Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sampling Sites and Nitrates Analysis
2.3. Participant Recruitment, Training and Socio-Economic Characteristics
- Organization of workshops and mini meetings to explain detailed procedures, precautions and operating techniques that will be used to perform the nitrates test strip measurements. This allowed complying with the participatory principle of a CS-WQM program.
- Organization of a mixture of both theoretical and practical training activities (literature overview and demonstration of the test strips analysis using water samples). Training quizzes, periodic testing, and review of data for all participants were investigated to ensure reliability of test strip readings and to check that the use of test strips’ water quality met the training requirements. These activities enhance the level of training of the CS-WQM program and can affect the quality of the gathered data. It also ensures that the CS collected data consistently meet the standard requirements.
- Organization of a Likert scale survey as a rating scale with a series of answer statements following interest and questions during training, volunteers’ commitment, and volunteers’ participation.
2.4. Statistical Data Analysis
3. Results and Discussion
3.1. Variation Patterns of Nitrates Measurements
3.2. Reliability and Agreement between Nitrates Test Strips and Field Standard
3.3. Compensation of Turbidity Interference in Nitrate Measurements
3.4. Citizen’s Typology for Nitrates Water Quality Monitoring
- Axis 1: Relevance of the project to the citizen’s attitude. Participants involved in the water sector showed commitment to the CS-WQM project, an interest during training sessions by addressing questions, and by following the water strip test learning instructions.
- Axis 2: Citizen identification. Motivation levels of the participants are linked to their education level, main occupation, and relation with the project team and age.
3.5. Futures Implications of CS-WQM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helmer, R.; Hespanhol, I. Water Pollution Control: A Guide to the Use of Water Quality Management Principles. WHO/UNEP. 1997. Available online: https://apps.who.int/iris/handle/10665/41967 (accessed on 14 December 2022).
- United Nations-Water/Africa (Agency); United Nations—Economic Commission for Africa; African Union; African Development Bank. The Africa Water Vision for 2025: Equitable and Sustainable Use of Water for Socioeconomic Development; Economic Commission for Africa: Addis Ababa, Ethiopia, 2004. [Google Scholar]
- Peletz, R.; Kisiangani, J.; Bonham, M.; Ronoh, P.; Delaire, C.; Kumpel, E.; Marks, S.; Khush, R. Why Do Water Quality Monitoring Programs Succeed or Fail? A Qualitative Comparative Analysis of Regulated Testing Systems in Sub-Saharan Africa. Int. J. Hyg. Environ. Health 2018, 221, 907–920. [Google Scholar] [CrossRef] [PubMed]
- Koop, S.H.; Grison, C.; Eisenreich, S.J.; Hofman, J.; van Leeuwen, K. Integrated water resources management in cities in the world: Global solutions. Sustain. Cities Soc. 2022, 86, 104137. [Google Scholar] [CrossRef]
- Nshimbi, C.C. SDGs and decentralizing water management for transformation: Normative policy coherence for water security in SADC river basin organizations. Phys. Chem. Earth 2019, 111, 1–12. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Monitoring Methodology for SDG Indicator 6.6.1. 2020. Available online: https://wesr.unep.org/media/docs/projects/6_6_1_methodology_final.pdf (accessed on 22 January 2023).
- Hegarty, S.; Hayes, A.; Regan, F.; Bishop, I.; Clinton, R. Using citizen science to understand river water quality while filling data gaps to meet United Nations Sustainable Development Goal 6 objectives. Sci. Total Environ. 2021, 783, 146953. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, B.; Lehner, B.; Gombault, C.; Michaud, A.; Beaudin, I.; Sottile, M.F.; Blondlot, A. Simulated impacts of climate change and agricultural land use change on surface water quality with and without adaptation management strategies. Agric. Ecosyst. Environ. 2015, 213, 47–60. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Almendinger, J.E.; Huang, M.; Chen, X.; Leng, G.; Li, X. Climate change will pose challenges to water quality management in the st. Croix River basin. Environ. Pollut. 2019, 251, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.M.; Fuenfrocken, E.; Kautenburger, R.; Cairault, A.; Beck, H.P. Detecting pollutant sources and pathways: High-frequency automated online monitoring in a small rural French/German transborder catchment. J. Environ. Manag. 2021, 290, 112619. [Google Scholar] [CrossRef] [PubMed]
- Shahmirnoori, A.; Saadatpour, M.; Rasekh, A. Using mobile and fixed sensors for optimal monitoring of water distribution network under dynamic water quality simulations. Sustain. Cities Soc. 2022, 82, 103875. [Google Scholar] [CrossRef]
- Gunia, M.; Laine, M.; Malve, O.; Kallio, K.; Kervinen, M.; Anttila, S.; Kotamäki, N.; Siivola, E.; Kettunen, J.; Kauranne, T. Data fusion system for monitoring water quality: Application to chlorophyll-a in Baltic sea coast. Environ. Model. Softw. 2022, 155, 105465. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Shi, K.; Zhang, Y.; Li, N.; Wang, W.; Qin, B. Monitoring water quality using proximal remote sensing technology. Sci. Total Environ. 2022, 803, 149805. [Google Scholar] [CrossRef]
- Caballero, I.; Román, A.; Tovar-Sánchez, A.; Navarro, G. Water quality monitoring with Sentinel-2 and Landsat-8 satellites during the 2021 volcanic eruption in La Palma (Canary Islands). Sci. Total Environ. 2022, 822, 153433. [Google Scholar] [CrossRef] [PubMed]
- Jamroen, C.; Yonsiri, N.; Odthon, T.; Wisitthiwong, N.; Janreung, S. A standalone photovoltaic/battery energy-powered water quality monitoring system based on narrowband internet of things for aquaculture: Design and implementation. Smart Agric. Technol. 2023, 3, 100072. [Google Scholar] [CrossRef]
- Garrido-Momparler, V.; Peris, M. Smart sensors in environmental/water quality monitoring using IoT and cloud services. Trends Environ. Anal. Chem. 2022, 35, e00173. [Google Scholar] [CrossRef]
- Ormaza-González, F.I.; Villalba-Flor, A.P. The measurement of nitrite, nitrate and phosphate with test kits and standard procedures: A comparison. Water Res. 1994, 28, 2223–2228. [Google Scholar] [CrossRef]
- D’Alessio, M.; Rushing, G.; Gray, T.L. Monitoring water quality through citizen science while teaching STEM undergraduate courses during a global pandemic. Sci. Total Environ. 2021, 779, 146547. [Google Scholar] [CrossRef] [PubMed]
- Chaabane, S.; Fehri, R.; Riahi, K.; Khlifi, S.; Vanclooster, M. Involvement of citizens in the measurements of water salinity using test kits in the Medjerda watershed (Northern Tunisia). In Water-Energy-Nexus in the Ecological Transition. Advances in Science, Technology & Innovation; Naddeo, V., Choo, K.H., Ksibi, M., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Chaabane, S.; Fehri, R.; Riahi, K.; Khlifi, S.; Vanclooster, M. Assessment of Citizen’s Measurements Using Test Strips for Water Quality Monitoring in Medjerda Watershed (Northern Tunisia). In UNESCO: Youth and Water Security in Africa. Youth and Water Security in Africa—UNESCO Bibliothèque Numérique; UNESCO: Paris, France, 2022. [Google Scholar]
- Jollymore, A.; Haines, M.J.; Satterfield, T.; Johnson, M.S. Citizen Science for water quality monitoring: Data implications of citizen perspectives. J. Environ. Manag. 2017, 200, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, A.S.L.; Kokimova, A.; Ray, S.S.; Avellán, T.; Kim, J.; Kirschke, S. Success factors for citizen science projects in water quality monitoring. Sci. Total Environ. 2020, 728, 137843. [Google Scholar] [CrossRef]
- Quinlivan, L.; Chapman, D.V.; Sullivan, T. Applying citizen science to monitor for the Sustainable Development Goal Indicator 6.3.2: A review. Environ. Monit. Assess. 2020, 192, 218. [Google Scholar] [CrossRef]
- Fehri, R.; Khlifi, S.; Vanclooster, M. Testing a citizen science water monitoring approach in Tunisia. Environ. Sci. Policy 2020, 104, 67–72. [Google Scholar] [CrossRef]
- Fehri, R.; Bogaert, P.; Khlifi, S.; Vanclooster, M. Data fusion of citizen-generated smartphone discharge measurements in Tunisia. J. Hydrol. 2020, 590, 125518. [Google Scholar] [CrossRef]
- Schäfer, B.; Beck, C.; Rhys, H.; Soteriou, H.; Jennings, P.; Beechey, A.; Heppell, C.M. Machine learning approach towards explaining water quality dynamics in an urbanised river. Sci. Rep. 2022, 12, 12346. [Google Scholar] [CrossRef] [PubMed]
- Rajosoa, A.S.; Abdelbaki, C.; Mourad, K.A. Water assessment in transboundary river basins: The case of the Medjerda River Basin. Sustain. Water Resour. Manag. 2021, 7, 88. [Google Scholar] [CrossRef]
- Hamdi, Y.; Chebana, F.; Ouarda, T.B.M.J. Bivariate drought frequency analysis in the Medjerda River Basin, Tunisia. J. Civ. Environ. Eng. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Institut National des Statistiques. Rapport Annuel sur les Indicateurs d’Infrastructure 2021. 2023, 1737–6386. Available online: http://www.ins.tn/sites/default/files/publication/pdf/infrastructure%202021.pdf (accessed on 17 March 2023).
- ISO 5667-3. Water Quality—Sampling—Part 3: Preservation and Handling of Water Samples. 2018, 5, 46. Available online: https://www.iso.org/obp/ui/fr/#iso:std:iso:5667:-3:ed-5:v1:en (accessed on 21 November 2023).
- Rodier, J. L’Analyse de l’eau. Eaux Naturelles, eaux Résiduelles, eau de mer, 8th ed.; DUNOD: Paris, France, 1996; 1383p. [Google Scholar]
- Bischoff, M.A.; Hiar, A.M.; Turco, R.F. Evaluation of nitrate analysis using test strips: Comparison with two analytical laboratory methods. Commun. Soil Sci. Plant Anal. 1996, 27, 2765–2774. [Google Scholar] [CrossRef]
- Naigaga, S.; Boyd, C.E.; Gaillard, P.; Abdelrahman, H.A.; Molnar, J.J. Assessing the reliability of water-test kits for use in pond aquaculture. J. World Aquac. Soc. 2016, 48, 555–562. [Google Scholar] [CrossRef]
- Snyder, L.; Potter, J.D.; McDowell, W.H. An Evaluation of Nitrate, fDOM, and Turbidity Sensors in New Hampshire Streams. Water Resour. Res. 2018, 54, 2466–2479. [Google Scholar] [CrossRef]
- Minkman, E. Citizen Science in Water Quality Monitoring Developing Guidelines for Dutch Water Authorities for Contributory Mobile Crowd Sensing. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2015; 218p. [Google Scholar]
- Bonney, R.; Cooper, C.B.; Dickinson, J.; Kelling, S.; Phillips, T.; Rosenberg, K.V.; Shirk, J. Citizen Science: A developing tool for expanding science knowledge and scientific literacy. BioScience 2009, 59, 977–984. [Google Scholar] [CrossRef]
- Cooper, J.O.; Heron, T.E.; Heward, W.L. Applied Behavior Analysis, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Wiggins, A.; Crowston, K. From Conservation to Crowdsourcing: A Typology of Citizen Science. In Proceedings of the 44th Hawaii International Conference on System Sciences, Kauai, HI, USA, 4–7 January 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Overdevest, C.; Orr, C.H.; Stepenuck, K. Volunteer Stream Monitoring and Local Participation in Natural Resource Issues. Hum. Ecol. Rev. 2004, 11, 177–185. Available online: http://www.jstor.org/stable/24707677 (accessed on 24 September 2023).
- Tulloch, A.I.T.; Hugh, P.P.; Liana, N.; Judit, S.; Tara, G.M. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 2013, 165, 128–138. [Google Scholar] [CrossRef]
- Weeser, B.; Stenfert Kroese, J.; Jacobs, S.R.; Njue, N.; Kemboi, Z.; Ran, A.; Breuer, L. Citizen science pioneers in Kenya—A crowdsourced approach for hydrological monitoring. Sci. Total Environ. 2018, 631–632, 1590–1599. [Google Scholar] [CrossRef]
- Rufino, M.M.; Bez, N.; Brind’Amour, A. Integrating spatial indicators in the surveillance of exploited marine ecosystems. PLoS ONE 2018, 13, e0207538. [Google Scholar] [CrossRef] [PubMed]
- Njue, N.; Stenfert Kroese, J.; Gräf, J.; Jacobs, S.R.; Weeser, B.; Breuer, L.; Rufino, M.C. Citizen science in hydrological monitoring and ecosystem services management: State of the art and future prospects. Sci. Total Environ. 2019, 693, 133531. [Google Scholar] [CrossRef] [PubMed]
- Gomani, M.C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach. Phys. Chem. Earth Parts A/B/C 2010, 35, 648–656. [Google Scholar] [CrossRef]
- Walker, D.; Forsythe, N.; Parkin, G.; Gowing, J. Filling the observational void: Scientific value and quantitative validation of hydrometeorological data from a community-based monitoring programme. J. Hydrol. 2016, 538, 713–725. [Google Scholar] [CrossRef]
- Zemadim, B.; McCartney, M.; Langan, S.; Sharma, B. A Participatory Approach for Hydrometeorological Monitoring in the Blue Nile River Basin of Ethiopia; IWMI Research Report 155; International Water Management (IWMI): Colombo, Sri Lanka, 2013; 32p. [Google Scholar] [CrossRef]
- Kongo, V.M.; Kosgei, J.R.; Jewitt, G.P.W.; Lorentz, S.A. Establishment of a catchment-monitoring network through a participatory approach in a rural community in South Africa. Hydrol. Earth Syst. Sci. 2010, 14, 2507–2525. [Google Scholar] [CrossRef]
- Kosgei, J.R.; Jewitt, G.P.W.; Kongo, V.M.; Lorentz, S.A. The influence of tillage on field scale water fluxes and maize yields in semi-arid environments: A case study of Potshini catchment, South Africa. Phys. Chem. Earth Parts A/B/C 2007, 32, 1117–1126. [Google Scholar] [CrossRef]
- Gräf, J. Potentials and Limitations of Community Based Water Monitoring—A Case Study in the Sondu Catchment, Kenya. Master’s Thesis, Justus-Liebig University, Giessen, Germany, 2018. [Google Scholar]
Age (Year) | <25 | 25–45 | 45–60 | 60< |
---|---|---|---|---|
18.2 | 48.5 | 27.3 | 6.1 | |
Main Occupation | Agricultural Labor | Engineer or Staff | Student | Researcher |
18.2 | 48.5 | 21.2 | 12.1 | |
Number of Observed Samples | <15 | 15–25 | 25–30 | 30< |
24.2 | 27.3 | 42.4 | 6.1 | |
Educational Level | Primary | Secondary | Higher | |
27.3 | 15.2 | 57.6 |
Citizen Nitrates’ Measurements | F | p Value |
---|---|---|
Citizen type | 3.272 | 0.011 |
Water source sampling sites | 31.154 | 0.000 |
Hydrologic season (wet and dry season) | 2.559 | 0.110 |
Citizen type × Water source | 2.732 | 0.004 |
Citizen type × Hydrologic season | 0.721 | 0.539 |
Citizen type × Water source × Hydrologic season | 2.009 | 0.092 |
Citizen Type | Ncitizens | Nsamples | Equation | F Test | p Value | R | R² |
---|---|---|---|---|---|---|---|
Motivated volunteers | 9 | * 171 | Nlab = 1.052 × Nstrip + 0.114 × Turbidity | 1108.3 | 0.000 | 0.964 | 0.929 |
** 152 | Nlab = 0.868 × Nstrip − 0.028 × Turbidity + 6.094 | 437.4 | 0.000 | 0.948 | 0.898 | ||
Agricultural hand labor | 7 | * 109 | Nlab = 1.073 × Nstrip − 0.067 × Turbidity | 927.5 | 0.000 | 0.972 | 0.945 |
** 46 | Nlab = 0.940 × Nstrip + 0.008 × Turbidity − 1.342 | 233.3 | 0.000 | 0.971 | 0.942 | ||
Students | 6 | * 106 | Nlab = 1.000 × Nstrip + 0.597 × Turbidity | 262.2 | 0.000 | 0.940 | 0.884 |
** 50 | Nlab = 1.000 × Nstrip + 0.296 × Turbidity − 0.683 | 155.0 | 0.000 | 0.953 | 0.908 | ||
Researchers | 4 | * 82 | Nlab = 1.000 × Nstrip − 0.645 × Turbidity | 408.8 | 0.000 | 0.969 | 0.953 |
** 8 | Nlab = 1.000 × Nstrip + 0.285 × Turbidity − 0.629 | 38.4 | 0.000 | 0.979 | 0.958 | ||
Water operators | 7 | * 17 | Nlab = 0.917 × Nstrip − 0.059 × Turbidity | 34.5 | 0.000 | 0.938 | 0.881 |
** 52 | Nlab = 0.907 × Nstrip + 0.004 × Turbidity | 72.2 | 0.000 | 0.901 | 0.811 | ||
All citizens | 33 | * 485 | Nlab = 1.036 × Nstrip − 0.040 × Turbidity | 1890.7 | 0.000 | 0.960 | 0.922 |
** 308 | Nlab = 0.882 × Nstrip − 0.001 × Turbidity | 436.6 | 0.000 | 0.955 | 0.911 |
Variable | Motivation Level | Education Level | Involved in Water Sector | Main Occupation | Relation with the Project Staff | Interest during Training | Questions during Training | Commitment | Strip Learning Mode | Number of Observed Samples | Participation in Collection of Samples | Age | * Gender | * Eyeglasses | * Valuing the Project’s Objectives |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Motivation level | |||||||||||||||
Education level | 0.123 | ||||||||||||||
Involved in water sector | 0.176 | 0.186 | |||||||||||||
Main occupation | 0.398 | 0.485 | 0.629 | ||||||||||||
Relation with the project staff | 0.427 | −0.040 | 0.416 | 0.374 | |||||||||||
Interest during training | 0.218 | 0.405 | 0.623 | 0.603 | 0.017 | ||||||||||
Questions during training | 0.411 | −0.019 | 0.693 | 0.585 | 0.402 | 0.597 | |||||||||
Commitment | 0.393 | 0.478 | 0.717 | 0.636 | 0.425 | 0.476 | 0.529 | ||||||||
Strip learning mode | 0.496 | 0.051 | 0.645 | 0.543 | 0.477 | 0.655 | 0.858 | 0.541 | |||||||
Number of observed samples | 0.419 | −0.079 | 0.626 | 0.442 | 0.625 | 0.399 | 0.771 | 0.524 | 0.807 | ||||||
Participation in collection of samples | 0.110 | 0.289 | 0.486 | 0.382 | −0.140 | 0.663 | 0.568 | 0.339 | 0.472 | 0.254 | |||||
Age | 0.241 | −0.410 | 0.156 | −0.077 | 0.225 | −0.041 | 0.296 | 0.201 | 0.252 | 0.498 | −0.066 | ||||
* Gender | 0.081 | −0.113 | 0.097 | 0.234 | 0.299 | 0.002 | 0.178 | 0.050 | 0.158 | 0.234 | −0.231 | 0.048 | |||
* Eyeglasses | 0.230 | 0.029 | 0.583 | 0.404 | 0.396 | 0.160 | 0.556 | 0.447 | 0.445 | 0.603 | 0.283 | 0.354 | 0.056 | ||
* Valuing the project’s objectives | 0.224 | 0.181 | 0.349 | 0.339 | −0.148 | 0.715 | 0.591 | 0.205 | 0.541 | 0.243 | 0.750 | −0.055 | −0.012 | −0.015 |
Variable | Axis 1: Relevance to the Citizen | Axis 2: Citizen Identification |
---|---|---|
Motivation level | 0.276 | 0.387 |
Education level | 0.074 | 0.284 |
Involved in water sector | 0.692 | 0.004 |
Main occupation | 0.585 | 0.745 |
Relation with the project staff | 0.279 | 0.317 |
Interest during training | 0.530 | 0.516 |
Questions during training | 0.772 | 0.718 |
Commitment | 0.604 | 0.538 |
Strip learning mode | 0.787 | 0.180 |
Number of observed samples | 0.654 | 0.363 |
Participation in collection of samples | 0.317 | 0.367 |
Age | 0.065 | 0.490 |
* Gender | 0.022 | 0.129 |
* Eyeglasses | 0.326 | 0.033 |
* Valuing the project’s objectives | 0.269 | 0.752 |
Cronbach’s Alpha | 0.906 | 0.828 |
Active eigenvalue | 5.635 | 4.909 |
% of Variance | 46.957 | 40.908 |
Country | Number of Sites/Participants | Time Scale | Monitoring Focus | Training | Type of Project | Program | References |
---|---|---|---|---|---|---|---|
Tunisia | 2 sites/8 participants | 1 year | Discharge measurements | Yes | Collaborative | Together4Water project | Fehri et al. [24] |
3 sites/7 participants | 10 months | Rainfall monitoring | Fehri et al. [25] | ||||
Kenya | 13 sites/ 125 participants | 1 year | Water level | yes | Contributory | n.a. | Weeser et al. [41] |
13 sites | 1 year | Water level | yes | Contributory | n.a. | Rufino et al. [42] | |
Tanzania | 24 sites | 6 years | Water flow | yes | Co-created | IMoMo/GI | Njue et al. [43] |
39 sites | n.a. | Water level & flow precipitation | n.s. | Collaborative | RACC | Gomani et al. [44] | |
Ethiopia | 8 sites | >1 year | Precipitation, stream water & groundwater levels | yes | Collaborative | AMGRAF | Walker et al. [45] |
28 sites | n.a. | Precipitation, water level | yes | Collaborative | n.a. | Zemadim et al. [46] | |
South Africa | n.a. | 2 years | Stream flows & precipitation | yes | Collaborative | n.a. | Kongo et al. [47] |
3 sites | 1 year | Precipitation | yes | Collaborative | n.a. | Kosgei et al. [48] | |
Water quality monitoring | |||||||
Kenya | 6 sites | <1 year | Water quality | yes | Contributory | n.a. | Gräf [49] |
Tunisia | 12 sites/3 participants | 1 year | Water quality (Nitrates, Total alkalinity, and Sodium chloride) | yes | Collaborative | Smart Medjerda Project | Chaabane et al. [19] |
12 sites/3 participants | 6 months | Water Salinity | yes | Collaborative | Chaabane et al. [20] | ||
24 sites/33 participants | 1 year | Water quality (Nitrates) | Yes | Collaborative | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaabane, S.; Riahi, K.; Khlifi, S.; Slama, E.; Vanclooster, M. Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia. Hydrology 2024, 11, 6. https://doi.org/10.3390/hydrology11010006
Chaabane S, Riahi K, Khlifi S, Slama E, Vanclooster M. Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia. Hydrology. 2024; 11(1):6. https://doi.org/10.3390/hydrology11010006
Chicago/Turabian StyleChaabane, Safa, Khalifa Riahi, Slaheddine Khlifi, Emna Slama, and Marnik Vanclooster. 2024. "Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia" Hydrology 11, no. 1: 6. https://doi.org/10.3390/hydrology11010006
APA StyleChaabane, S., Riahi, K., Khlifi, S., Slama, E., & Vanclooster, M. (2024). Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia. Hydrology, 11(1), 6. https://doi.org/10.3390/hydrology11010006