Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. SWAT Model for ARW
2.3. Data Acquisition
2.4. Mann–Kendall Analysis
3. Results
3.1. Model Calibration and Validation
3.2. Daily, Monthly, and Annual Hydrological Processes
3.3. Impacts of Land Use and Afforestation on Hydrological Processes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouyang, Y. New insights on evapotranspiration and water yield in crop and forest lands under changing climate. J. Hydrol. 2021, 603, 127192. [Google Scholar] [CrossRef]
- Bekturganov, Z.; Tussupova, K.; Berndtsson, R.; Sharapatova, N.; Aryngazin, K.; Zhanasova, M. Water Related Health Problems in Central Asia—A Review. Water 2016, 8, 219. [Google Scholar] [CrossRef]
- Cowan, P.J. Geographic usage of the terms middle Asia and Central Asia. J. Arid. Environ. 2007, 69, 359–363. [Google Scholar] [CrossRef]
- O’Hara, S.L. Central Asia’s water resources: Contemporary and future management issues. Int. J. Water Resour. Dev. 2000, 16, 423–441. [Google Scholar] [CrossRef]
- USAID. Climate Risk Profile: Central Asia. 2023. Available online: https://www.preventionweb.net/publication/climate-risk-profile-central-asia (accessed on 18 February 2023).
- Frenken, K. Food and Agriculture Organization of the United Nations. Irrigation in Central Asia in Figures: AQUASTAT Survey-2012; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Yin, Z.Y.; Wang, H.L.; Liu, X.D. A Comparative Study on Precipitation Climatology and Interannual Variability in the Lower Mid latitude East Asia and Central Asia. J. Clim. 2014, 27, 7830–7848. [Google Scholar] [CrossRef]
- Broka, S.; Giertz, Å.; Christensen, G.; Rasmussen, D.; Morgounov, A.; Fileccia, T.; Rubaiza, R. Kazakhstan Agricultural Sector Risk Assessment. 2016. Available online: https://documents1.worldbank.org/curated/en/422491467991944802/pdf/103076-WP-KZ-P154004-Box394863B-PUBLIC-ASRA.pdf (accessed on 4 July 2023).
- Abdukhalilovich, K.A. Agroforest Reclamation Fundamentals of Soil Erosion Control in the Mountains of the Uzbek SSR. Ph.D. Thesis, Agrarian University, Tashkent, Uzbekistan, 1984; 504p. [Google Scholar]
- Shahgedanova, M.; Afzal, M.; Hagg, W.; Kapitsa, V.; Kasatkin, N.; Mayr, E.; Rybak, O.; Saidaliyeva, Z.; Severskiy, I.; Usmanova, Z. Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia. Water 2020, 12, 627. [Google Scholar] [CrossRef] [Green Version]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Mavlyanova, N.G.; Lipatov, V.A.; Tiefenbacher, J.P. Regional Cooperative Disaster Risk Management in Central Asian Borderlands. J. Borderl. Stud. 2023, 38, 417–439. [Google Scholar] [CrossRef]
- Khan, F.; Sohail, Z.; Khan, T.; Fatima, B.; Malik, F.; Bukhari, S.F.H.; Imadi, S.R.; Gul, A. Vegetation of Central Asia and Environs; Springer International Publishing: Cham, Switzerland, 2018; pp. 73–117. [Google Scholar]
- Kleine, M.; Colak, A.; Kirca, S.; Sagheb-Talebi, K.; Orozumbekov, A.; Lee, D. Rehabilitating degraded forest landscapes in West and Central Asia. IUFRO World Ser. 2009, 20, 5–26. [Google Scholar]
- United Nations Development Programme (UNDP). Central Asia Human Development Report; UN Development Programme: Bratislava, Slovakia, 2005; p. 246. Available online: https://digitallibrary.un.org/record/578152 (accessed on 4 July 2023).
- Micklin, P. The past, present, and future Aral Sea. Lakes Reserv. Res. Manag. 2010, 15, 193–213. [Google Scholar] [CrossRef]
- Micklin, P.; Aladin, N.V.; Chida, T.; Boroffka, N.; Plotnikov, I.S.; Krivonogov, S.; White, K. Large Asian Lakes in a Changing World: Natural State and Human Impact; Mischke, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 109–141. [Google Scholar]
- Uzbekov, U.; Pulatov, B.; Alikhanov, B.; Pulatov, A. Predicting the impact of future climate change on streamflow in the Ugam River watershed. Geoscape 2021, 15, 159–172. [Google Scholar] [CrossRef]
- Olsson, O.; Gassmann, M.; Manig, N.; Ikramova, M.; Wegerich, K. Basin efficiency approach and its effect on streamflow quality, Zerafshan River Uzbekistan. J. Hydrol. 2013, 476, 128–135. [Google Scholar] [CrossRef]
- Scott, J.; Rosen, M.R.; Saito, L.; Decker, D.L. The influence of irrigation water on the hydrology and lake water budgets of two small arid-climate lakes in Khorezm, Uzbekistan. J. Hydrol. 2011, 410, 114–125. [Google Scholar] [CrossRef]
- Ghimire, U.; Akhtar, T.; Shrestha, N.K.; Paul, P.K.; Schurz, C.; Srinivasan, R.; Daggupati, P. A Long-term Global Comparison of IMERG and CFSR with Surface Precipitation Stations. Water Resour. Manag. 2022, 36, 5695–5709. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 4. 2015. Available online: https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf (accessed on 4 July 2023).
- Botman, K.S. Experience in Mountain Afforestation in Order to Combat Soil Erosion and Mudflows in the Aktash River Basin. Bachelor’s Thesis, Agrarian University, Tashkent, Uzbekistan, 1968; p. 236. [Google Scholar]
- Botman, E.K. Survey of Anti-Erosion Plantings in the Aktashsay River Basin, Burchmullo Forestry Enterprise; International Union of Forestry Research Organizations (IUFRO): Vienna, Austria, 2022. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley and Sons: New York, NY, USA, 1987. [Google Scholar]
- Pohlert, T. Package ‘‘Trend’’. 2018. Available online: https://www.r-project.org/ (accessed on 4 July 2023).
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, P.B.; Risal, A.; Ouyang, Y.; Thompson, A. Comparison of SWAT and MODIS Evapotranspiration Data for Multiple Timescales. Hydrology 2022, 9, 103. [Google Scholar] [CrossRef]
- Wambura, F.J. Uncertainty of drought information in a data-scarce tropical river basin. J. Hydrol. Reg. Stud. 2020, 32, 100760. [Google Scholar] [CrossRef]
- Ouyang, Y. A Hybrid of Copula Prediction and Time Series Computation to Estimate Stream Discharge Based on Precipitation Data. J. Am. Water Resour. Assoc. 2022, 58, 471–484. [Google Scholar] [CrossRef]
- Mangiafico, S.S. Summary and Analysis of Extension Program Evaluation in R, version 1.11.1; Rutgers Cooperative Extension: New Brunswick, NJ, Canada, 2016. [Google Scholar]
- FAO. Global Forest Resource Assessment; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Kocherga, F. Research work on the fight with erosion of soils and flooding in the mountainous regions of Central Asia. In Proceedings of the Central Asian Research Institute of Forestry Volume X; Uzbekistan Publishers: Tashkent, Uzbekistan, 1966; pp. 16–57. [Google Scholar]
- WB/ADB. Climate Risk Country Profile: Uzbekistan, the World Bank Group and the Asian Development Bank; World Bank Group: Washington, DC, USA, 2021. [Google Scholar]
- Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.; Martius, C.; Strunz, G. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig. Drain. Syst. 2007, 21, 197–218. [Google Scholar] [CrossRef] [Green Version]
- Ha, W.; Kolb, T.E.; Springer, A.E.; Dore, S.; O’Donnell, F.C.; Morales, R.M.; Lopez, S.M.; Koch, G.W. Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests. Ecohydrology 2015, 8, 1335–1350. [Google Scholar] [CrossRef]
- Heinsch, F.A.; Zhao, M.S.; Running, S.W.; Kimball, J.S.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M.; et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1925. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Will, R.; Wagner, K.; Zhang, T.; Zou, C. Improvement of evapotranspiration estimates for grasslands in the southern Great Plains: Comparing a biophysical model (SWAT) and remote sensing (MODIS). J. Hydrol. Reg. Stud. 2022, 44, 101275. [Google Scholar] [CrossRef]
- Martel, J.-L.; Brissette, F.P.; Lucas-Picher, P.; Troin, M.; Arsenault, R. Climate change and rainfall intensity–duration–frequency curves: Overview of science and guidelines for adaptation. J. Hydrol. Eng. 2021, 26, 03121001. [Google Scholar] [CrossRef]
- Siteur, K.; Eppinga, M.B.; Karssenberg, D.; Baudena, M.; Bierkens, M.F.; Rietkerk, M. How will increases in rainfall intensity affect semiarid ecosystems? Water Resour. Res. 2014, 50, 5980–6001. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Leininger, T.D.; Moran, M. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi. Ecol. Eng. 2013, 61, 394–406. [Google Scholar] [CrossRef]
Parameter | Definition | Value | Unit/Method/Explanation | Reference |
---|---|---|---|---|
SFTMP | Snowfall temperature | 1 | °C | Local observation |
SMTMP | Snowmelt base temperature | 0.5 | °C | Local observation |
SMFMX | Melt factor for snow on June 21 | 4.5 | mm H2O/°C-day | Local observation |
SMFMN | Melt factor for snow on December 21 | 4.5 | mm H2O/°C-day | Local observation |
TIMP | TIMP: Snowpack temperature lag factor | 1 | Local observation | |
IPET | Potential evapotranspiration (PET) method | 1 | Penman–Monteith method | Calibrated |
ESCO | Soil evaporation compensation factor | 0.9 | Calibrated | |
EPCO | EPCO: Plant uptake compensation factor | 1 | Calibrated | |
ICN | Daily curve number calculation method | 0 | Calculate daily CN value as a function of soil moisture | Calibrated |
CNCOEF | Plant ET curve number coefficient | 1 | Calibrated | |
ICRK | Crack flow code | 0 | Do not model crack flow in soil | Local observation |
SURLAG | Surface runoff lag time | 4 | Days | Calibrated |
CN2 | Subbasins curve number | 10% | CN2 increased by 10% for all subbasins | Calibrated |
IRTE | Channel water routing method | 0 | Variable Storage Method | Calibrated |
MSK_COL1 | Calibration coefficient used to control the impact of the storage time constant for normal flow | 0.75 | Calibrated | |
MSK_COL2 | Calibration coefficient used to control the impact of the storage time constant for low flow | 0.25 | Calibrated | |
MSK_X | Weighting factor controlling relative importance of inflow rate and outflow rate in determining water storage in reach segment | 0.2 | Calibrated | |
TRNSRCH | Fraction of transmission losses from the main channel that enter the deep aquifer | 0 | Calibrated | |
EVRCH | Reach evaporation adjustment factor | 1 | Calibrated | |
IDEG | Channel degradation code | 0 | Channel dimension is not updated as a result of degradation | Local observation |
PRF | Peak rate adjustment factor for sediment routing in the main channel | 0 | Calibrated | |
SPCON | Linear parameter for calculating the maximum amount of sediment that can be re-entrained during channel sediment routing | 0.0001 | Calibrated | |
SPEXP | Exponent parameter for calculating sediment re-entrained in channel sediment routing | 1 | Calibrated |
Seasonal Average Precipitation (mm) | Seasonal Average Surface Runoff (mm) | Seasonal Average ET (mm) | Seasonal Average Snowmelt (mm) | Seasonal Average Water Yield (mm) | Seasonal Average Groundwater Discharge (mm) | Seasonal Average Streamflow (m3/s) | |
---|---|---|---|---|---|---|---|
Spring | 115 | 11 | 106 | 29 | 98 | 64 | 22 |
Summer | 298 | 69 | 143 | 0 | 139 | 34 | 32 |
Fall | 403 | 120 | 76 | 10 | 283 | 107 | 65 |
Winter | 226 | 49 | 38 | 85 | 229 | 138 | 52 |
Parameter | Monthly Average | Annual Average | ||||
---|---|---|---|---|---|---|
Catchment 13 (Afforestation Dominated) | Catchment 14 (Rangeland Dominated) | Percent Different (%) | Catchment 13 (Afforestation Dominated) | Catchment 14 (Rangeland Dominated) | Percent Different (%) | |
Precipitation (mm) | 32.18 | 32.18 | 0.00 | 386.15 | 386.15 | 0.00 |
Runoff (mm) | 2.15 | 2.58 | 20.30 | 25.76 | 30.99 | 20.30 |
ET (mm) | 16.99 | 16.97 | −0.08 | 203.85 | 203.68 | −0.08 |
Snowmelt (mm) | 13.59 | 13.59 | 0.00 | 163.07 | 163.07 | 0.00 |
Water Yield (mm) | 12.71 | 12.72 | 0.13 | 152.49 | 152.68 | 0.13 |
Groundwater Discharge (mm) | 6.17 | 5.87 | −4.86 | 73.99 | 70.39 | −4.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Stanturf, J.A.; Williams, M.D.; Botmann, E.; Madsen, P. Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades. Hydrology 2023, 10, 161. https://doi.org/10.3390/hydrology10080161
Ouyang Y, Stanturf JA, Williams MD, Botmann E, Madsen P. Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades. Hydrology. 2023; 10(8):161. https://doi.org/10.3390/hydrology10080161
Chicago/Turabian StyleOuyang, Ying, John A. Stanturf, Marcus D. Williams, Evgeniy Botmann, and Palle Madsen. 2023. "Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades" Hydrology 10, no. 8: 161. https://doi.org/10.3390/hydrology10080161
APA StyleOuyang, Y., Stanturf, J. A., Williams, M. D., Botmann, E., & Madsen, P. (2023). Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades. Hydrology, 10(8), 161. https://doi.org/10.3390/hydrology10080161