Agricultural Water Footprints and Productivity in the Colorado River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Colorado Basin Study Area
2.2. Water Productivity and Footprint Measures
2.2.1. Economic Water Productivity: Gross Return Basis (EWPg)
2.2.2. Economic Water Productivity: Net Return Basis (EWPn)
2.2.3. Blue Water Footprint (BWF)
2.2.4. Cash Rent Premiums for Irrigated Land
2.2.5. Cash Rent Premiums per Unit of Water
2.2.6. Green Water Footprint
3. Results
3.1. Economic Water Productivity (Gross Returns Basis)
3.2. Economic Water Productivity (Net Returns Basis)
3.3. Blue Water Footprint (BWF)
3.4. Irrigation Rent Premiums
3.5. Association between Water Productivity Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Bureau of Reclamation. Near-Term Colorado River Operations Revised Draft Supplemental Environmental Impact Statement. October 2023. Available online: https://www.usbr.gov/ColoradoRiverBasin/documents/NearTermColoradoRiverOperations/20231019-Near-termColoradoRiverOperations-RevisedDraftEIS-508.pdf (accessed on 25 December 2023).
- U.S. Bureau of Reclamation. Colorado River Compact. 1922. Available online: https://www.usbr.gov/lc/region/pao/pdfiles/crcompct.pdf (accessed on 25 December 2023).
- Frisvold, G.B.; Fernandez, L.M.; Lehner, F.; McAfee, S.A.; Megdal, S.; Payton, E.; Schmidt, J.; Vano, J.; Woodhouse, C. Featured Collection Introduction: Severe Sustained Drought Revisited: Managing the Colorado River System in Times of Water Shortage 25 Years Later—Part I. J. Am. Water Res. Assoc. 2022, 58, 597–603. [Google Scholar] [CrossRef]
- Stockton, C.W.; Jacoby, G.C. Long-Term Surface Water Supply and Streamflow Levels in the Upper Colorado River Basin; Lake Powell Research Project, Bulletin No. 18; Institute of Geophysics and Planetary Physics, University of California: Los Angeles, CA, USA, 1976; 70p. [Google Scholar]
- Woodhouse, C.; Gray, S.; Meko, D. Updated streamflow reconstructions for the Upper Colorado River Basin. Water Resour. Res. 2006, 42, W05415. [Google Scholar] [CrossRef]
- USBR (U.S Bureau of Reclamation). Colorado River Basin Natural Flow and Salt Data. 2021. Available online: https://www.usbr.gov/lc/region/g4000/NaturalFlow/provisional.html (accessed on 25 December 2023).
- Wheeler, K.; Udall, B.; Wang, J.; Kuhn, E.; Salehabadi, H.; Schmidt, J. What will it take to stabilize the Colorado River? Science 2022, 344, 373–375. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of the Interior. Record of Decision: Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operations for Lake Powell and Lake Mead. 2007. Available online: https://www.usbr.gov/lc/region/programs/strategies/RecordofDecision.pdf (accessed on 25 December 2023).
- Udall, B.; Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 2017, 53, 2404–2418. [Google Scholar] [CrossRef]
- Booker, J.F. Colorado River Water Use and Climate: Model and Application. J. Am. Water Res. Assoc. 2022, 58, 673–689. [Google Scholar] [CrossRef]
- Meko, D.M.; Woodhouse, C.A.; Winitsky, A.G. Tree-ring perspectives on the Colorado River: Looking back and moving forward. J. Am. Water Res. Assoc. 2022, 58, 604–621. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Goodrich, J.; Das, T.; Munévar, A. Evaluating global climate models for hydrological studies of the upper Colorado River Basin. J. Am. Water Res. Assoc. 2022, 58, 709–734. [Google Scholar] [CrossRef]
- U.S Bureau of Reclamation. USBR Pilot Projects to Increase Colorado River System Water in Lake Powell and Lake Mead; Report to the US Congress. 2021. Available online: https://www.usbr.gov/lc/region/programs/PilotSysConsProg/report_to_congressW_appendices2021.pdf (accessed on 25 December 2023).
- U.S Bureau of Reclamation. Colorado River Basin Drought Contingency Plans. 2023. Available online: https://www.usbr.gov/dcp/finaldocs.html (accessed on 25 December 2023).
- Stern, C.; Sheikh, P.; Hite, K. Management of the Colorado River: Water Allocations, Drought, and the Federal Role. Congressional Research Service Report R45546 Version 37. Updated 1 November 2023. Available online: https://sgp.fas.org/crs/misc/R45546.pdf (accessed on 25 December 2023).
- Upper Colorado River Commission. System Conservation Pilot Program. 2023. Available online: http://www.ucrcommission.com/system-conservation-pilot-program-for-2023 (accessed on 11 August 2023).
- The Colorado River Basin States Representatives of Arizona, California, and Nevada. Lower Basin Plan Letter to USBR. 22 May 2023. Available online: https://www.doi.gov/sites/doi.gov/files/lower-basin-plan-letter-5-22-2023.pdf (accessed on 25 December 2023).
- U.S. Bureau of Reclamation. Colorado River Basin Water Supply and Demand Study Technical Report C Water Demand Assessment. Available online: https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/techrptC.html (accessed on 25 December 2023).
- Harou, J.J.; Medellín-Azuara, J.; Zhu, T.; Tanaka, S.K.; Lund, J.R.; Stine, S.; Olivares, M.A.; Jenkins, M.W. Economic consequences of optimized water management for a prolonged, severe drought in California. Water Resour. Res. 2010, 46, W05522. [Google Scholar] [CrossRef]
- Medellín-Azuara, J.; Harou, J.J.; Olivares, M.A.; Madani, K.; Lund, J.R.; Howitt, R.E.; Tanaka, S.K.; Jenkins, M.W. Adaptability and adaptations of California’s water supply system to dry climate warming. Clim. Chang. 2008, 87 (Suppl. 1), S75–S90. [Google Scholar] [CrossRef]
- Tanaka, S.K.; Zhu, T.; Lund, J.R.; Howitt, R.E.; Jenkins, M.W.; Pulido-Velazquez, M.; Tauber, M.; Ritzema, R.S.; Ferreira, I.C. Climate warming and water management adaptation for California. Clim. Chang. 2006, 76, 361–387. [Google Scholar] [CrossRef]
- Frisvold, G.B.; Jackson, L.E.; Pritchett, J.G.; Ritten, J.P.; Svoboda, M. Agriculture and ranching. In Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment; Island Press: Washington, DC, USA, 2013; pp. 218–239. [Google Scholar]
- U.S. Bureau of Reclamation. Upper Colorado River Basin: Consumptive Uses and Losses 2016–2020. Available online: https://www.usbr.gov/uc/DocLibrary/Reports/ConsumptiveUsesLosses/20220214-ProvisionalUpperColoradoRiverBasin2016-2020-CULReport-508-UCRO.pdf (accessed on 25 December 2023).
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2015; U.S. Geological Survey Circular 1441; U.S. Government Printing Office: Washington, DC, USA, 2018; 65p.
- Goemans, C.; Pritchett, J. Western water markets: Effectiveness and efficiency. In Water Markets for the 21st Century: What Have We Learned? Easter, K.W., Huang, Q., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 305–330. [Google Scholar]
- Nichols, P.D.; Murphy, M.K.; Kenney, D.S. Water and Growth in Colorado. A Review of Legal and Policy Issues; Natural Resources Law Center, University of Colorado: Boulder, CO, USA, 2001. [Google Scholar]
- Howe, C.W.; Schurmeier, D.R.; Shaw, W.D., Jr. Innovative approaches to water allocation: The potential for water markets. Water Resour. Res. 1986, 22, 439–445. [Google Scholar] [CrossRef]
- Young, R.A.; Loomis, J.B. Determining the Economic Value of Water: Concepts and Methods; Routledge: New York, NY, 2014. [Google Scholar]
- Ayres, A.; Adams, T.; Carron, J.; Cohen, M.; Saracino, A. Potential impacts of reduced inflows to the Salton Sea: Forecasting non-market damages. J. Am. Water Res. Assoc. 2022, 58, 1128–1148. [Google Scholar] [CrossRef]
- Cohen, M.; Christian-Smith, J.; Berggren, J. Water to Supply the Land: Irrigated Agriculture in the Colorado River Basin; Pacific Institute: Oakland, CA, USA, 2013; Available online: https://pacinst.org/wp-content/uploads/2013/05/pacinst-crb-ag-1.pdf (accessed on 25 December 2023).
- Hansen, K.; Coupal, R.; Yeatman, E.; Bennett, D. Economic Assessment of a Water Demand Management Program in the Wyoming Colorado River Basin; University of Wyoming Extension: Laramie, WY, USA, 2021. [Google Scholar]
- U.S. Department of Agriculture (USDA), National Agricultural Statistics Service (NASS). NASS Quick Stats. Available online: https://quickstats.nass.usda.gov/ (accessed on 25 December 2023).
- U.S. Bureau of Economic Analysis (BEA). CAINC45 Farm Income and Expenses. 2022. Available online: https://www.bea.gov/data/income-saving/personal-income-county-metro-and-other-areas (accessed on 25 December 2023).
- US Geological Survey (USGS). Water-Use Data Available from USGS. Available online: https://water.usgs.gov/watuse/data/ (accessed on 25 December 2023).
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets—A new parameterization for the SSEB approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Booker, J.F.; Trees, W.S. Implications of water scarcity for water productivity and farm labor. Water 2020, 12, 308. [Google Scholar] [CrossRef]
- U.S. Bureau of Labor Statistics. Quarterly Census of Employment and Wages (QCEW). 2023. Available online: https://www.bls.gov/cew/ (accessed on 25 December 2023).
- U.S. Bureau of Economic Analysis (BEA). Local Area Personal Income and Employment Methodology. 2017. Available online: https://www.bea.gov/sites/default/files/methodologies/lapi2016.pdf (accessed on 25 December 2023).
- Mekonnen, M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Mekonnen, M.; Gerbens-Leenes, W. The water footprint of global food production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Konar, M.; Marston, L. The water footprint of the United States. Water 2020, 12, 3286. [Google Scholar] [CrossRef]
- Roson, R.; Sartori, M. A decomposition and comparison analysis of international water footprint time series. Sustainability 2015, 7, 5304–5320. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption; Value of Water Research Report Series No. 50; UNESCO-IHE: Delft, The Netherlands, 2011. [Google Scholar]
- Supalla, R.; Buell, T.; McMullen, B. Economic and State Budget Cost of Reducing the Consumptive Use of Irrigation Water in the Platte and Republican Basins; University of Nebraska-Lincoln, Department of Agricultural Economics, for the Nebraska Department of Natural Resources: Lincoln, NE, USA, 2006. [Google Scholar]
- Henderson, J.; Akers, M. Can markets improve water allocation in rural America? Fed. Res. Bank Kansas City Econ. Rev. 2008, 93, 97–119. [Google Scholar]
- Thompson, C.L.; Supalla, R. Understanding the Value of Water in Nebraska: Future Expectations and Considerations. Cornhusker Economics. 15 December 2010. Available online: https://digitalcommons.unl.edu/agecon_cornhusker/510 (accessed on 25 December 2023).
- Pritchett, J.; Thorvaldson, J.; Frasier, M. Water as a crop: Limited irrigation and water leasing in Colorado. Rev. Agric. Econ. 2008, 30, 435–444. [Google Scholar] [CrossRef]
- Rimsaite, R.; Gibson, J.; Brozović, N. Informing drought mitigation policy by estimating the value of water for crop production. Environ. Res. Commun. 2021, 3, 041004. [Google Scholar] [CrossRef]
- Paulson, N.; Schnitkey, G.; Baltz, J.; Zulauf, C. Information for Setting 2024 Cash Rents. Farmdoc Daily 2023, 13, 160. [Google Scholar]
- Carson, N.; Langemeier, M. Relationship between cash rent and net return to land in Indiana. J. ASFMR 2019, 1, 126–131. [Google Scholar]
- Featherstone, A.M.; Taylor, M.R.; Gibson, H. Forecasting Kansas land values using net farm income. Agric. Financ. Rev. 2017, 77, 137–152. [Google Scholar] [CrossRef]
- Fei, C.; Hogan, J.R.; McCarl, B.; Vargas, A.; Yang, Y. Water Values in South Central Texas; An Output from the NSF Project Addressing Innovations at the Nexus of Food, Energy, and Water Systems-1639327; Department of Agricultural Economics, Texas A & M University: College Station, TX, USA, 2016. [Google Scholar]
- Veettil, A.V.; Mishra, A.K. Water security assessment using blue and green water footprint concepts. J. Hydrol. 2016, 542, 589–602. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M. A first estimation of county-based green water availability and its implications for agriculture and bioenergy production in the United States. Water 2018, 10, 148. [Google Scholar] [CrossRef]
- Yun, S.D.; Gramig, B.M. Agro-climatic data by county: A spatially and temporally consistent US dataset for agricultural yields, weather and soils. Data 2019, 4, 66. [Google Scholar] [CrossRef]
- Bickel, A.K.; Duval, D.; Frisvold, G.B. Simple approaches to examine economic impacts of water reallocations from agriculture. J. Contemp. Water Res. Educ. 2019, 168, 29–48. [Google Scholar] [CrossRef]
- Kerna, A.; Duval, D.; Frisvold, G. Arizona Leafy Greens: Economic Contributions of the Industry Cluster 2015 Economic Contribution Analysis; University of Arizona: Tucson, AZ, USA, 2017. [Google Scholar]
- Kerna, A.; Duval, D.; Frisvold, G.; Uddin, A. The Contribution of Arizona’s Vegetables and Melon Industry Cluster to the State Economy; University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Frisvold, G.; Sanchez, C.; Gollehon, N.; Megdal, S.B.; Brown, P. Evaluating gravity-flow irrigation with lessons from Yuma, Arizona, USA. Sustainability 2018, 10, 1548. [Google Scholar] [CrossRef]
- Postel, S.L.; Morrison, J.I.; Gleick, P.H. Allocating fresh water to aquatic ecosystems: The case of the Colorado River Delta. Water Int. 1998, 23, 119–125. [Google Scholar] [CrossRef]
- Nabhan, G.P.; Richter, B.D.; Riordan, E.C.; Tornbom, C. Toward Water-Resilient Agriculture in Arizona: Future Scenarios Addressing Water Scarcity; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2023. [Google Scholar]
- Almazán-Gómez, M.A.; Duarte, R.; Langarita, R.; Sánchez-Chóliz, J. Effects of water re-allocation in the Ebro river basin: A multiregional input-output and geographical analysis. J. Environ. Manag. 2019, 241, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Salmoral, G.; Carbo, A.V.; Zegarra, E.; Knox, J.W.; Rey, D. Reconciling irrigation demands for agricultural expansion with environmental sustainability-A preliminary assessment for the Ica Valley, Peru. J. Clean. Prod. 2020, 276, 123544. [Google Scholar] [CrossRef]
- Huang, H.; Xie, P.; Duan, Y.; Wu, P.; Zhuo, L. Cropping pattern optimization considering water shadow price and virtual water flows: A case study of Yellow River Basin in China. Agric. Water Manag. 2023, 284, 108339. [Google Scholar] [CrossRef]
- Pahlow, M.; Snowball, J.; Fraser, G. Water footprint assessment to inform water management and policy making in South Africa. Water SA 2015, 41, 300–313. [Google Scholar] [CrossRef]
- Bulut, A.P. Determining the water footprint of sunflower in Turkey and creating digital maps for sustainable agricultural water management. Environ. Dev. Sustain. 2023, 25, 11999–12010. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Ayres, A.; Bigelow, D. Engaging irrigation districts in water markets. In The Future of Water Markets: Obstacles and Opportunities; Edwards, E., Regan, S., Eds.; Property and Environment Research Center (PERC): Bozeman, MT, USA, 2022; pp. 53–62. [Google Scholar]
- Bark, R.H.; Frisvold, G.; Flessa, K.W. The role of economics in transboundary restoration water management in the Colorado River Delta. Water Resour. Econ. 2014, 8, 43–56. [Google Scholar] [CrossRef]
- Howitt, R.; Hanak, E. Incremental water market development: The California water sector 1985–2004. Can. Water Resour. J. 2005, 30, 73–82. [Google Scholar] [CrossRef]
- Sunding, D.; Zilberman, D.; MacDougall, N. Water markets and the cost of improving water quality in the San Francisco Bay/Delta Estuary. Hastings West-Nowest J. Environ. Law Policy 1995, 2, 159–165. [Google Scholar]
Cumulative Percent of Basin Agriculural Water Consumed | Corresponding Percent of Basin Crop Receipts |
---|---|
24% | 49% |
41% | 74% |
52% | 84% |
66% | 93% |
75% | 97% |
Rent Premium per Acre RPa | Rent Premium per Acre-Foot RPw | Economic Water Productivity (Gross Returns) EWPg | Blue Water Footprint BWF | Economic Water Productivity (Net Returns) EWPn | |
---|---|---|---|---|---|
RPw | 0.71 § | ||||
EWPg | 0.68 § | 0.36 † | |||
BWF | −0.68 § | −0.36 † | −1.00 § | ||
EWPn | 0.49 § | 0.23 * | 0.78 § | −0.78 § | |
W/Ai ** | 0.68 § | 0.05 | 0.52 § | −0.52 § | 0.41 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frisvold, G.B.; Duval, D. Agricultural Water Footprints and Productivity in the Colorado River Basin. Hydrology 2024, 11, 5. https://doi.org/10.3390/hydrology11010005
Frisvold GB, Duval D. Agricultural Water Footprints and Productivity in the Colorado River Basin. Hydrology. 2024; 11(1):5. https://doi.org/10.3390/hydrology11010005
Chicago/Turabian StyleFrisvold, George B., and Dari Duval. 2024. "Agricultural Water Footprints and Productivity in the Colorado River Basin" Hydrology 11, no. 1: 5. https://doi.org/10.3390/hydrology11010005
APA StyleFrisvold, G. B., & Duval, D. (2024). Agricultural Water Footprints and Productivity in the Colorado River Basin. Hydrology, 11(1), 5. https://doi.org/10.3390/hydrology11010005