Assessing the Effect of Spatial Variation in Soils on Sediment Loads in Yazoo River Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Model Data Inputs
2.4. Calibration and Validation
2.5. Sediment Load Estimation
2.6. Soil Classification
3. Results and Discussion
3.1. Calibration and Validation
3.2. Sediment Load Assessment
3.2.1. Watershed Scale
3.2.2. Agriculture Dominant Region
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dumanski, J. Evolving Concepts and Opportunities in Soil Conservation. Int. Soil Water Conserv. Res. 2015, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Marcus, W.A.; Kearney, M.S. Upland and Coastal Sediment Sources in a Chesapeake Bay Estuary. Ann. Assoc. Am. Geogr. 1991, 81, 408–424. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Rong, L.; Duan, X.; Zhang, R.; Li, Y.; Guan, J. Effect of Soil Erosion Depth on Crop Yield Based on Topsoil Removal Method: A Meta-Analysis. Agron. Sustain. Dev. 2021, 1, 3. [Google Scholar] [CrossRef]
- Mathieu, D.B.; Wu, S.; Fredah, G.K.; Mathieu, D.B.; Wu, S.; Fredah, G.K. Economic Analysis of the Determinants of the Adoption of Water and Soil Conservation Techniques in Burkina Faso: Case of Cotton Producers in the Province of Bam. J. Environ. Prot. 2019, 10, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Heathcote, A.J.; Filstrup, C.T.; Downing, J.A. Watershed Sediment Losses to Lakes Accelerating Despite Agricultural Soil Conservation Efforts. PLoS ONE 2013, 8, 53554. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Chen, K.L.; Cheng, S.G.; Wang, X. Water Ecological Carrying Capacity of Urban Lakes in the Context of Rapid Urbanization: A Case Study of East Lake in Wuhan. Phys. Chem. Earth 2015, 89–90, 104–113. [Google Scholar] [CrossRef]
- Wear, L.R.; Aust, W.M.; Bolding, M.C.; Strahm, B.D.; Dolloff, C.A. Effectiveness of Best Management Practices for Sediment Reduction at Operational Forest Stream Crossings. For. Ecol. Manag. 2013, 289, 551–561. [Google Scholar] [CrossRef]
- Moore, W.B.; Mccarl, B.A. Off-Site Costs of Soil Erosion: A Case Study in the Willamette Valley. West. J. Agric. Econ. 1987, 12, 42–49. [Google Scholar]
- Reganold, J.P. Long-Term Effects of Organic and Conventional Farming on Soil Erosion. Nature 1987, 330, 370–372. [Google Scholar] [CrossRef]
- Gantzer, C.; Anderson, S.H. Topsoil Depth, Fertility, Water Management, and Weather Influences on Yield a Comparision of Soil Hydraulic Properties as Affected by Cover Crop Managements View Project Influence of Cover Crop Managements on X-ray CT-Measured Pore Parameters and Hydrauli. Soil Sci. Soc. Am. J. 1991, 55, 1085–1091. [Google Scholar] [CrossRef]
- Zhao, J.; van Oost, K.; Chen, L.; Govers, G. Moderate Topsoil Erosion Rates Constrain the Magnitude of the Erosion-Induced Carbon Sink and Agricultural Productivity Losses on the Chinese Loess Plateau. Biogeosciences 2016, 13, 4735–4750. [Google Scholar] [CrossRef] [Green Version]
- Quinteiro, P.; Van de Broek, M.; Dias, A.C.; Ridoutt, B.G.; Govers, G.; Arroja, L. Life Cycle Impacts of Topsoil Erosion on Aquatic Biota: Case Study on Eucalyptus Globulus Forest. Int. J. Life Cycle Assess. 2017, 22, 159–171. [Google Scholar] [CrossRef]
- Kumarasinghe, U. A Review on New Technologies in Soil Erosion Management. J. Res. Eng. 2021, 2, 120–127. [Google Scholar]
- Jayakody, P.; Parajuli, P.B.; Cathcart, T.P. Impacts of Climate Variability on Water Quality with Best Management Practices in Sub-Tropical Climate of USA. Hydrol. Process. 2014, 28, 5776–5790. [Google Scholar] [CrossRef]
- US-EPA Basic Information about Nonpoint Source (NPS) Pollution|US EPA. Available online: https://www.epa.gov/nps/basic-information-about-nonpoint-source-nps-pollution (accessed on 16 December 2022).
- Halecki, W.; Kruk, E.; Ryczek, M. Loss of Topsoil and Soil Erosion by Water in Agricultural Areas: A Multi-Criteria Approach for Various Land Use Scenarios in the Western Carpathians Using a SWAT Model. Land Use Policy 2018, 73, 363–372. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Daniel, T.; Gibson, G.; Bundy, L.; Cabrera, M.; Sims, T.; Stevens, R.; Lemunyon, J.; Kleinman, P.; Parry, R. Best Management Practices to Minimize Agricultural Phosphorus Impacts on Water Quality; USDA-ARS: Washington, DC, USA, 2006.
- Parajuli, P.B.; Mankin, K.R.; Barnes, P.L. Applicability of Targeting Vegetative Filter Strips to Abate Fecal Bacteria and Sediment Yield Using SWAT. Agric. Water Manag. 2008, 95, 1189–1200. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B.; Ouyang, Y.; Schmitz, D.W. Evaluating the Impacts of Crop Rotations on Groundwater Storage and Recharge in an Agricultural Watershed. Agric. Water Manag. 2016, 163, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Merriman, K.R.; Daggupati, P.; Srinivasan, R.; Hayhurst, B. Assessment of Site-Specific Agricultural Best Management Practices in the Upper East River Watershed, Wisconsin, Using a Field-Scale SWAT Model. J. Great Lakes Res. 2019, 45, 619–641. [Google Scholar] [CrossRef]
- Nepal, D.; Parajuli, P.B. Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT. Agriculture 2022, 12, 518. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Gupta, B.K.S.; Platon, E.; Parsons, M.L. Sediments Tell the History of Eutrophication and Hypoxia in the Northern Gulf of Mexico. Ecol. Appl. 2007, 17, 129–143. [Google Scholar] [CrossRef]
- Singh, S.; Dash, P.; Silwal, S.; Feng, G.; Adeli, A.; Moorhead, R.J. Influence of Land Use and Land Cover on the Spatial Variability of Dissolved Organic Matter in Multiple Aquatic Environments. Environ. Sci. Pollut. Res. 2017, 24, 14124–14141. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Mississippi River Basin Program|The Nature Conservancy. Available online: https://www.nature.org/en-us/about-us/where-we-work/priority-landscapes/mississippi-river-basin/ (accessed on 15 December 2022).
- Middleton, H.E. Properties of Soils Which Influence Soil Erosion—Google Books; USDA: Champaign, IL, USA, 1930.
- Holz, D.J.; Williard, K.W.J.; Edwards, P.J.; Schoonover, J.E. Soil Erosion in Humid Regions: A Review. J. Contemp. Water Res. Educ. 2015, 154, 48–59. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Gholami, L.; Darvishan, A.K.; Saeidi, P. A Review of the Application of the MUSLE Model Worldwide. Hydrol. Sci. J. 2014, 59, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Rogério De Mello, C.; Norton, L.D.; Campos Pinto, L.; Beskow, S.; Curi, N. Agricultural Watershed Modeling: A Review for Hydrology and Soil Erosion Processes. Ciência Agrotecnologia 2016, 40, 7–25. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting Soil Erosionby Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA-ARS: Tucson, AZ, USA, 1996; ISBN 0160489385.
- Flanagan, D.C.; Ascough, J.C.; Nearing, M.A.; Laflen, J.M. The Water Erosion Prediction Project (WEPP) Model; Springer: Berlin/Heidelberg, Germany, 2001; pp. 145–199. [Google Scholar] [CrossRef]
- Bingner, R.L.; Theurer, F.D. AnnAGNPS Technical Processes Documentation; National Sedimentation Laboratory: Oxford, MS, USA, 2005.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Veith, T.L. Guidelines for Using the Sensitivity Analysis and Auto-Calibration Tools for Multi-Gage or Multi-Step Calibration in SWAT. 2010, pp. 1–30. Available online: https://www.researchgate.net/publication/268344153_Guidelines_for_Using_the_Sensitivity_Analysis_and_Auto-calibration_Tools_for_Multi-gage_or_Multi-step_Calibration_in_SWAT (accessed on 24 January 2023).
- Cho, J.; Her, Y.; Bosch, D. Assessing Applicability of SWAT Calibrated at Multiple Spatial Scales from Field to Stream. J. Korean Soc. Agric. Eng. 2015, 57, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Sadeghi, A.M.; Yeo, I.-Y.; Mccarty, G.W.; Hively, W.D. Assessing the Impacts of Future Climate Conditions on the Effectiveness of Winter Cover Crops in Reducing Nitrate Loads into the Chesapeake Bay Watersheds Using the SWAT Model. Trans. ASABE 2017, 60, 1939–1955. [Google Scholar] [CrossRef]
- Wallace, C.W.; Flanagan, D.C.; Engel, B.A. Evaluating the Effects of Watershed Size on SWAT Calibration. Water 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Jalowska, A.M.; Yuan, Y. Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. J. Am. Water Resour. Assoc. 2019, 55, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Bekele, S.; Abate, B. Estimation of Sediment Yield Using Swat Model: A Case of Soke River Watershed, Ethiopia. Int. J. Eng. Res. Technol. 2020, 9, 685–695. [Google Scholar]
- Mapes, K.L.; Pricope, N.G. Evaluating SWAT Model Performance for Runoff, Percolation, and Sediment Loss Estimation in Low-Gradientwatersheds of the Atlantic Coastal Plain. Hydrology 2020, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Sok, T.; Oeurng, C.; Ich, I.; Sauvage, S.; Sánchez-Pérez, J.M. Assessment of Hydrology and Sediment Yield in the Mekong River Basin Using Swat Model. Water 2020, 12, 3503. [Google Scholar] [CrossRef]
- Bhattarai, S.; Parajuli, P.B.; To, F. Comparison of Flood Frequency at Different Climatic Scenarios in Forested Coastal Watersheds. Climate 2023, 11, 41. [Google Scholar] [CrossRef]
- Censky, S.L.; Parsons, J.L. Crop Production Summary—2019; USDA-ARS: Washington, DC, USA, 2020.
- Lamba, J.; Thompson, A.M.; Karthikeyan, K.G.; Panuska, J.C.; Good, L.W. Effect of Best Management Practice Implementation on Sediment and Phosphorus Load Reductions at Subwatershed and Watershed Scale Using SWAT Model. Int. J. Sediment Res. 2016, 31, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R.; Berndt, H.D. Sediment Yield Prediction Based on Watershed Hydrology. Trans. ASAE 1977, 20, 1100–1104. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; USDA—ARS Soil and Water Conservation Division: Washington, DC, USA, 1965.
- Box, J.E.; Meyer, L.D. Adjustment of the Universal Soil Loss Equation for Cropland Soils Containing Coarse Fragments; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1984; ISBN 9780891189084. [Google Scholar]
- Lai, G.; Yu, G.; Gui, F. Preliminary Study on Assessment of Nutrient Transport in the Taihu Basin Based on SWAT Modeling. Sci. China Ser. Earth Sci. 2006, 49, 135–145. [Google Scholar] [CrossRef]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Obreja, F.; Poesen, J.; Habersack, H.; Fehér, J.; Grošelj, S. Modelling Sediment Fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 599–600, 992–1012. [Google Scholar] [CrossRef]
- Al-Nawiseh, A.N.; Abbas, Z.I.; Ktishat, K. Sediment Yield at Mujib Dam Reservoir in Jordan; Mutah University: Mutah, Jordan, 2018. [Google Scholar]
- Wilk, P. Expanding the Sediment Transport Tracking Possibilities in a River Basin through the Development of a Digital Platform—DNS/SWAT. Appl. Sci. 2022, 12, 3848. [Google Scholar] [CrossRef]
- Kaffas, K.; Papaioannou, G.; Varlas, G.; Al Sayah, M.J.; Papadopoulos, A.; Dimitriou, E.; Katsafados, P.; Righetti, M. Forecasting Soil Erosion and Sediment Yields during Flash Floods: The Disastrous Case of Mandra, Greece, 2017. Earth Surf. Process. Landf. 2022, 47, 1744–1760. [Google Scholar] [CrossRef]
- ESRI about ArcGIS|Mapping & Analytics Software and Services. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview (accessed on 16 December 2022).
- Leonard, R.A.; Knisel, W.G.; Still, D.A. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. Trans. ASAE 1987, 30, 1403–1418. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A Modeling Approach to Determining the Relationship between Erosion and Soil Productivity. Trans. ASAE 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Arnold, J.; William, J.; Nicks, A.; Sammons, N. SWRRB: A Basin Scale Simulation Model for Soil and Water Resources Management; Texas A&M University Press: College Station, TX, USA, 1990. [Google Scholar]
- Knisel, W.; Nicls, A. CREAMS—A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. USDA SEA Conserv. Rep. 1980, 26, 672. [Google Scholar]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-Time Water and Sediment-Routing Model for Large Basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- USGS Digital Elevation Models. Available online: https://apps.nationalmap.gov/downloader/#productSearch (accessed on 27 August 2020).
- NRCS Web Soil Survey (WSS) SSURGO Database. Available online: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed on 10 September 2020).
- USDA-NASS United States Department of Agriculture—National Agricultural Statistics Service (USDA-NASS) CropScape—NASS CDL Program. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 10 September 2020).
- NOAA National Oceanic and Atmospheric Administration (NOAA) Climate Data Online (CDO)|National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/search (accessed on 31 August 2020).
- MAFES Mississippi Agricultural and Forestry Experiment Station—Variety Trials. Available online: https://www.mafes.msstate.edu/variety-trials/ (accessed on 31 August 2020).
- ASAE D384.2 MAR2005; Manure Production and Characteristics Standard. ASABE Standards: Saint Joseph, MO, USA, 2006; Volume 2005, pp. 709–727.
- Mississippi Forestry Commission. Mississippi’s BMPs—Best Management Practices for Forestry in Mississippi, 4th ed.; Mississippi Forestry Commission: Jackson, MS, USA, 2008.
- USGS United States Geological Survey Daily Data for Mississippi_ Stage and Streamflow. Available online: https://waterdata.usgs.gov/ms/nwis/current/?type=dailystagedischarge&group_key=basin_cd#Equipment_malfunction (accessed on 15 October 2020).
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zo. J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Wright, S. Correlation and Causation. J. Agric. Res. 1921, 7, 557–585. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for Regression Models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Venishetty, V.; Parajuli, P.B. Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed. Agriculture 2022, 12, 477. [Google Scholar] [CrossRef]
- Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z. Assessment of Crop Growth and Soil Water Modules in SWAT2000 Using Extensive Field Experiment Data in an Irrigation District of the Yellow River Basin. J. Hydrol. 2008, 352, 139–156. [Google Scholar] [CrossRef]
- Nair, S.S.; King, K.W.; Witter, J.D.; Sohngen, B.L.; Fausey, N.R. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools1. J. Am. Water Resour. Assoc. 2011, 47, 1285–1297. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation Soil & Water Assessment Tool; Texas Water Resources Institute: Thrall, TX, USA, 2012.
- Chen, Y.; Marek, G.W.; Marek, T.H.; Brauer, D.K.; Srinivasan, R. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains. Water 2017, 9, 509. [Google Scholar] [CrossRef]
- Mittelstet, A.R.; Storm, D.E.; Stoecker, A.L. Using SWAT to Simulate Crop Yields and Salinity Levels in the North Fork River Basin, USA. Int. J. Agric. Biol. Eng. 2015, 8, 110–124. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Risal, A.; Ouyang, Y.; Thompson, A. Comparison of SWAT and MODIS Evapotranspiration Data for Multiple Timescales. Hydrol. 2022, 9, 103. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Hauck, L.M.; Dugas, W.A. Application of a Watershed Model to Evaluate Management Effects on Point and Nonpoint Source Pollution. Trans. ASAE 2001, 44, 1559–1570. [Google Scholar] [CrossRef]
- Yuan, Y.; Chiang, L.C. Sensitivity Analysis of SWAT Nitrogen Simulations with and without In-Stream Processes. Arch. Agron. Soil Sci. 2014, 61, 969–987. [Google Scholar] [CrossRef]
- NOAA National Oceanic and Atmospheric Administration—Storm Events Database—Search Results|National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/stormevents/listevents.jsp?eventType=ALL&beginDate_mm=01&beginDate_dd=01&beginDate_yyyy=2014&endDate_mm=05&endDate_dd=31&endDate_yyyy=2016&county=WASHINGTON%3A151&hailfilter=0.00&tornfilter=0&windfilter=000&sort=DT&submitbutton=S (accessed on 25 March 2022).
- Jayakody, P.; Parajuli, P.B.; Sassenrath, G.F.; Ouyang, Y. Relationships between Water Table and Model Simulated ET. Groundwater 2014, 52, 303–310. [Google Scholar] [CrossRef]
- Baumgart, P. Lower Green Bay and Lower Fox Tributary Modeling Report Source Allocation of Suspended Sediment and Phosphorus Loads to Green Bay from the Lower Fox River Subbasin Using the Soil and Water Assessment Tool (SWAT); Oneida Tribe of Indians of Wisconsin: Oneida, WI, USA; Science and Technical Advisory Committee of the Green Bay Remedial Action Plan (RAP): Green Bay, WI, USA, 2005.
- Sinnathamby, S.; Douglas-Mankin, K.R.; Craige, C. Field-Scale Calibration of Crop-Yield Parameters in the Soil and Water Assessment Tool (SWAT). Agric. Water Manag. 2017, 180, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Aslan, A.; Autin, W.J. Evolution of Holocene Mississippi River Floodplain, Ferriday, Lousiana: Insights on the Origin of Fine-Grained Floodplains. J. Sediment. Res. 1999, 69, 800–815. [Google Scholar] [CrossRef]
- Vallejo, L.E.; Mawby, R. Porosity Influence on the Shear Strength of Granular Material–Clay Mixtures. Eng. Geol. 2000, 58, 125–136. [Google Scholar] [CrossRef]
- Dimitrova, R.S.; Yanful, E.K. Factors Affecting the Shear Strength of Mine Tailings/Clay Mixtures with Varying Clay Content and Clay Mineralogy. Eng. Geol. 2012, 125, 11–25. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Cai, C. Splash Erosion of Clay–Sand Mixtures and Its Relationship with Soil Physical Properties: The Effects of Particle Size Distribution on Soil Structure. CATENA 2015, 135, 254–262. [Google Scholar] [CrossRef]
- Larney, F.J.; Olson, B.M.; Janzen, H.H.; Lindwall, C.W. Early Impact of Topsoil Removal and Soil Amendments on Crop Productivity. Agron. J. 2000, 92, 948–956. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Babu, R.; Sarkar, D.; Mandal, C.; Dhyani, B.L. Soil Loss and Crop Productivity Model in Humid Subtropical India. Nagar Source Curr. Sci. 2007, 93, 1397–1403. [Google Scholar]
- Jain, M.K.; Kothyari, U.C. Estimation of Soil Erosion and Sediment Yield Using GIS. Hydrol. Sci. J. 2000, 45, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R.; Matson, P.A. Soil Erosion and Agricultural Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
Sc. No. | Soil Name | No. of HRUs | Hydrologic Soil Group | Area (ha) | Clay-Silt-Sand % | % Watershed Area |
---|---|---|---|---|---|---|
1 | Alligator | 213 | D | 422,447.36 | 57-39-4 | 8.32 |
2 | Arkabutla | 83 | B, C, D | 60,583.066 | 19-67-14 | 1.2 |
3 | Collins | 77 | B, C | 146,331.57 | 12-69-19 | 2.88 |
4 | Cuthbert | 76 | C | 65,710.24 | 13-20-67 | 1.3 |
5 | Dowling | 143 | D | 239,293.23 | 59-37-4 | 4.71 |
6 | Dubbs | 54 | B | 64,831.75 | 13-45-42 | 1.27 |
7 | Dundee | 68 | C | 169,239.4 | 17-65-18 | 3.34 |
8 | Falaya | 102 | B, C | 146,458.34 | 12-68-20 | 2.89 |
9 | Forestdale | 67 | D | 148,385.51 | 28-54-18 | 2.91 |
10 | Loring | 64 | C, D | 87,445.78 | 17-78-5 | 1.73 |
11 | Memphis | 176 | B | 227,375.2 | 17-77-6 | 4.48 |
12 | Smithdale | 294 | B | 364,190.11 | 8-25-66 | 7.16 |
13 | Sharkey | 178 | D | 451,143.45 | 62-35-3 | 8.86 |
14 | Tensas | 51 | D | 11,866.65 | 33-47-20 | 1.17 |
Total | 2,605,301.66 | 52.22 |
Crop Yield Parameters | Definition | Fitted Value |
---|---|---|
BIO_E ((kg/ha)/(MJ/m2)) | Biomass Energy ratio | 25 |
HVSTI ((kg/ha)/(kg/ha)) | Harvest Index | 0.34 |
BLAI (m2/m2) | Maximum Potential Leaf area index | 6 |
WSYF ((kg/ha)/(kg/ha)) | Lower limit corresponding to harvest index | 0.01 |
DLAI (Heat units/heat units) | Fraction of the plant growing season when leaf area begins to decline | 0.6 |
Sc. No | Gage Station | USGS Gage Station Number | Calibration | Validation | ||
---|---|---|---|---|---|---|
R2 | NSE | R2 | NSE | |||
1 | Skuna River, Bruce, MS | 7283000 | 0.83 | 0.81 | 0.71 | 0.7 |
2 | Big Sunflower, Sunflower, MS | 7288500 | 0.75 | 0.71 | 0.66 | 0.59 |
3 | Little Tallahatchie, Etta, MS | 7268000 | 0.63 | 0.60 | 0.77 | 0.68 |
4 | Big Sunflower, Merigold, MS | 7288280 | 0.66 | 0.65 | 0.72 | 0.61 |
5 | Bouge Phalia, Leland, MS | 7288650 | 0.81 | 0.81 | 0.73 | 0.75 |
6 | Tallahatchie River, Money, MS | 7281600 | 0.55 | 0.4 | 0.65 | 0.57 |
7 | Steel Bayou, Vicksburg, MS | 7288955 | 0.34 | 0.33 | 0.78 | 0.72 |
Soybean Yield | |||
---|---|---|---|
Process | County | R2 | MAPE |
Calibration | Sunflower | 0.56 | 11.21 |
Validation | Leflore | 0.76 | 10.79 |
Rank | Soil Name | Sediment Load (Tons/ha/Year) |
---|---|---|
1 | Smithdale | 115.45 |
2 | Loring | 55.67 |
3 | Arkabutla | 48.17 |
4 | Memphis | 44.78 |
5 | Collins | 33.92 |
6 | Cuthbert | 17.61 |
7 | Alligator | 8.37 |
8 | Sharkey | 7.28 |
9 | Dowling | 1.87 |
10 | Falaya | 1.46 |
11 | Forestdale | 0.86 |
12 | Dundee | 0.67 |
13 | Tensas | 0.28 |
14 | Dubbs | 0.22 |
Rank | Soil Name | Sediment Yield (Ton/ha/Year) |
---|---|---|
1 | Alligator | 8.37 |
2 | Sharkey | 6.55 |
3 | Memphis | 4.71 |
4 | Dowling | 1.63 |
5 | Forestdale | 0.86 |
6 | Collins | 0.73 |
7 | Dundee | 0.56 |
8 | Falaya | 0.33 |
8 | Tensas | 0.28 |
9 | Dubbs | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venishetty, V.; Parajuli, P.B.; To, F. Assessing the Effect of Spatial Variation in Soils on Sediment Loads in Yazoo River Watershed. Hydrology 2023, 10, 62. https://doi.org/10.3390/hydrology10030062
Venishetty V, Parajuli PB, To F. Assessing the Effect of Spatial Variation in Soils on Sediment Loads in Yazoo River Watershed. Hydrology. 2023; 10(3):62. https://doi.org/10.3390/hydrology10030062
Chicago/Turabian StyleVenishetty, Vivek, Prem B. Parajuli, and Filip To. 2023. "Assessing the Effect of Spatial Variation in Soils on Sediment Loads in Yazoo River Watershed" Hydrology 10, no. 3: 62. https://doi.org/10.3390/hydrology10030062