundwater Hydrograph Clustering Using Unsupervised Self-Organizing Map-Ensembles. Water Resour. Manag. 2022, 36, 39–54. [Google Scholar] [CrossRef]
- Mora, A.; Rosales-Lagarde, L.; Hernández-Antonio, A.; Mahlknecht, J. Hydrogeochemistry of Groundwater Supplied to the City of Monterrey, Mexico. Procedia Earth Planet. Sci. 2017, 17, 356–359. [Google Scholar] [CrossRef]
- Ramos, E.; Bux, R.K.; Medina, D.I.; Barrios-Piña, H.; Mahlknecht, J. Spatial and Multivariate Statistical Analyses of Human Health Risk Associated with the Consumption of Heavy Metals in Groundwater of Monterrey Metropolitan Area, Mexico. Water 2023, 15, 1243. [Google Scholar] [CrossRef]
- Marín-Celestino, A.E.; Martínez-Cruz, D.A.; Otazo-Sánchez, E.M.; Gavi-Reyes, F.; Vásquez-Soto, D. Groundwater Quality Assessment: An Improved Approach to K-Means Clustering, Principal Component Analysis and Spatial Analysis: A Case Study. Water 2018, 10, 437. [Google Scholar] [CrossRef]
- Marín Celestino, A.E.; Ramos Leal, J.A.; Martínez Cruz, D.A.; Tuxpan Vargas, J.; De Lara Bashulto, J.; Morán Ramírez, J. Identification of the Hydrogeochemical Processes and Assessment of Groundwater Quality, Using Multivariate Statistical Approaches and Water Quality Index in a Wastewater Irrigated Region. Water 2019, 11, 1702. [Google Scholar] [CrossRef]
- Gradilla-Hernández, M.S.; de Anda, J.; Garcia-Gonzalez, A.; Meza-Rodríguez, D.; Yebra Montes, C.; Perfecto-Avalos, Y. Multivariate Water Quality Analysis of Lake Cajititlán, Mexico. Environ. Monit. Assess. 2020, 192, 5. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Brzezińska, A.; Gaibei, I. How the Outliers Influence the Quality of Clustering? Entropy 2022, 24, 917. [Google Scholar] [CrossRef] [PubMed]
- CONAGUA. Actualización de La Disponibilidad Media Anual de Agua en el Acuífero Valle del Guadiana (1003), Estado de Durango. Ciudad de México, México. 2024. Available online: https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/durango/DR_1003.pdf (accessed on 3 May 2024).
- INEGI En Durango Somos 1 832 650 Habitantes: Censo de Población y Vivienda 2020. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/EstSociodemo/ResultCenso2020_Dgo.pdf (accessed on 22 August 2023).
- CONAGUA. Acuerdo Por El Que Se Dan a Conocer Los Estudios Técnicos Del Acuífero 1003 Valle Del Guadiana, En El Estado de Durango. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5150942&fecha=07/07/2010#gsc.tab=0 (accessed on 31 January 2024).
- Ferrari, L.; Valencia-Moreno, M.; Bryan, S. Magmatismo y Tectónica En La Sierra Madre Occidental y Su Relación Con La Evolución de La Margen Occidental de Norteamérica. Boletín Soc. Geológica Mex. 2005, 57, 343–378. [Google Scholar] [CrossRef]
- Sharif, S.M.; Kusin, F.M.; Asha’ari, Z.H.; Aris, A.Z. Characterization of Water Quality Conditions in the Klang River Basin, Malaysia Using Self Organizing Map and K-Means Algorithm. Procedia Environ. Sci. 2015, 30, 73–78. [Google Scholar] [CrossRef]
- Kale, A.; Bandela, N.; Kulkarni, J.; Sahoo, S.K.; Kumar, A. Hydrogeochemistry and Multivariate Statistical Analysis of Groundwater Quality of Hard Rock Aquifers from Deccan Trap Basalt in Western India. Environ. Earth Sci. 2021, 80, 288. [Google Scholar] [CrossRef]
- Trabelsi, R.; Zouari, K. Coupled Geochemical Modeling and Multivariate Statistical Analysis Approach for the Assessment of Groundwater Quality in Irrigated Areas: A Study from North Eastern of Tunisia. Groundw. Sustain. Dev. 2019, 8, 413–427. [Google Scholar] [CrossRef]
- Woocay, A.; Walton, J. Multivariate Analyses of Water Chemistry: Surface and Ground Water Interactions. Ground Water 2008, 46, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Tatou, R.D.; Kabeyene, V.K.; Mboudou, G.E. Multivariate Statistical Analysis for the Assessment of Hydrogeochemistry of Groundwater in Upper Kambo Watershed (Douala-Cameroon). J. Geosci. Environ. Prot. 2017, 5, 252–264. [Google Scholar] [CrossRef]
- Mohammed, M.A.A.; Szabó, N.P.; Szűcs, P. Multivariate Statistical and Hydrochemical Approaches for Evaluation of Groundwater Quality in North Bahri City-Sudan. Heliyon 2022, 8, e11308. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, T.G.; Zaidi, F.K. Hydrochemical Classification and Multivariate Statistical Analysis of Groundwater from Wadi Sahba Area in Central Saudi Arabia. Arab. J. Geosci. 2018, 11, 643. [Google Scholar] [CrossRef]
- Chai, Y.; Xiao, C.; Li, M.; Liang, X. Hydrogeochemical Characteristics and Groundwater Quality Evaluation Based on Multivariate Statistical Analysis. Water 2020, 12, 2792. [Google Scholar] [CrossRef]
- Monjerezi, M.; Vogt, R.D.; Aagaard, P.; Saka, J.D.K. Hydro-Geochemical Processes in an Area with Saline Groundwater in Lower Shire River Valley, Malawi: An Integrated Application of Hierarchical Cluster and Principal Component Analyses. Appl. Geochem. 2011, 26, 1399–1413. [Google Scholar] [CrossRef]
- Suresh, M.; Gurugnanam, B.; Vasudevan, S.; Rajeshkanna, B.; Dharanirajan, K.; Prabhakaran, N. Hydrogeochemical Studies by Multivariate Statistical Analysis in Upper Thirumanimuthar Sub-Basin, Cauvery River, Tamil Nadu, India. Nat. Environ. Pollut. Technol. 2009, 8, 693–700. [Google Scholar]
- Das, S.; Nag, S.K. Application of Multivariate Statistical Analysis Concepts for Assessment of Hydrogeochemistry of Groundwater—A Study in Suri I and II Blocks of Birbhum District, West Bengal, India. Appl. Water Sci. 2017, 7, 873–888. [Google Scholar] [CrossRef]
- Shi, G. Cluster Analysis. In Data Mining and Knowledge Discovery for Geoscientists; Elsevier: Amsterdam, The Netherlands, 2014; pp. 191–237. [Google Scholar]
- Abboud, I.A. Statistical Analysis of the Hydro-Geochemical Evolution of Groundwater in the Aquifers of the Yarmouk Basin, North Jordan. Arab. J. Geosci. 2018, 11, 111. [Google Scholar] [CrossRef]
- Eid, M.H.; Eissa, M.; Mohamed, E.A.; Ramadan, H.S.; Czuppon, G.; Kovács, A.; Szűcs, P. Application of Stable Isotopes, Mixing Models, and K-Means Cluster Analysis to Detect Recharge and Salinity Origins in Siwa Oasis, Egypt. Groundw. Sustain. Dev. 2024, 25, 101124. [Google Scholar] [CrossRef]
- Stanley, P.; Wolkersdorfer, C.; Wolkersdorfer, K. Application of Multivariate Statistical Analysis in Mine Water Hydrogeochemical Studies of the Outcropped Upper Carboniferous, Ruhr Area, Germany. In Proceedings of the IMWA 2020, Christchurch, New Zealand, 9–13 November 2020. [Google Scholar]
- Eskandari, E.; Mohammadzadeh, H.; Nassery, H.; Vadiati, M.; Zadeh, A.M.; Kisi, O. Delineation of Isotopic and Hydrochemical Evolution of Karstic Aquifers with Different Cluster-Based (HCA, KM, FCM and GKM) Methods. J. Hydrol. 2022, 609, 127706. [Google Scholar] [CrossRef]
- Benaafi, M.; Abba, S.I.; Tawabini, B.; Abdulazeez, I.; Salhi, B.; Usman, J.; Aljundi, I.H. Integrated Clustering Analysis for Delineating Seawater Intrusion and Heavy Metals in Arabian Gulf Coastal Groundwater of Saudi Arabia. Heliyon 2023, 9, e19784. [Google Scholar] [CrossRef] [PubMed]
- Das, C.R.; Das, S.; Panda, S. Groundwater Quality Monitoring by Correlation, Regression and Hierarchical Clustering Analyses Using WQI and PAST Tools. Groundw. Sustain. Dev. 2022, 16, 100708. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A Review of the Application of Machine Learning in Water Quality Evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef] [PubMed]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; APHA Press: Washington, DC, USA, 2012. [Google Scholar]
- Gustafsson, J.P. Visual MINTEQ (3.1). KTH. Royal Institute of Technology. 2013. Available online: https://vminteq.com/ (accessed on 3 May 2024).
- Banerjee, A.; Dave, R.N. Validating Clusters Using the Hopkins Statistic. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), Budapest, Hungary, 25–29 July 2004; pp. 149–153. [Google Scholar]
- Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An Extensive Comparative Study of Cluster Validity Indices. Pattern Recognit. 2013, 46, 243–256. [Google Scholar] [CrossRef]
- CONAGUA. Sistema de Información Geográfica de Acuíferos y Cuencas SIGACUA. Available online: https://www.gob.mx/conagua/acciones-y-programas/sistema-de-informacion-geografica-de-acuiferos-y-cuencas-sigacua-55161 (accessed on 27 May 2024).
- Ali, S.; Verma, S.; Agarwal, M.B.; Islam, R.; Mehrotra, M.; Deolia, R.K.; Kumar, J.; Singh, S.; Mohammadi, A.A.; Raj, D.; et al. Groundwater Quality Assessment Using Water Quality Index and Principal Component Analysis in the Achnera Block, Agra District, Uttar Pradesh, Northern India. Sci. Rep. 2024, 14, 5381. [Google Scholar] [CrossRef] [PubMed]
- Ekemeyong Awong, L.E.; Zielinska, T. Comparative Analysis of the Clustering Quality in Self-Organizing Maps for Human Posture Classification. Sensors 2023, 23, 7925. [Google Scholar] [CrossRef]
- Hounslow, A.W. Water Quality Data. Analysis and Interpretation; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Huang, T.; Ma, B. The Origin of Major Ions of Groundwater in a Loess Aquifer. Water 2019, 11, 2464. [Google Scholar] [CrossRef]
- Goswami, R.; Neog, N.; Bhagat, C.; Hdeib, R.; Mahlknecht, J.; Kumar, M. Arsenic in the Groundwater of the Upper Brahmaputra Floodplain: Variability, Health Risks and Potential Impacts. Chemosphere 2022, 306, 135621. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, R.; Asghari Moghaddam, A.; Tziritis, E. Hydrogeochemical Features of Groundwater Resources in Tabriz Plain, Northwest of Iran. Appl. Water Sci. 2017, 7, 3997–4011. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupre, B.; Louvat, P.; Allegre, C.J. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Morici, S.; Gagliano Candela, E.; Favara, R.; La Pica, L.; Scaletta, C.; Pecoraino, G. Hydrogeochemical Characterization of the Alluvial Aquifer of Catania Plain, Sicily (South Italy). Environ. Earth Sci. 2023, 82, 144. [Google Scholar] [CrossRef]
- Servicio Geológico Mexicano Descarga Las Cartas Impresas Editadas Por El Sgm.Gob.Mx. Available online: http://www.gob.mx/sgm/articulos/descarga-las-cartas-impresas-editadas-por-el-sgm-70622?idiom=es (accessed on 23 August 2023).
- Kim, M.-J.; Nriagu, J.; Haack, S. Carbonate Ions and Arsenic Dissolution by Groundwater. Environ. Sci. Technol. 2000, 34, 3094–3100. [Google Scholar] [CrossRef]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario, Perspectives and Mechanism of Arsenic and Fluoride Co-Occurrence in the Groundwater: A Review. Chemosphere 2020, 249, 126126. [Google Scholar] [CrossRef]
Parameters | Mean | S.D. | Min. | Q1 | Median | Q3 | Max. | Skewness |
---|---|---|---|---|---|---|---|---|
Na+ (meq L−1) | 2.23 | 1.90 | 0.31 | 0.99 | 1.67 | 2.91 | 8.04 | 1.57 |
K+ (meq L−1) | 0.14 | 0.10 | 0.01 | 0.06 | 0.10 | 0.21 | 0.42 | 0.94 |
Ca2+ (meq L−1) | 1.34 | 1.10 | 0.05 | 0.68 | 0.99 | 1.71 | 4.71 | 1.55 |
Mg2+ (meq L−1) | 0.31 | 0.54 | 0.00 | 0.02 | 0.11 | 0.24 | 2.51 | 2.72 |
F− (meq L−1) | 0.17 | 0.15 | 0.01 | 0.04 | 0.17 | 0.21 | 0.58 | 1.32 |
Cl− (meq L−1) | 0.24 | 0.19 | 0.01 | 0.09 | 0.19 | 0.37 | 0.78 | 1.23 |
SO42− (meq L−1) | 0.69 | 0.81 | 0.01 | 0.26 | 0.42 | 0.69 | 4.34 | 3.01 |
NO3− (meq L−1) | 0.16 | 0.15 | 0.00 | 0.06 | 0.11 | 0.25 | 0.62 | 1.40 |
CO32− (meq L−1) | 0.05 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 1.29 | 5.04 |
HCO3− (meq L−1) | 2.69 | 1.55 | 0.51 | 1.59 | 1.99 | 3.62 | 7.63 | 1.34 |
pH | 8.11 | 0.33 | 7.20 | 7.92 | 8.21 | 8.34 | 8.72 | −0.84 |
EC (µS cm−1) | 380.00 | 208.30 | 57.20 | 245.70 | 296.90 | 505.30 | 967.00 | 1.22 |
As (µg L−1) | 41.11 | 49.21 | 1.50 | 8.79 | 31.57 | 42.65 | 199.75 | 2.28 |
40-Well Original Dataset | 34-Well Depurated Dataset | |||||
---|---|---|---|---|---|---|
Dim1 (33.9%) | Dim2 (29.1%) | Dim3 (10.52%) | Dim1 (35.3%) | Dim2 (30.3%) | Dim3 (10.4%) | |
pH | 0.521 | −0.368 | 0.199 | 0.545 | −0.348 | 0.234 |
EC | 0.767 | 0.574 | 0.016 | 0.720 | 0.634 | −0.005 |
As | 0.695 | −0.605 | −0.125 | 0.761 | −0.532 | −0.098 |
Na+ | 0.904 | −0.117 | −0.035 | 0.920 | −0.042 | −0.035 |
K+ | 0.245 | 0.556 | 0.569 | 0.156 | 0.534 | 0.628 |
Ca2+ | −0.010 | 0.810 | −0.335 | −0.093 | 0.815 | −0.350 |
Mg2+ | 0.004 | 0.846 | 0.394 | −0.134 | 0.836 | 0.378 |
F− | 0.770 | −0.516 | −0.159 | 0.819 | −0.440 | −0.100 |
Cl− | 0.593 | 0.243 | −0.328 | 0.613 | 0.277 | −0.391 |
SO42− | 0.582 | 0.452 | −0.423 | 0.586 | 0.561 | −0.315 |
NO3− | −0.271 | 0.559 | −0.336 | −0.308 | 0.623 | −0.187 |
CO32− | 0.497 | −0.168 | 0.497 | 0.498 | −0.127 | 0.519 |
HCO3− | 0.687 | 0.539 | 0.121 | 0.651 | 0.612 | 0.143 |
Clusterization Algorithm | |||
---|---|---|---|
Cluster Validity Index | HCA | k-Means | |
40-well original dataset | Dunn | 0.254 | 0.230 |
Davies–Bouldin | 1.360 | 1.375 | |
Silhouette | 0.253 | 0.310 | |
34-well depurated dataset | Dunn | 0.247 | 0.272 |
Davies–Bouldin | 1.261 | 1.301 | |
Silhouette | 0.249 | 0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irigoyen-Campuzano, J.R.; Barraza-Barraza, D.; Gutiérrez, M.; Torres-Castañón, L.A.; Reynoso-Cuevas, L.; Alarcón-Herrera, M.T. Hydrogeochemical Characterization of an Intermontane Aquifer Contaminated with Arsenic and Fluoride via Clustering Analysis. Hydrology 2024, 11, 76. https://doi.org/10.3390/hydrology11060076
Irigoyen-Campuzano JR, Barraza-Barraza D, Gutiérrez M, Torres-Castañón LA, Reynoso-Cuevas L, Alarcón-Herrera MT. Hydrogeochemical Characterization of an Intermontane Aquifer Contaminated with Arsenic and Fluoride via Clustering Analysis. Hydrology. 2024; 11(6):76. https://doi.org/10.3390/hydrology11060076
Chicago/Turabian StyleIrigoyen-Campuzano, José Rafael, Diana Barraza-Barraza, Mélida Gutiérrez, Luis Arturo Torres-Castañón, Liliana Reynoso-Cuevas, and María Teresa Alarcón-Herrera. 2024. "Hydrogeochemical Characterization of an Intermontane Aquifer Contaminated with Arsenic and Fluoride via Clustering Analysis" Hydrology 11, no. 6: 76. https://doi.org/10.3390/hydrology11060076
APA StyleIrigoyen-Campuzano, J. R., Barraza-Barraza, D., Gutiérrez, M., Torres-Castañón, L. A., Reynoso-Cuevas, L., & Alarcón-Herrera, M. T. (2024). Hydrogeochemical Characterization of an Intermontane Aquifer Contaminated with Arsenic and Fluoride via Clustering Analysis. Hydrology, 11(6), 76. https://doi.org/10.3390/hydrology11060076