Purpose-Designed Hydrogeological Maps for Wide Interconnected Surface–Groundwater Systems: The Test Example of Parma Alluvial Aquifer and Taro River Basin (Northern Italy)
Abstract
1. Introduction
2. Study Area
3. Hydrogeological Subsystems
4. Materials and Methods
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Stuckmeier, W.F.; Margat, J. Hydrogeological Maps. A Guide and a Standard Legend; International Association of Hydrogeoiogist, Contributions to Hydrogeology, Cerlag Heinz Heisse: Hannover, Germany, 1995; Volume 17, 170p. [Google Scholar]
- Iacumin, P.; Venturelli, G.; Selmo, E. Isotopic features of rivers and groundwater of the Parma Province (Northern Italy) and their relationships with precipitation. J. Geochem. Explor. 2009, 102, 56–62. [Google Scholar] [CrossRef]
- Mancini, M.C.; Arfini, F.; Guareschi, M. When Higher Education Meets Sustainable Development of Rural Areas: Lessons Learned from a Community–University Partnership. Soc. Sci. 2022, 11, 338. [Google Scholar] [CrossRef]
- Arfini, F.; Cozzi, E.; Mancini, M.C.; Ferrer-Perez, H.; Gil, J.M. Are Geographical Indication Products Fostering Public Goods? Some Evidence from Europe. Sustainability 2019, 11, 272. [Google Scholar] [CrossRef]
- Mancini, M.C.; Donati, M. Local Agri-Food Systems in a Global World: Market, Social and Environmental Challenges; Cambridge Scholars Publishing: Cambridge, UK, 2012. [Google Scholar]
- Mancini, M.C.; Consiglieri, C. Innovation and marketing strategies for PDO products: The case of “Parmigiano Reggiano” as an ingredient. Bio-Based Appl. Econ. J. 2016, 5, 153–174. [Google Scholar]
- Parma Manifactures Associations. Parma and Its Enterprises. 2020. Available online: www.upi.pr.it (accessed on 1 January 2023).
- Conti, P.; Cornamusini, G.; Carmignani, L. An outline of the geology of the Northern Apennines (Italy), with geological map at 1:250,000 scale. Ital. J. Geosci. 2020, 139, 149–194. [Google Scholar] [CrossRef]
- Elter, P.; Grasso, M.; Parotto, M.; Vezzani, L. Structural setting of the Apennine-Maghrebian thrust belt. Epis. J. Int. Geosci. 2003, 26, 205–211. [Google Scholar] [CrossRef]
- Remitti, F.; Vannucchi, P.; Bettelli, G.; Fantoni, L.; Panini, F.; Vescovi, P. Tectonic and sedimentary evolution of the frontal part of an ancient subduction complex at the transition from accretion to erosion: The case of the Ligurian wedge of the northern Apennines, Italy. GSA Bull. 2011, 123, 51–70. [Google Scholar] [CrossRef]
- Carlini, M.; Artoni, A.; Vescovi, P.; Bernini, M.; Remitti, F.; Bettelli, G.; Vannucchi, P.; Aldega, L.; Balestrieri, M.L.; Corrado, S.; et al. Tectonic and erosional exhumation processes in the western Northern Apennines of Italy: Coeval compressional and extensional tectonics affecting an eroding orogenic wedge. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 7–12 April 2013; p. 12994. [Google Scholar]
- Molli, G.; Crispini, L.; Malusà, M.; Mosca, P.; Piana, F.; Federico, L. Geology of the Western Alps-Northern Apennine junction area: A regional review. Eds Marco Beltrando Angelo Peccerillo Massimo Mattei Sandro Conticelli Carlo Doglioni J. Virtual Explor. 2010, 36, 1–49. [Google Scholar] [CrossRef]
- Vescovi, P. Note Illustrative Della Carta Geologica d'Italia Alla Scala 1:50.000, Foglio 216 “Borgo Val Di Taro”; Servizio Geologico d'Italia-Regione Emilia Romagna; SELCA: Firenze, Italy, 2002. [Google Scholar]
- Boccaletti, M.; Corti, G.; Martelli, L. Recent and active tectonics of the external zone of the Northern Apennines (Italy). Int. J. Earth Sci. 2011, 100, 1331–1348. [Google Scholar] [CrossRef]
- Marroni, M.; Molli, G.; Montanini, A.; Tribuzio, R. The association of continental crust rocks with ophiolites (northern Apen-nines, Italy): Implications for the continent-ocean transition. Tectonophysics 1998, 292, 43–66. [Google Scholar] [CrossRef]
- Marroni, M.; Molli, G.; Montanini, A.; Ottria, G.; Pandolfi, L.; Tribuzio, R. The External Liguride units (Northern Apennine, Italy): From rifting to convergence history of a fossil ocean-continent transition zone. Ofioliti 2002, 27, 119–132. [Google Scholar]
- Vescovi, P.; Fornaciari, E.; Rio, D.; Valloni, R. The basal complex stratigraphy of the Helminthoid Monte Cassio Flysch: A key to the eoalpine tectonics of the Northern Apennines. Riv. Ital. Di Paleontol. E Stratigr. (Res. Paleontol. Stratigr.) 1999, 105, 101–128. [Google Scholar]
- Marroni, M.; Meneghini, F.; Pandolfi, L. A revised subduction inception model to explain the Late Cretaceous, double-vergent orogen in the precollisional western Tethys: Evidence from the Northern Apennines. Tectonics 2017, 36, 2227–2249. [Google Scholar] [CrossRef]
- Amorosi, A.; Ricci Lucchi, F.; Tateo, F. The Lower Miocene siliceous zone: A marker in the palaeogeographic evolution of the northern Apennines. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 118, 131–149. [Google Scholar] [CrossRef]
- Piazza, A.; Artoni, A.; Ogata, K. The Epiligurian wedge-top succession in the Enza Valley (Northern Apennines): Evidence of a syn-depositional transpressive system. Swiss J. Geosci. 2016, 109, 17–36. [Google Scholar] [CrossRef]
- Fantoni, R.; Franciosi, R. Tectono-sedimentary setting of the Po Plain and Adriatic foreland. Rend. Lincei 2010, 21, 197–209. [Google Scholar] [CrossRef]
- Livani, M.; Scrocca, D.; Arecco, P.; Doglioni, C. Structural and stratigraphic control on salient and recess development along a thrust belt front: The Northern Apennines (Po Plain, Italy). J. Geophys. Res. Solid Earth 2018, 123, 4360–4387. [Google Scholar] [CrossRef]
- Salvador, A. International Stratigraphic Guide: A Guide to Stratigraphic Classification, Terminology, and Procedure; Geological Society of America: London, UK, 1994. [Google Scholar]
- Tazioli, A.; Cervi, F.; Doveri, M.; Mussi, M.; Deiana, M.; Ronchetti, F. Estimating the isotopic altitude gradient for hydrogeo-logical studies in mountainous areas: Are the low-yield springs suitable? Insights from the northern Apennines of Italy. Water 2019, 11, 1764. [Google Scholar] [CrossRef]
- Ronchetti, F.; Piccinini, L.; Deiana, M.; Ciccarese, G.; Vincenzi, V.; Aguzzoli, A.; Malavasi, G.; Fabbri, P.; Corsini, A. Tracer test to asses flow and transport parameters of an earth slide: The Montecagno landslide case study (Italy). Eng. Geol. 2020, 275, 105749. [Google Scholar] [CrossRef]
- Aguzzoli, A.; Arosio, D.; Mulas, M.; Ciccarese, G.; Benedikt, B.; Gerfried, W.; Ronchetti, F. Multidisciplinary non-invasive in-vestigations to develop a hydrogeological conceptual model supporting slope kinematics at Fontana Cornia landslide, Northern Apennines, Italy. Environ. Earth Sci. 2022, 81, 471. [Google Scholar] [CrossRef]
- Martelli, L.; Calabrese, L.; Ercolessi, G.; Molinari, F.C.; Severi, P.; Bonini, M. The New Seismotectonic Map of the Emilia-Romagna Region and Surrounding Areas. Atti del 36° Congresso del Gruppo Nazionale di Geofisicxa della Terra Solida. Atti. Del. 2017, 36, 14–16. [Google Scholar]
- Segadelli, S.; Vescovi, P.; Ogata, K.; Chelli, A.; Zanini, A.; Boschetti, T.; Petrella, E.; Toscani, L.; Gargini, A.; Celico, F. A con-ceptual hydrogeological model of ophiolitic aquifers (serpentinised peridotite): The test example of Mt. Prinzera (Northern Italy). Hydrol. Process. 2017, 31, 1058–1073. [Google Scholar] [CrossRef]
- Segadelli, S.; Vescovi, P.; Chelli, A.; Petrella, E.; De Nardo, M.T.; Gargini, A.; Celico, F. Hydrogeological mapping of hetero-geneous and multi-layered ophiolitic aquifers (Mountain Prinzera, northern Apennines, Italy). J. Maps 2017, 13, 737–746. [Google Scholar] [CrossRef]
- Segadelli, S.; Filippini, M.; Monti, A.; Celico, F.; Gargini, A. Estimation of recharge in mountain hard-rock aquifers based on discrete spring discharge monitoring during base-flow recession. Hydrogeol. J. 2021, 29, 949–961. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Bense, V.F.; Gleeson, T.; Loveless, S.E.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
- Segadelli, S.; Adorni, M.; Carbognani, M.; Celico, F.; Tomaselli, M. Combining biological and hydrogeological approaches: The grass Molinia arundinacea as a possible bioindicator of temporary perched aquifers in ophiolitic systems. Catena 2022, 217, 106448. [Google Scholar] [CrossRef]
- Gargini, A.; Vincenzi, V.; Piccinini, L.; Zuppi, G.M.; Canuti, P. Groundwater flow systems in turbidites of the Northern Ap-ennines (Italy): Natural discharge and high speed railway tunnel drainage. Hydrogeol. J. 2008, 16, 1577. [Google Scholar] [CrossRef]
- Petrella, E.; Celico, F. Heterogeneous aquitard properties in sedimentary successions in the Apennine chain: Case studies in southern Italy. Hydrol. Process. Int. J. 2009, 23, 3365–3371. [Google Scholar] [CrossRef]
- Davis, S.N.; De Wiest, R.J.M. Hydrogeology; John Wiley & Sons: New York, NY, USA, 1966. [Google Scholar]
- Rizzo, P.; Severini, E.; Bucci, A.; Bocchia, F.; Palladino, G.; Riboni, N.; Celico, F. How do turbidite systems behave from the hydrogeological point of view? New insights and open questions coming from an interdisciplinary work in southern Italy. PLoS ONE 2022, 17, e0268252. [Google Scholar] [CrossRef]
- Bonini, M. Interrelations of mud volcanism, fluid venting, and thrust-anticline folding: Examples from the external northern Apennines (Emilia-Romagna, Italy). J. Geophys. Res. Solid Earth 2007, 112, 1–21. [Google Scholar] [CrossRef]
- Deiana, M.; Cervi, F.; Pennisi, M.; Mussi, M.; Bertrand, C.; Tazioli, A.; Ronchetti, F. Chemical and isotopic investigations (δ 18 O, δ 2 H, 3 H, 87 Sr/86 Sr) to define groundwater processes occurring in a deep-seated landslide in flysch. Hydrogeol. J. 2018, 26, 2669–2691. [Google Scholar] [CrossRef]
- Remelli, S.; Petrella, E.; Chelli, A.; Conti, F.D.; Lozano Fondón, C.; Celico, F.; Francese, R.; Menta, C. Hydrodynamic and soil biodiversity characterization in an active landslide. Water 2019, 11, 1882. [Google Scholar] [CrossRef]
- Rizzo, P.; Petrella, E.; Bucci, A.; Salvioli Mariani, E.; Chelli, A.; Sanangelantoni, A.M.; Raimondo, M.; Quagliarini, A.; Celico, F. Studying hydraulic interconnections in low-permeability media by using bacterial communities as natural tracers. Water 2020, 12, 1795. [Google Scholar] [CrossRef]
- Chelli, A.; Francese, R.; Petrella, E.; Carri, A.; Quagliarini, A.; Segalini, A.; Celico, F. A multi-parameter field monitoring system to investigate the dynamics of large earth slides–earth flows in the Northern Apennines, Italy. Eng. Geol. 2020, 275, 105780. [Google Scholar] [CrossRef]
- Petrella, E.; Raimondo, M.; Chelli, A.; Valentino, R.; Severini, E.; Diena, M.; Celico, F. Processes and factors controlling the groundwater flow in a complex landslide: A case study in the Northern Italy. Hydrol. Process. 2023, 37(5), e14891. [Google Scholar] [CrossRef]
- Regione Emilia-Romagna; ENI-AGIP. Riserve Idriche Sotterranee Della Regione Emilia-Romagna. A Cura di G.M. Di Dio; Regione Emilia-Romagna, ENI Agip Divisione Esplorazione e Produzione; SELCA: Firenze, Italy, 1998; p. 120. [Google Scholar]
- Zanini, A.; Petrella, E.; Sanangelantoni, A.M.; Angelo, L.; Ventosi, B.; Viani, L.; Celico, F. Groundwater characterization from an ecological and human perspective: An interdisciplinary approach in the Functional Urban Area of Parma, Italy. Rend. Lincei. Sci. Fis. E Nat. 2019, 30, 93–108. [Google Scholar] [CrossRef]
- Di Dio, G.; Martini, A.; Lasagna, S.; Zanzucchi, G. Explanatory notes of the Geologic Map of Italy at the Scale 1:50,000, Sheet No. 199 Parma Sud-Ovest; Servizio Geologico della Regione Emilia-Romagna, Servizio Geologico Nazionale, ISPRA: Rome, Italy, 2005. [Google Scholar]
- Zanini, A.; Ghirardi, M.; Emiliani, R. A multidisciplinary approach to evaluate the effectiveness of natural attenuation at a contaminated site. Hydrology 2021, 8, 101. [Google Scholar] [CrossRef]
- Severini, E.; Ducci, L.; Sutti, A.; Robottom, S.; Sutti, S.; Celico, F. River–Groundwater Interaction and Recharge Effects on Microplastics Contamination of Groundwater in Confined Alluvial Aquifers. Water 2022, 14, 1913. [Google Scholar] [CrossRef]
- Ducci, L.; Rizzo, P.; Pinardi, R.; Solfrini, A.; Maggiali, A.; Pizzati, M.; Balsamo, F.; Celico, F. What Is the Impact of Leaky Sewers on Groundwater Contamination in Urban Semi-Confined Aquifers? A Test Study Related to Fecal Matter and Personal Care Products (PCPs). Hydrology 2022, 10, 3. [Google Scholar] [CrossRef]
- Rossetti, G.; Pieri, V.; Martens, K. Recent ostracods (Crustacea, Ostracoda) found in lowland springs of the provinces of Pia-cenza and Parma (Northern Italy). Hydrobiologia 2005, 542, 287–296. [Google Scholar] [CrossRef]
- Bonaposta, D.; Segadelli, S.; De Nardo, M.T.; Alessandrini, A.; Pezzoli, S. Le potenzialità geologiche dei dati storici am-bientali: Il caso delle sorgenti e dei fontanili in Emilia-Romagna. Il Geologo dell’Emilia Romagna 2011, 1, 19–34. [Google Scholar]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Widerlund, A. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Song, Y.; Ji, J.; Mao, C.; Yang, Z.; Yuan, X.; Godwin, A.A.; Frost, R.L. Heavy metal contamination in suspended solids of Changjiang river—Environmental implications. Geoderma 2010, 159, 286–295. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Chalov, S.R.; Belozerova, E.V. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case. J. Environ. Monit. 2012, 14, 2780–2792. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Bi, N.; Wang, H.; Yang, J.; Wei, H.; Zhao, J.; Li, G.; Yin, X.; Liu, M.; et al. Seasonal variability and flux of patticulate trace elements from the Yellow River: Impacts of the anthropogenic flood event. Mar. Pollut. Bull. 2015, 91, 35–44. [Google Scholar] [CrossRef]
- Oberholster, P.J.; Botha, A.M.; Hill, L.; Strydom, W.F. River catchment responses to anthropogenic acidification in relationship with sewage effluent: An ecotoxicology screening application. Chemosphere 2017, 189, 407–417. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentration and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Atangana, E.; Oberholster, P.J. Using heavy metal pollution indices to assess water quality of surface and groundwater on catchment levels in South Africa. J. Afr. Earth Sci. 2021, 182, 104254. [Google Scholar] [CrossRef]
- Sui, C.; Fatichi, S.; Burlando, P.; Weber, E.; Battista, G. Modeling distributed metal pollution transport in a mine impacted catchment: Short and long-term effects. Sci. Total Environ. 2022, 812, 151473. [Google Scholar] [CrossRef]
- Owens, P.N.; Petticrew, E.L.; Albers, S.J.; French, T.D.; Granger, B.; Laval, B.; Vagle, S. Annual pulses of copper-enriched sediment in a North American river downstream of a large lake following the catastrophic failure of a mine tailings storage facility. Sci. Total Environ. 2023, 856, 158927. [Google Scholar] [CrossRef] [PubMed]
- Rezaei Kalvani, S.; Celico, F. The Water–Energy–Food Nexus in European Countries: A Review and Future Perspectives. Sustainability 2023, 15, 4960. [Google Scholar] [CrossRef]
- D’Oria, M.; Cozzi, C.; Tanda, M.G. Future precipitation and temperature changes over the Taro, Parma and Enza River Basins in Northern Italy. Ital. J. Eng. Geol. Environ. (Spec. Issue) 2018, 1, 49–63. [Google Scholar]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate change over the Mediterranean region: Local temperature and precipitation variations at five pilot sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Daily, G.C. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinardi, R.; Feo, A.; Ruffini, A.; Celico, F. Purpose-Designed Hydrogeological Maps for Wide Interconnected Surface–Groundwater Systems: The Test Example of Parma Alluvial Aquifer and Taro River Basin (Northern Italy). Hydrology 2023, 10, 127. https://doi.org/10.3390/hydrology10060127
Pinardi R, Feo A, Ruffini A, Celico F. Purpose-Designed Hydrogeological Maps for Wide Interconnected Surface–Groundwater Systems: The Test Example of Parma Alluvial Aquifer and Taro River Basin (Northern Italy). Hydrology. 2023; 10(6):127. https://doi.org/10.3390/hydrology10060127
Chicago/Turabian StylePinardi, Riccardo, Alessandra Feo, Andrea Ruffini, and Fulvio Celico. 2023. "Purpose-Designed Hydrogeological Maps for Wide Interconnected Surface–Groundwater Systems: The Test Example of Parma Alluvial Aquifer and Taro River Basin (Northern Italy)" Hydrology 10, no. 6: 127. https://doi.org/10.3390/hydrology10060127
APA StylePinardi, R., Feo, A., Ruffini, A., & Celico, F. (2023). Purpose-Designed Hydrogeological Maps for Wide Interconnected Surface–Groundwater Systems: The Test Example of Parma Alluvial Aquifer and Taro River Basin (Northern Italy). Hydrology, 10(6), 127. https://doi.org/10.3390/hydrology10060127