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Abstract: The Soil and Water Assessment Tool (SWAT) has been calibrated in many watersheds of
various sizes and physiographic features. However, it is still unclear whether SWAT calibration
parameters will produce satisfactory results if they are implemented in watersheds of different
sizes. Evaluating the transferability of SWAT calibration parameters between watersheds of different
sizes will provide insight into whether it is acceptable to calibrate SWAT in one watershed and
apply the optimized parameters in different size watersheds by assuming both watersheds have
similar physiographic properties. This study investigated the influence of watershed size on the
SWAT model calibration parameters transferability between four watersheds (CCW = 680 km2,
F34 = 183 km2, AXL = 42 km2, and ALG = 20 km2) located in Northeastern Indiana. The results show
that calibrating SWAT at one size and applying the optimized parameters at different watershed sizes
of similar physiographic features provided satisfactory simulation results. The size watershed at
which SWAT was calibrated had little effect on streamflow predictions. Soluble nitrogen loss estimates
were improved when calibration was performed at the larger CCW watershed while calibrating
SWAT at the smaller AXL and ALG watersheds produced improved statistical indicator values
(NSE, R2, and PBIAS) for soluble P and total P when applied to the larger CCW and F34 watersheds.

Keywords: nutrients; optimization; runoff; simulation; Soil and Water Assessment Tool (SWAT);
SWAT-CUP; watershed management

1. Introduction

Growing concerns over water quality in agricultural watersheds continue to be the topic of many
discussions. Agricultural runoff is considered a primary cause of nonpoint source pollution in the
United States [1] because it often transports pesticides, nutrients, and sediment from agricultural fields
and other areas to rivers and streams. This may have serious implications for the chemical, physical,
and biological integrity of the nation’s water bodies [2]. The primary pollutants affecting water quality
in Northeastern Indiana and much of the Midwest Corn Belt Region are nitrogen and phosphorus
especially soluble phosphorus [3], which are transported in agricultural runoff.

An effective watershed management program within an agricultural watershed should minimize
the loss of agricultural chemicals and maintain water quality standards [4]. Developing an effective
watershed management program, however, requires comprehensive understanding of the hydrologic
and chemical processes within the watershed [5]. These processes are usually examined at the watershed
scale using computer simulation models such as the Soil and Water Assessment Tool (SWAT) [6].
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SWAT is used to assess the effect of various management practices, and for developing and improving
watershed management programs [7–9].

SWAT was developed for use in large ungauged watersheds and can be used to provide long-term
analysis of watershed processes [10] without calibration [11]. However, SWAT model parameters
vary in sensitivity during different flow regimes and for different simulation periods [12,13]. As a
result, several researchers recommend that SWAT be calibrated in cases where measured data are
available because calibration will improve the model’s performance and result in more accurate
simulations [14,15].

Despite being calibrated in many watersheds of various sizes and physiographic features, it is still
unclear whether SWAT calibration parameters will produce satisfactory results if they are implemented
in watersheds of different sizes (other than the size at which they were optimized). This study evaluated
SWAT model performance at the watershed outlet, with respect to performance metrics, to gain insight
into whether it is acceptable to calibrate SWAT in one watershed and apply the optimized parameters
in another watershed with a different size by assuming both watersheds have similar physiographic
properties. Understanding the transferability of SWAT calibration parameters between watersheds is
particularly important in cases where SWAT is applied in ungauged watersheds or watersheds with
insufficient measured data to facilitate proper calibration/validation of the model.

Optimized parameter sets may be transferred to a neighboring watershed with similar
physiographic properties such as land use, soils, and topography, which is a concept known as
geographical regionalization [16]. While geographic regionalization of SWAT calibration parameters
has been found to produce reasonable results [17], the effect of watershed size on parameter
transferability is still uncertain. Earlier studies [18–22] suggested that the spatial scale had little effect on
streamflow simulations but will impact nitrogen and phosphorus loss simulations. Heathman et al. [23]
attempted to explore the influence of watershed size on SWAT model calibration when they compared
observed versus simulated streamflow for the SWAT model calibration at the 2810 km2 St. Joseph River
Basin (SJRW) in Indiana (one of the 14 Conservation Effects Assessment Project benchmark watersheds)
at the 679.2 km2 Cedar Creek watershed (largest tributary in SJRW). They concluded that the
watershed size at which the model was calibrated had little impact on SWAT simulated streamflow
for the watersheds. This conclusion was supported by Thampi et al. [24] based on a study in the
Chaliyar River Basin (Kerala, India). Srinivasan et al. [25] also calibrated SWAT in the 5157 km2

Richland and Chambers Creek watershed in the Upper Trinity Basin, Texas and validated it at the
smaller Mill Creek watershed (282 km2). The researchers concluded that the model explained 84%
of the variability in the observed streamflow data. Heuvelmans et al. [17] evaluated SWAT model
parameter transferability between the Maarkebeek and Zwalm river basins (Belgium) and found a
decline in model performance when parameters are transferred in time and space.

2. Materials and Methods

2.1. Study Area

The St. Joseph River Watershed is a 2810-km2 catchment that intersects the states of Indiana,
Michigan, and Ohio (Figure 1). The headwaters of the St. Joseph River originate in Michigan and the
river flows southwest through Ohio and Indiana before joining the St. Mary’s River near Ft. Wayne,
Indiana to form the Maumee River. The Maumee River flows northeast into the Maumee Bay of
Lake Erie in Toledo, Ohio. The Cedar Creek watershed (CCW = 679 km2) located in Northeastern
Indiana (85◦19′28.101” to 84◦54′12.364” W and 41◦11′47.494” to 41◦32′8.776” N) is the largest tributary
to the St. Joseph River. It intersects the counties of Allen, DeKalb, and Noble and is predominantly
agricultural (68%) with approximately 15% made up of forest.
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Figure 1. Location map of the study watersheds (CCW, F34, AXL, and ALG) in Northeast Indiana with
respect to the entire St. Joseph River Watershed (SJRW).

Most soils in the watersheds are comprised of the Eel-Martinsville-Genesee and Morley-Blount
associations. The Eel-Martinsville-Genesee association consists of deep, moderately well-drained,
nearly level, and medium-to-moderately fine-textured soils on low lands and stream terraces [5,26].
The Morley-Blount association occurs mostly in the uplands and consists of deep, moderately-to-poorly
drained soils with nearly level to deep medium-textured soils [27]. Tile drainage systems drain water
from many of these soils into managed drainage ditches, which alter the watershed hydrology and
the transport of pesticide and nutrients across the landscape [28,29]. CCW is the largest of the four
calibration watersheds analyzed in this study. The F34 (182.5 km2), AXL (41.5 km2), and ALG (19.7 km2)
watersheds are nested within the upper Cedar Creek (Figure 1) and share similar physiographic
features to that of Cedar Creek (Table 1).

All four watersheds are located within the Clayey, High Lime Till Plains of the Eastern Corn Belt
Plains (55) ecoregion. There are extensive glacial deposits of Wisconsinan age that are not as dissected
nor as leached as the pre-Wisconsinan till, which is restricted to the southern part of Ecoregion 55.
The Clayey, High Lime Till Plains ecoregion (55a) is transitional between the Loamy, High Lime Till
Plains (55b), and the Maumee Lake Plains (57a). These soils are more artificially drained than those in
Ecoregion 55b and supported fewer swampy areas than Ecoregion 57a [30]. Corn, soybean, wheat,
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and livestock farming is dominant and has replaced the original beech forests and scattered elm-ash
swamp forests [30].

Table 1. Watershed characteristics including land use distribution, area, average slope, and average
annual climate conditions for the study areas.

Land Use [31] CCW F34 AXL ALG

Corn (%) 21.0 27.2 23.9 18.8
Soybean (%) 23.7 25.6 37.9 44.1
Winter Wheat (%) 3.2 3.1 5.3 7.7
Pasture (%) 19.4 16.2 12.8 12.0
Forest-Mixed (%) 14.8 11.5 10.1 8.8
Residential (%) 10.5 7.5 5.8 4.7
Other (%) 7.5 8.9 4.3 4.0
Watershed Area (km2) 679.2 182.5 41.5 19.7
% of Watershed Area Contributing to Farmed-Closed Depressions (%) 5.1 8.2 10.0 8.7
Average Depth of Farmed Closed Depressions (m) 0.94 0.82 0.91 0.90
Average Slope (%) 1.5 1.9 1.0 1.2
Average Annual Rainfall (2001 to 2013) (mm) 960 948 948 948
Average Temperature during Crop Growth Season (◦C) 10 to 23
Ecoregion Clayey, High Lime Till Plains (55a)

2.2. SWAT Model Description

SWAT is a lumped, semi-distributed hydrologic model developed by the USDA Agricultural
Research Service (ARS) to study the effects of management decisions on water quality
“with reasonable accuracy” on large ungauged watersheds [6]. SWAT requires climate inputs such as
daily precipitation, maximum/minimum air temperatures, and solar radiation to simulate hydrologic
processes. These climate data drive the hydrologic cycle and provide moisture and energy inputs that
control the water balance. The water balance is the primary driver of the hydrologic processes, fate and
transport of nutrients and pesticides, plant growth, and sediment processes in the watershed [32].

SWAT provides multiple options for estimating potential evapotranspiration
(Penman-Monteith method, Priestley-Taylor or Hargreaves method) and runoff (Soil Conservation
Service runoff curve number (CN) or the Green-Ampt infiltration model). The Penman-Monteith
method [33] was selected for estimating evapotranspiration because it captures the effects of wind and
relative humidity, which accounts for vegetation shading, wind resistance, and transpiration through
leaves. This makes it suitable for application in highly vegetated watersheds. The CN method [34]
was used in this study to estimate surface runoff because of its simplicity, predictability, and stability.
The CN method does not require rainfall intensity and duration data. This method only requires total
daily rainfall depth when estimating runoff from various land cover and soil types.

Nitrogen (N) and phosphorus (P) processes are simulated in SWAT using typical nitrogen and
phosphorus cycles to track the transport and fate of various forms of N and P throughout the
watershed [6]. The portion of N and P used by plants is estimated using a supply and demand
approach. Nitrates, organic N, Soluble P, and organic P are removed from the soil through the mass
flow of water. Nitrate loading is estimated as the product of average nitrate concentration and the
volume of water present in a particular layer [6]. Soluble P loading is estimated using the solution
P concentration in the top 10 mm of the soil, runoff volume, and a partitioning factor [6]. The amount
of organic P transported with sediment to the stream is calculated using the Williams and Hann [35]
loading function.

2.3. Model Input and Setup

The ArcSWAT version 2012.10.5a interface was used to expedite the SWAT model input and
output display. To obtain suitable flow paths, the stream delineation from the National Hydrograph
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Dataset (NHD) was used to burn in the location of the streams in a 10-m Digital Elevation Model (DEM)
obtained from USGS at a map scale of 1:24,000. The USGS National Water Quality Assessment Program
(NAWQA) water quality/streamflow gauge station located near Cedarville, Allen County, Indiana
was used as the watershed outlet for CCW. The USDA-ARS National Soil Erosion Research Laboratory
(NSERL) water quality/streamflow gauge stations were used to specify the location of the F34, AXL,
and ALG outlets. The Soil Survey Geographic Database (SSURGO) spatial data at a scale of 1:12,000
and the USDA National Agricultural Statistics Service [31] Indiana Cropland Layer were used to
determine hydrologic response units (HRUs) for SWAT. All data sources are listed in Table 2.

Table 2. Model input data.

Data Type Source Description

DEM viewer.nationalmap.gov/viewer/ 10m Resolution, Digital Elevation Model [36]

Soils soildatamart.nrcs.usda.gov/ Soil Survey Geographic Database (SSURGO, [37])

Land Use http://www.nass.usda.gov/ National Agricultural Statistics Service [31]

Hydrographic nhd.usgs.gov/data.html National Hydrograph Dataset (NHD) [38]

Weather ARS-CEAP Water Quality
Assessment Program

Daily precipitation, solar radiation, wind,
relative humidity, maximum and minimum daily
temperature (2001 to 2012)

Weather National Climate Data Center
ncdc.noaa.gov/data-access/

Daily precipitation, maximum and minimum
daily temperature (2001 to 2012) [39]

Crop Management ARS CEAP watershed survey,
DeKalb and Allen County SWCDs

Tillage operations, fertilizer and herbicide
applications, crop rotation, time of planting,
and time of harvesting

Water Quality St. Joseph River
Watershed Initiative

Streamflow, bi-weekly pesticide, and nutrient
concentration (TP, TN, NO2 + NO3)

Water Quality ARS CEAP Water Quality
Assessment Program

Streamflow, daily pesticide, and nutrient
concentration (TP, PO4, TN, NO2 + NO3)

HRUs (modeling units) are unique combinations of land use, soils, and slope classes within each
subwatershed in which the model establishes management practices. SWAT first divides a watershed
into smaller subwatersheds based on a specified critical source area (CSA) threshold for stream
generation. CSA is a percentage of the total watershed area that determines the minimum upstream
drainage area required to form a channel. Based on the assessment of CSA by Kumar and Merwade [20],
a critical source area of 5% was used for each watershed in this study to achieve watershed subdivision
most suited for SWAT modeling. This resulted in stream threshold areas of 30 km2, 9 km2, 2 km2,
and 1 km2 for CCW, F34, AXL, and ALG, respectively (Table 3). Each subwatershed is further divided
into HRUs using a specified threshold area for land use, soil types, and slope classes. The threshold
for HRU definition was set to 0% land: 0% soil: 0% slope, which means we assessed all possible land
use/soil/slope combinations. This facilitated spatial representation of closed depressions within the
watersheds. The minimum stream threshold value and the resulting subwatersheds and HRUs for
each of the study watersheds are shown in Table 3.

Table 3. Minimum stream threshold values and the resulting subwatersheds and HRUs for each of the
study watersheds.

Watershed Stream Threshold (ha) SubWatersheds HRUs

CCW 3000 (5% of watershed area) 17 5474
F34 900 (5% of watershed area) 11 1954
AXL 200 (5% of watershed area) 11 806
ALG 100 (5% of watershed area) 14 659

viewer.nationalmap.gov/viewer/
soildatamart.nrcs.usda.gov/
http://www.nass.usda.gov/
nhd.usgs.gov/data.html
ncdc.noaa.gov/data-access/
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Climate data including precipitation, maximum and minimum air temperatures, solar radiation,
relative humidity, and wind speed were obtained from 10 CEAP weather stations located in the
upper Cedar Creek region from 2003 to 2013. Daily precipitation and maximum and minimum air
temperatures were also available from the National Climate Data Center [39] for the Auburn, Angola,
Butler, Garrett, and Waterloo stations located within or around the watershed with records from 1980 to
2013. Missing data for a given station were estimated by averaging values for the nearest weather
stations typically within a 5-km radius.

Area-specific land management data were collected by the ARS-NSERL through the CEAP
program as well as from the DeKalb and Allen Counties Soil and Water Conservation Districts (SWCDs)
and were used to represent the current management practices occurring in the watersheds.
Conservation tillage has been widely adopted in the watersheds. In DeKalb County, 34% of all corn and
77% of all soybeans planted in 2012 were under a no-till system or mulch-till system. Therefore, no-till
and conventional tillage were used as input in the SWAT management files, which were constructed to
simulate corn/soybeans (the predominant crops in the watersheds) and rotated on all lands classified
as corn or soybeans. All lands classified as wheat were simulated in a three-year rotation with corn
and soybeans (corn/soybeans/wheat). The management scheme includes yearly tillage operations,
nutrient and pesticide application rates, and planting and harvesting dates (Tables 4 and 5).

Table 4. Management operations for land in corn/soybeans rotation.

Crop Date Management Operation Rate (kg/ha)

Corn

22-Apr Nitrogen Application (as Anhydrous Ammonia) 176.0
22-Apr P2O5 Application (as MAP) 54.0
22-Apr Pesticide Application (as Atrazine) 2.2
6-May Tillage—Offset Disk (60% mixing)
6-May Planting—Row Planter, Double Disk Openers
10-Oct Harvest

Soybeans

10-May P2O5 Application (as MAP) 40.0
24-May No-tillage Planting—Drills
7-Oct Harvest

20-Oct Tillage, Chisel (30% mixing)

Table 5. Management operations for land in winter wheat production (following corn/soybeans
rotation in Table 4).

Crop Date Management Operation Rate (kg/ha)

Wheat

23-Oct P2O5 Application (as DAP) 45.0
25-Oct Tillage, Tandem Disk (60% Mixing)
25-Oct Planting—Drills, Double Disk Openers
1-Mar Nitrogen Application (as Urea) 75.0
1-Jul Harvest

Tile drainage was assumed for all corn, soybean, and winter wheat areas. Tile drainage was considered
to have an average depth of 1.0 m, 48 h of drainage after a rain to reach field capacity, and a drain tile lag
time of 24 h [5,40]. The spacing between tiles (estimated based on soil type and drainage) is 20 m.

Closed depressions (potholes) and tile inlets were also addressed in the SWAT configurations.
To represent potholes in SWAT, ArcGIS was used to process a 1-m DEM of the entire study area.
This involved: (1) identifying sink features in the elevation dataset, (2) classifying sink features as
potholes based on certain criteria [41], (3) creating pothole look-up tables that linked pothole features
with SWAT HRUs, and (4) updating SWAT HRU files using a simple Python script. Percentages of
watershed areas contributing flow to farmed closed depressions were estimated at 5.1%, 8.2%, 10.0%,
and 8.7% for CCW, F34, AXL, and ALG, respectively. Average depths of potholes were 0.94 m, 0.82 m,
0.91 m, and 0.90 m for CCW, F34, AXL, and ALG, respectively.



Water 2018, 10, 898 7 of 27

SWAT was set up to run on a daily time step for the period between 2001 to 2013 with a warm-up
period of five years (01/2001 to 12/2005). The warm-up period is recommended for the model
to initialize and approach reasonable starting values for model variables [42] before beginning the
calibration process.

2.4. Model Calibration and Validation

Calibration is the process used to optimize parameters in a model using observed conditions to
reduce prediction uncertainty. Parameters in SWAT were calibrated at the monthly time scale in a
distributed fashion using the SWAT-CUP autocalibration tool. Calibration was performed at the F34,
AXL and ALG outlets for streamflow, NO3

− + NO2
− nitrogen (soluble N), total nitrogen (total N),

orthophosphate (soluble P), and total phosphorus (total P) over a 4-year period (01/2006 to 12/2009).
Due to limited data availability, SWAT could only be calibrated at the CCW outlet near Cedarville for
streamflow (01/2006 to 12/2009), soluble N (04/2006 to 12/2009), and total P (4/2006 to 2009).

Historical measured data for streamflow, soluble N and total P concentrations were obtained
from the St. Joseph River Watershed Initiative for the CCW outlet near Cedarville while soluble N,
total N, soluble P, and total P concentrations were obtained from the ARS-NSERL-CEAP database
for the F34, AXL, and ALG outlets. Measured data for total nitrogen and total phosphorus were also
obtained from the ARS-NSERL-CEAP database for the F34, AXL, and ALG outlets. Concentration
values for nutrients obtained from ARS were multiplied by flow on a daily time step to obtain total
daily loads. Since the end goal of SWAT simulations was to evaluate long-term average annual
loads, the daily loads were further aggregated into total monthly loads, which were used to perform
monthly calibration and validation of the F34, AXL, and ALG SWAT configurations. The nutrient data
obtained from the SJRWI were biweekly grab samples (not sufficient to perform monthly calibration).
Therefore, the Load Estimator (LOADEST) was used to estimate monthly constituent loads for CCW.
LOADEST [43] requires a time series of streamflow and available constituent data to develop a
regression model for estimating the constituent load. A summary of the average measured streamflow
and nutrient loads from each watershed for 2006 through 2013 is presented in Table 6.

The measured streamflow data from USGS and the ARS-NSERL-CEAP project are comprised of
the baseflow and surface runoff. Baseflow is the groundwater contribution to streamflow, which needs
to be separated so that measured surface flow can be compared to simulated values [5]. The Web-based
Hydrograph Analysis Tool (WHAT) developed by Purdue University [44] based on the Arnold and
Allen [45] baseflow filter program was used to separate storm flow from the baseflow. Optimization of
the SWAT configurations ensured that simulated baseflow was approximately the fraction of water
yield contributed by the baseflow from the measured flow estimated by WHAT.

After calibration, the next step was to validate the model performance and ensure it can perform
simulations correctly and is suitable for use in decision-making. Validation was performed for F34,
AXL, and ALG configurations over a 4-year period (01/2010 to 12/2013). The CCW configuration was
validated for streamflow over a 4-year period (01/2010 to 12/2013) and soluble N and total P over a
3-year period (01/2010 to 12/2012) due to limited data availability.

To evaluate the effects of watershed size on SWAT model calibration, the optimized parameters
for each SWAT configuration (CCW, F34, AXL, and ALG) were applied to subsequent configurations.
For example, parameters optimized at the CCW level during the calibration process were later
implemented at the F34, AXL, and ALG levels and their effect on streamflow, nitrogen, and phosphorus
loss were evaluated.
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Table 6. Annual streamflow rates and nutrient loads measured from each watershed for 2006–2013.

Flow Soluble N Load Total N Load Soluble P Load Total P Load
(m3/s) (kg) (kg) (kg) (kg)

2006

CCW 8.41 478,200 - - 42,790
F34 2.06 298,100 304,700 1910 12,370

AXL 0.54 99,100 100,400 825 2634
ALG 0.37 48,800 60,300 305 1285

2007

CCW 7.82 572,700 - - 48,010
F34 1.71 176,600 193,880 1151 12,770

AXL 0.43 37,170 55,820 363 2999
ALG 0.23 13,510 19,260 151 1062

2008

CCW 8.94 605,700 - - 54,520
F34 2.05 103,200 139,500 2405 11,570

AXL 0.47 59,890 77,010 691 4404
ALG 0.33 17,300 35,420 495 2602

2009

CCW 9.58 967,100 - - 57,770
F34 2.59 119,300 205,300 6532 25,840

AXL 0.68 102,300 145,500 661 7358
ALG 0.44 39,020 57,820 423 2681

2010

CCW 6.6 812,900 - - 37,290
F34 1.76 82,460 106,400 3233 18,500

AXL 0.44 65,780 86,500 1485 7105
ALG 0.26 39,960 70,640 410 5786

2011

CCW 11.08 1,486,000 - - 73,220
F34 2.22 162,300 170,500 2627 28,270

AXL 0.63 66,880 110,100 1077 12,700
ALG 0.39 33,510 67,760 471 4719

2012

CCW 4.01 342,700 - - 15,670
F34 0.99 48,180 61,140 919 2874

AXL 0.2 27,080 32,060 153 874
ALG 0.09 10,500 14,590 106 702

2013

CCW 5.95 - - - 30,150
F34 1.54 175,500 329,100 2764 10,360

AXL 0.47 75,710 107,600 534 3349
ALG 0.28 30,700 32,710 383 2523

Average annual

CCW 7.80 752,200 - - 44,930
F34 1.87 145,700 188,800 2693 15,320

AXL 0.48 66,740 89,380 724 5178
ALG 0.30 33,000 40,980 343 2691
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2.5. SWAT-CUP Calibration with SUFI-2

The calibration and uncertainty programs for SWAT (SWAT-CUP) developed by
Abbaspour et al. [46] were used to aid in the calibration process. The SUFI-2 algorithm was selected in
SWAT-CUP to optimize nine parameters for monthly streamflow volume and 10 parameters were
directly related to sediment, nitrogen, and phosphorus losses (Table 7). The selection of optimization
parameters and parameter ranges were based on an extensive literature review [5,11,13,20,32,47,48]
and an earlier sensitivity analysis that was performed for CCW [49]. SUFI-2 was selected because
it required less iterations to achieve optimization and it accounted for model uncertainty as well
as uncertainty associated with model parameters and measured variables (e.g., discharge) [50].
The Kling–Gupta efficiency (KGE) [51] was used as the objective function for optimizing SWAT input
parameters (1).

KGE = 1−
√
(r− 1)2 + (∝ −1)2 + (β− 1)2 (1)

where r is the linear correlation coefficient between corresponding simulated and observed values, ∝
is a measure of relative variability in the simulated and observed values, and β is the bias between the
mean simulated and mean observed data. Steps involved in setting up and executing the SWAT-CUP
are outlined in Reference [50].
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Table 7. List of SWAT parameters used for calibration of CCW, F34, AXL, and ALG configurations.

Parameters Description Initial
Value

Lower
Bound

Upper
Bound

Final Value

CCW F34 AXL ALG

Parameters Governing Surface Water Response

r_CN2.mgt SCS runoff curve number (%) – −20% +20% −13 (2) −9 (3) −13 (3) −14 (3)
v_ESCO.hru Soil evaporation compensation factor 0.95 0.60 0.95 0.61 (5) 0.88 (1) 0.76 (4) 0.66 (4)
r_SOL_AWC.sol Soil layer available water capacity (%) – −50% +50% −30 (6) +40 (7) −41 (6) −40 (5)

Parameters Governing Subsurface Water Response

v_GWQMN.gw Depth of water for return flow to occur (mm) 1000 0 1000 805 (10) 295 (2) 667 (10) 608 (7)
v_GW_DLAY.gw Groundwater delay (days) 31.0 10.0 40.0 12.2 (4) 32.0 (8) 18.3 (5) 25.2 (6)
v_GW_REVAP.gw Groundwater “revap” coefficient 0.02 0.02 0.20 0.03 (9) 0.19 (10) 0.09 (7) 0.07 (9)
v_REVAPMN.gw Depth of water for “revap” to occur (mm) 1.0 0.0 300.0 99.0 (7) 144 (4) 99.7 (9) 215 (8)

Parameters Governing Basin response

v_CH_K2.rte Effective hydraulic conductivity (mm/h) 0.0 6.0 150.0 18.5 (1) 86.8 (9) 11.7 (1) 17.3 (1)
v_CH_N2.rte Manning’s “n” value for the main channel 0.014 0.016 0.140 0.027 (3) 0.064 (6) 0.02 (2) 0.037(2)

Parameters governing potholes and tile response

* DDRAIN Depth to subsurface drain (mm) 0 50 1450 1000 1000 1000 1000
* GDRAIN Drain tile lag time (h) 0 0 94 48 48 48 48
* TDRAIN Time to drain soil to field capacity (h) 0 0 72 24 24 24 24

Parameters Governing Sediment Response

v_SPCON.bsn Sediment retention in channel 0.0001 0.0001 0.0100 0.0067 (1) 0.0057 (2) 0.0035 (2) 0.003 (2)
v_SPEXP.bsn Sediment re-entrained in channel routing 1.00 1.00 1.50 1.37 (2) 1.44 (1) 1.28 (1) 1.22 (1)

Parameters Governing Nitrogen Response

v_NPERCO.bsn Nitrogen percolation coefficient 0.2 0.0 1.0 0.7 (1) 0.5 (3) 0.6 (4) 0.8 (4)
v_N_UPDIS.bsn Nitrogen uptake distribution parameter 20.0 0.0 100.0 35.6 (4) 46.4 (1) 33.4 (3) 36.2 (3)
v_CDN.bsn Denitrification exponential rate coefficient 1.4 0.0 3.0 2.8 (2) 2.0 (2) 2.6 (1) 3.0 (1)
v_CMN.bsn Humus mineralization of active OM 0.000 0.001 0.003 0.001 (3) 0.002 (4) 0.001 (2) 0.001 (2)

Parameters Governing Phosphorus Response

v_PPERCO.bsn percolation coefficient 10.0 10.0 17.5 10.8 (3) 10.7 (4) 10.2 (3) 10.4 (3)
v_PHOSKD.bsn soil partitioning coefficient 175.0 100.0 200.0 144 (2) 199 (1) 153 (2) 169 (2)
v_PSP.bsn sorption coefficient 0.4 0.0 0.7 0.2 (4) 0.5 (3) 0.2 (4) 0.5 (4)
v_P_UPDIS.bsn uptake distribution parameter 20.0 0.0 100.0 67.2 (1) 48.4 (2) 66.9 (1) 69.9 (1)

Note: Table includes calibration parameters, their file extensions, units, default values, lower and upper bounds selected during calibration and the final calibration values (sensitivity
ranking) for each watershed. Parameters were edited in the management files (.mgt); hru files (.hru); soil input files (.sol), basin files (.bsn), groundwater files (.gw), and channel input files
(.rte). Parameters were changed by a value within the specified range (v) as a percentage of their default (r) or manually adjusted (*).
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2.6. Evaluating Model Performance

In addition to visual inspection of observed and simulated time series values at the watershed
outlets, model performance was also evaluated using KGE, the coefficient of determination (R2) (2),
the Nash-Sutcliffe efficiency (NSE; [52]) (3), and percent bias (PBIAS) (4). The R2 value is an indicator
of the strength of the linear relationship between the observed and simulated values. The NSE
simulation coefficient indicates how well the plot of observed versus simulated values fits the 1:1
line and it can range from −∞ to +1 with +1 being in perfect agreement between the model and
observed data [15]. Both R2 and NSE are sensitive to high flows and, therefore, PBIAS was used to
measure the average tendency of the simulated data to be larger or smaller than the measured data.
The optimum PBIAS value is zero and low magnitude values indicate better simulations. Positive values
indicate model underestimation and negative values indicate model overestimation. The equations are
shown below.

R2 =
[∑i
(
Qm,j −Qm

)(
Qs,j −Qs

)
]
2

∑i
(
Qm,j −Qm

)2
∑i
(
Qs,j −Qs

)2 (2)

NSE = 1− ∑i(Qm −Qs)i
2

∑i
(
Qm,j −Qm

)2 (3)

PBIAS = 100× ∑n
i=1(Qm −Qs)i

∑n
i=1 Qm,j

(4)

where Qm is the average measured value during the simulation period, Qs is the average of the
simulated values during the simulation period, Qm is the measured data on day i, Qs is the simulated
output on day i, and j represents the rank.

Based on model evaluation performance-ratings adopted from References [53,54], streamflow
simulations were considered reasonable if NSE > 0.50, R2 > 0.50 and PBIAS was within ±25% while
nitrogen and phosphorus loss simulations were considered reasonable if NSE > 0.36, R2 > 0.50,
and PBIAS was within ±70%.

3. Results

All four watersheds were calibrated for the period between January 2006 to December 2009 and
validated for the period between January 2010 to December 2013. SWAT calibration and validation
results of monthly streamflow, soluble N, total N, soluble P, and total P are presented in Tables 8–12 for
all watershed configurations.

3.1. Streamflow Calibration and Validation

SWAT was successfully calibrated for monthly streamflow at the outlets of four watersheds
located in Northeastern Indiana (Figure 2a–d). For the calibration period, WHAT estimated that 58%,
61%, 56%, and 59% of measured streamflow at the outlets of CCW, F34, AXL, and ALG, respectively,
was the baseflow. In comparison, the SWAT model estimated 52%, 53%, 51%, and 51% as baseflow at
the respective watershed outlets. The long-term water balance simulated by the model was similar to
the water balance simulated for CCW in prior studies [5,20]. Therefore, the long-term water balances
simulated by SWAT were considered to generate acceptable predictions representative of the study
areas. Summary values with comparable units of the main magnitudes of the hydrological balance
(precipitation, evapotranspiration, runoff, infiltration, drainage, etc.) are presented in Tables A1 and A2,
respectively, of the Appendix.
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Table 8. Streamflow calibration and validation statistical metrics for CCW, F34, AXL, and ALG SWAT model performance.

CCW Outlet F34 Outlet AXL Outlet ALG Outlet

KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS

Calibration
Watershed Streamflow Calibration (01/2006 to 12/2009)

CCW 0.90 0.95 0.96 −2.6 0.85 0.84 0.86 11.3 0.94 0.94 0.94 0.3 0.86 0.73 0.74 0.5
F34 0.63 0.70 0.90 36.3 0.87 0.84 0.87 11.0 0.81 0.84 0.89 16.8 0.81 0.74 0.75 5.8
AXL 0.86 0.92 0.95 11.6 0.84 0.86 0.87 −8.0 0.88 0.95 0.96 3.0 0.78 0.78 0.79 −3.4
ALG 0.84 0.91 0.94 14.1 0.87 0.85 0.85 −5.4 0.85 0.92 0.94 7.4 0.75 0.77 0.78 −3.4

Streamflow Validation (01/2010 to 12/2013)

CCW 0.69 0.82 0.88 −16.6 0.77 0.83 0.85 −15.5 0.90 0.91 0.91 0.6 0.78 0.72 0.80 14.9
F34 0.68 0.74 0.83 30.3 0.88 0.81 0.82 7.0 0.82 0.86 0.88 15.2 0.76 0.71 0.76 20.1
AXL 0.73 0.80 0.83 −6.1 0.79 0.85 0.87 −13.0 0.87 0.91 0.92 3.1 0.86 0.79 0.80 9.7
ALG 0.78 0.85 0.88 2.4 0.82 0.78 0.78 −6.9 0.85 0.89 0.90 5.4 0.84 0.78 0.79 8.0

Table 9. Soluble N load calibration and validation statistical metrics for CCW, F34, AXL, and ALG SWAT model performance.

CCW Outlet F34 Outlet AXL Outlet ALG Outlet

KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS

Calibration
Watershed Soluble N Load Calibration (01/2006 to 12/2009)

CCW 0.86 0.75 0.78 −7.7 0.86 0.89 0.92 −10.9 0.90 0.82 0.83 1.4 0.58 0.68 0.81 37.8
F34 0.38 0.30 0.51 50.8 0.76 0.87 0.90 −21.3 0.34 0.34 0.81 46.6 0.47 0.31 0.62 41.0
AXL 0.52 0.43 0.73 27.9 0.80 0.87 0.93 0.0 0.91 0.83 0.85 −0.1 0.72 0.62 0.65 20.1
ALG 0.37 0.26 0.74 37.4 0.78 0.81 0.89 −2.0 0.85 0.75 0.79 −3.4 0.80 0.65 0.69 9.8

Soluble N Load Validation (01/2010 to 12/2013)

CCW 0.68 0.59 0.78 −24.1 0.84 0.92 0.92 −12.5 0.65 0.64 0.83 24.3 0.81 0.88 0.81 17.0
F34 0.24 −0.68 0.51 21.0 0.91 0.89 0.90 −3.8 0.04 −0.10 0.81 70.0 0.60 0.87 0.62 26.2
AXL 0.59 0.68 0.73 8.6 0.77 0.86 0.93 4.8 0.60 0.83 0.85 35.8 0.73 0.93 0.65 23.0
ALG 0.56 0.52 0.74 13.6 0.89 0.90 0.89 −5.4 0.62 0.56 0.79 22.9 0.91 0.97 0.69 5.9
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Table 10. Total N load calibration and validation statistical metrics for SWAT model performance for CCW, F34, AXL, and ALG.

F34 Outlet AXL Outlet ALG Outlet

KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS

Calibration
Watershed Total N Load Calibration (01/2006 to 12/2009)

F34 0.87 0.84 0.87 3.9 0.27 0.30 0.82 79.0 0.29 0.30 0.66 59.4
AXL 0.76 0.73 0.82 13.9 0.83 0.77 0.81 12.7 0.75 0.63 0.68 18.2
ALG 0.82 0.82 0.87 7.3 0.77 0.64 0.73 10.9 0.83 0.70 0.72 8.9

Total N Load Validation (01/2010 to 12/2013)

F34 0.76 0.60 0.87 15.1 0.06 −0.15 0.82 72.6 0.76 0.71 0.76 20.1
AXL 0.80 0.66 0.82 10.8 0.51 0.49 0.81 30.4 0.86 0.79 0.80 9.7
ALG 0.78 0.68 0.87 −2.1 0.74 0.76 0.73 16.4 0.84 0.78 0.79 8.0

Table 11. Soluble P load calibration and validation statistical metrics for SWAT performance for CCW, F34, AXL, and ALG.

F34 Outlet AXL Outlet ALG Outlet

KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS

Calibration
Watershed Soluble P Load Calibration (01/2006 to 12/2009)

F34 0.85 0.81 0.82 11.2 −1.55 −5.66 0.90 171.4 0.76 0.74 0.79 21.1
AXL 0.65 0.69 0.77 31.1 0.94 0.95 0.95 −5.5 0.69 0.78 0.85 −30.2
ALG 0.65 0.61 0.61 55.6 0.69 0.83 0.91 −27.0 0.94 0.93 0.93 −3.0

Soluble P Load Validation (01/2010 to 12/2013)

F34 0.85 0.92 0.82 −13.3 0.19 0.39 0.90 71.5 0.76 0.81 0.79 21.9
AXL 0.90 0.93 0.77 −7.4 0.87 0.96 0.95 −12.9 0.87 0.85 0.85 −10.4
ALG 0.74 0.84 0.61 13.2 0.75 0.90 0.91 −24.0 0.86 0.87 0.93 10.6



Water 2018, 10, 898 14 of 27

Table 12. Total P load calibration and validation statistical metrics for CCW, F34, AXL, and ALG SWAT model performance.

CCW Outlet F34 Outlet AXL Outlet ALG Outlet

KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS KGE NSE R2 PBIAS

Calibration
Watershed Total P Load Calibration (01/2006 to 12/2009)

CCW 0.86 0.84 0.87 9.6 0.78 0.91 0.95 15.8 0.60 0.69 0.87 56.1 0.85 0.94 0.96 11.6
F34 0.85 0.84 0.88 8.7 0.80 0.98 0.99 −19.4 0.35 0.66 0.86 62.1 0.92 0.96 0.96 7.3
AXL 0.68 0.57 0.74 20.5 0.69 0.86 0.89 30.3 0.91 0.97 0.97 −6.9 0.95 0.95 0.95 −2.6
ALG 0.65 0.61 0.78 23.0 0.88 0.95 0.95 11.5 0.91 0.93 0.94 −6.8 0.97 0.96 0.96 −2.0

Total P Load Validation (01/2010 to 12/2013)

CCW 0.94 0.96 0.87 4.1 0.92 0.89 0.95 −1.8 0.41 0.55 0.87 41.8 0.86 0.92 0.96 10.8
F34 0.88 0.92 0.88 7.4 0.89 0.94 0.99 −10.4 0.41 0.56 0.86 44.6 0.88 0.98 0.96 11.2
AXL 0.91 0.92 0.74 8.3 0.92 0.91 0.89 1.3 0.91 0.93 0.97 −3.9 0.97 0.96 0.95 −2.2
ALG 0.88 0.91 0.78 11.7 0.91 0.93 0.95 −8.3 0.93 0.91 0.94 5.7 0.98 0.99 0.96 −1.1
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Figure 2. Monthly time series of simulated and observed streamflow for (a) CCW, (b) F34, (c) AXL,
and (d) ALG. Calibration period was from January 2006 to December 2009 and the validation period
was from January 2010 to December 2013.

Measured monthly streamflow data for the Cedar Creek watershed (USGS Gauge #04180000)
and the ARS CEAP study watersheds (F34, AXL, and ALG outlets) were compared with monthly
SWAT simulated streamflow for the calibration period. Plots of simulated versus observed monthly
streamflow at the different calibration scales are presented in Figure 3a–d. As depicted in Figure 3,
SWAT could predict monthly streamflow in a satisfactory way at all four watershed sizes with most of
the data points falling along the 1:1 line. Regression lines drawn through the data points indicated
that streamflow was best predicted at the CCW, F34, and AXL outlets but slightly underestimated
at the ALG outlet (the smallest of the watersheds). In general, modeled streamflow at the respective
watershed outlets produced similar results despite the size of the watershed at which the model was
calibrated (Figure 3).
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Figure 3. One-to-one plots of SWAT simulated vs. observed monthly streamflow at the (a) CCW outlet,
(b) F34 outlet, (c) AXL outlet, and (d) ALG outlet for the calibration period from January 2006 to
December 2009.

A summary of the statistical analyses of monthly streamflow for calibration and validation are
presented in Table 8. Before calibration, there were acceptable KGE, NSE, R2, and PBIAS values
for SWAT simulations at all four watersheds (NSE > 0.50, R2 > 0.50 and PBIAS ± 25%)). However,
calibration improved the performance metrics especially in terms of KGE and PBIAS.

3.2. Nitrogen Calibration and Validation

Measured monthly nitrogen loads in the form of nitrate+nitrite (referred to as soluble N) and total
nitrogen (referred to as total N) for the Cedar Creek watershed (USGS Gauge #04180000) and the ARS
CEAP study watersheds (F34, AXL, and ALG outlets) were compared with SWAT simulated monthly
soluble N and total N loads (Figures A1 and A2, respectively, in Appendix A). Results showed that
SWAT was successfully calibrated at all four watershed scales for monthly soluble N load and at F34,
AXL, and ALG for monthly total N load. No data were available for total N at the CCW scale and
soluble N data at CCW were only available from 2008 to 2013. Performance evaluation metrics for
calibration, validation, and non-calibrated model results for soluble N and total N are presented in
Tables 9 and 10, respectively. SWAT could predict monthly soluble N and total N loads well at the
different watershed sizes. Most of the data points for soluble N predictions occurred close to the
1:1 line, which is depicted by the plots of simulated versus observed monthly soluble N loads at the
different watershed sizes presented in Figure 4a–d.
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Figure 4. One-to-one plots of SWAT simulated vs. observed monthly soluble N loads at the (a) CCW outlet,
(b) F34 outlet, (c) AXL outlet, and (d) ALG outlet for the calibration period from January 2006 to
December 2009.

For soluble N loads, when SWAT was calibrated for CCW, the NSE, R2, and PBIAS values were
all within acceptable ranges when its optimized parameter values were used in F34, AXL, and ALG
watershed simulations (Table 9). During the validation period, all four watersheds also produced
acceptable KGE, NSE, R2, and PBIAS values. Despite R2 values above 0.50 and PBIAS lower than
70%, when SWAT was calibrated at the F34 scale and its optimized parameters implemented at the
CCW, AXL and ALG watershed scales, both the KGE and NSE values were outside the acceptable
limits in the CCW, AXL, and ALG simulations. During the validation period, only F34 and ALG
produced acceptable results. When SWAT was calibrated at the AXL watershed outlet and its optimized
parameters implemented at the CCW, F34 and ALG watersheds sizes, NSE, R2, and PBIAS values
were all within acceptable ranges. During the validation period, all four-watershed simulations also
produced acceptable KGE, NSE, R2, and PBIAS values. When calibration was performed at the ALG
watershed outlet and the optimized parameters implemented at the CCW, F34, and AXL watershed
sizes, NSE, R2, and PBIAS values were also all within the acceptable ranges. During the validation
period, all four-watershed simulations produced acceptable statistical values.

For total N loads, despite reasonable R2 values and a PBIAS of 59.4 at the ALG outlet, when SWAT
was calibrated at the F34 watershed outlet and its optimized parameters were used in AXL and ALG
watershed simulations, the resulting model performance was unsatisfactory. KGE and NSE values
were below the acceptable limits for the AXL and ALG simulations (Table 10). During the validation
period, both F34 and ALG produced acceptable results while AXL produced unsatisfactory KGE,
NSE, and PBIAS results. When SWAT was calibrated at the AXL and ALG watershed outlets and the
optimized parameters were used in the respective watershed simulations, the NSE, R2, and PBIAS
values were all within the acceptable range. During the validation period, all four-watershed
simulations also produced acceptable statistical values (Table 10).
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3.3. Phosphorus Calibration and Validation

Measured monthly phosphorus loads in the form of orthophosphate (referred to as soluble P)
and total phosphorus (referred to as total P) for the Cedar Creek watershed (USGS Gauge #04180000)
and the ARS CEAP study watersheds (F34, AXL, and ALG outlets) were compared with SWAT
simulated monthly soluble P and total P loads (Figures A3 and A4, respectively, in Appendix A).
Results indicated that SWAT was successfully calibrated at F34, AXL, and ALG for monthly soluble
P loads at all four watersheds for monthly total P loads from January 2006 to December 2009. They were
also validated between January 2010 to December 2013. No data were available for soluble P nor for
CCW. A summary of the performance evaluation metrics for calibration, validation, and non-calibrated
model results for monthly soluble P and total P loads are presented in Tables 11 and 12, respectively.
In this case, SWAT predicted monthly soluble P and total P loads well with most of the data points
occurring close to the 1:1 line, which is depicted by the plots of simulated versus observed monthly
soluble P loads at the different watershed sizes (see Figure 5).

Figure 5. One-to-one plots of SWAT simulated vs. observed monthly soluble P loads at the (a) F34 watershed
outlet, (b) AXL watershed outlet, and (c) ALG watershed outlet for the calibration period from January 2006
to December 2009.

Modeled soluble P loads at the F34 (Figure 5a), AXL (Figure 5b), and ALG (Figure 5c) watershed
outlets produced similar results despite the watershed size at which the model was calibrated, with a
few exceptions. When calibration was performed at the F34 watershed outlet and its optimized
parameters were applied to the AXL watershed, the KGE, NSE, and PBIAS values were outside the
acceptable ranges (Table 11). However, when the F34-optimized parameters were applied in the ALG
watershed simulations, they produced satisfactory results. During the validation period, only F34 and
ALG produced acceptable results.

When calibration was performed at the AXL watershed outlet, NSE, R2, and PBIAS values for
predicting monthly soluble P losses were all satisfactory at F34 and ALG. Model results were also
within a satisfactory range during the validation period for all three-watershed simulations.
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When calibration was performed at the ALG watershed and the optimized parameters were
applied in the F34 and AXL watershed simulations, the performance metrics were unsatisfactory at
F34 with KGE = 0.35 and NSE = 0.31. However, during the validation period, all three-watershed
simulations produced acceptable statistical values.

Modeled total P losses at the CCW, F34, AXL, and ALG watershed outlets produced similar results
despite the scale at which the model was calibrated, with only a few exceptions (Table 12). When SWAT
was calibrated at the CCW outlet, the NSE, R2, and PBIAS values for total P loss predictions were all
within the acceptable ranges when its optimized parameter values were applied to the four watershed
simulations. During the validation period, the NSE, R2, and PBIAS values were also all acceptable.
When SWAT was calibrated at the F34 watershed outlet and its optimized parameters were applied in
the CCW, AXL, and ALG watershed simulations, the resulting model performance was acceptable
except at AXL where KGE = 0.35. During the validation period, all four watersheds produced results
within the acceptable ranges. When calibration was performed at the AXL watershed outlet and at the
ALG watershed outlet, the KGE, NSE, R2, and PBIAS values were all within the acceptable range for
CCW, F34, AXL, and ALG watershed simulations. During the validation period, all four watershed
scales produced satisfactory statistical values.

4. Discussion

In terms of the effects of watershed size on SWAT model calibration for streamflow, nitrogen
loads and phosphorus loads were evaluated at four watersheds: Cedar Creek watershed (CCW)
located in Northeastern Indiana, F34 (approximately 27% of CCW), AXL (approximately 6% of CCW),
and ALG (approximately 3% of CCW). Based on the results presented in this paper, SWAT satisfactorily
simulated streamflow, soluble N, total N, soluble P, and total P at the four watershed scales with slight
differences between the scales at which the calibrations were performed.

Model efficiency evaluations indicated that streamflow calibration at the smaller AXL and ALG
watershed sizes produced similar KGE, NSE, R2, and PBIAS values when compared to calibrations
performed at the larger watershed sizes. While there are very few studies examining the effects of
the calibration scale on SWAT model performance, these results agree with findings from previous
studies [23,24]. Notable similarities in both studies include the fact that the study watersheds were
nested within each other and had similar physiographic features (such as slope, land use distribution,
and soil type) that may have resulted in similar parameterization of the model. Because the CN
method is not very sensitive to the size of the watershed, the impact of surface runoff contributions to
streamflow was not influenced significantly by the watershed size [19].

In terms of nitrogen and phosphorus load simulations, calibration had a large impact on SWAT
model predictions. Despite significantly improved results at all watershed sizes due to calibration,
when SWAT was calibrated at the larger CCW watershed, its optimized parameters produced improved
soluble N and total P simulations when applied at the smaller watershed sizes. Optimizing SWAT
parameters for the AXL watershed resulted in improved predictions of soluble N and total N losses
when applied at the smaller ALG watershed. This was due to the closeness in their average slope,
land use distribution, management practices, and other physiographic properties that resulted in
similar values for the calibration parameters. Similarly, calibrating SWAT at the smaller ALG and
AXL watersheds produced improved NSE, R2, and PBIAS values for soluble P and total P loads when
applied to the larger watersheds. The calibrated parameters for CCW, AXL, and ALG were similar in
terms of final values (or percent change) and the level of sensitivity (Table 8), which was the underlying
reason for the different watershed configurations producing satisfactory results regardless of the
optimization scale.

In general, SWAT predictions at the respective watershed outlets produced similar results despite
the scale at which the model was calibrated with one notable exception. Although calibration at the F34
outlet was satisfactory for each constituent, when the optimized F34 parameters were applied to the
other watershed configurations, the results were not always satisfactory. This was most likely due to
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inconsistencies in the F34 observed dataset used for SWAT calibrations. F34 had a larger proportion of
high flow events compared to the other three watersheds and, because nitrogen and phosphorus loads
were calculated as a function of streamflow, they too were affected by any adjustments made during
the calibration process. During autocalibration, SWAT parameters were adjusted to accommodate
the higher events, which then overestimated the various processes when applied to the different
watershed configurations. These results indicate greater uncertainty in SWAT calibrations for F34,
which may be due to the characteristics of farmed closed depressions (potholes) within F34 when
compared to the other watersheds. The average depth of farmed closed depressions in F34 was
smaller than that of CCW, AXL, and ALG, which would affect the maximum volume of ponded
water in the watershed. The inclusion of potholes adds to the complexities of SWAT and the model
calibration process. Consequently, optimizing SWAT model parameters for F34 often resulted in
over-prediction of the streamflow and nitrogen and phosphorus losses when applied to the CCW, AXL,
and ALG watersheds.

Nitrogen and phosphorus loads calculated for the F34 outlet were affected by the observed flow
data, which indirectly influenced the calibration parameters. This was evident in the parameter
sensitivity rankings (Table 7) where the most sensitive nitrogen and phosphorus parameters for F34
were the nitrogen uptake distribution factor (N_UPDIS) and the phosphorus soil-partition coefficient
(PHOSKD), respectively. While the most sensitive parameters for CCW were the nitrogen percolation
coefficient (NPERCO) and the phosphorus uptake distribution (P_UPDIS), for both the AXL and ALG
watersheds, the most sensitive parameters were the Denitrification exponential rate constant (CDN)
and P_UPDIS. These differences in sensitivity between F34 and the other watersheds means that small
changes in a non-sensitive parameter for F34 may result in big differences when applied to other
watersheds. For example, the least sensitive parameter in the simulation of nitrogen loads for F34 was
humus mineralization of active organic nitrogen (CMN), which was the second most sensitive for AXL
and ALG. The final calibrated CMN value for F34 was twice that of AXL and ALG, which means that,
when applying the F34 CMN to AXL and ALG, it would result in more nitrogen mineralization and
over-prediction of soluble N losses.

Additionally, a major disadvantage with NSE and R2 evaluations is that the differences between
observed and simulated data are calculated as squared values, which makes them biased towards
high flows. As a result, larger values in the calibration time series strongly influenced the calibration
outcome while lower values were neglected [55]. As seen in Figures 3–5, there were more occurrences
of higher monthly values in the F34 dataset above the 1:1 line, which could explain the poor statistics
for nitrogen calibration for F34 despite satisfactory results over the calibration period. The nutrient
load predictions might have been improved had there been sufficient sediment data available to
improve model calibration.

5. Conclusions

There are several issues to consider in the application of watershed scale hydrologic modeling,
including the influence of watershed size on model calibration parameters. This is especially true
when using the model as an environmental assessment tool or as a decision-support system for soil
and water resource management. This study sought to answer the question: how does watershed size
affect the transferability of SWAT calibration parameters for the simulation of streamflow as well as
nitrogen and phosphorus loss in agricultural watersheds with similar physiographic properties?

Based on the results presented in this paper, calibrating SWAT at one watershed size and applying
the optimized parameters at different sizes may produce satisfactory results despite a drop in the
model performance when parameters are transferred across watersheds. These results are possible
in SWAT model simulations because the study watersheds were nested within each other and had
similar physiographic features that resulted in similar parameterization. However, as shown in the
optimization performed at F34, when SWAT parameters vary in sensitivity between watersheds, they
are likely to produce lower KGE and NSE values at different watershed sizes.
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Based on the results of this study and the constraint of similar physiographic properties, the size of
the watershed for which SWAT is calibrated tends to have a greater impact on nitrogen and phosphorus
loss simulations than on streamflow predictions. Calibrating SWAT at the smaller watershed sizes
was successful in reducing the bias between measured data and SWAT simulations while maintaining
model efficiency. In some instances, the goodness-of-fit measures used to evaluate model efficiency
were improved when the model was calibrated at the smaller ALG (20 km2) watershed and then
applied at the larger CCW (679 km2) watershed.

This study has demonstrated that, with proper calibration of SWAT, it is possible to transfer
optimized parameters from one watershed size to another. However, more research is needed to
determine under what condition (or sets of conditions) this will be applicable. Additionally, more
in-depth research is needed to understand the influence of watershed sizes on SWAT calibration
parameters across different ecoregions and for land use/land cover changes.
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Appendix

Calibration/Validation plots for soluble N, soluble P, total N, and total P. Calibration period was from
January 2006 to December 2009 and the validation period was from January 2010 to December 2013.

Figure A1. Monthly time series of simulated and observed soluble N for the calibration/validation
period. (a) CCW, (b) F34, (c) AXL, and (d) ALG.



Water 2018, 10, 898 22 of 27

Figure A2. Monthly time series of simulated and observed total N for (a) F34, (b) AXL, and (c) ALG.
There were no measured total N data available for CCW to perform calibration and validation.

Figure A3. Monthly time series of simulated and observed soluble P for (a) F34, (b) AXL, and (c) ALG.
There were no measured soluble P data available for CCW to perform calibration and validation.
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Figure A4. Monthly time series of simulated and observed total P for (a) CCW, (b) F34, (c) AXL, and (d) ALG.

Table A1. Average annual hydrologic balance for CCW, F34, AXL, and ALG watersheds.

Hydrologic Parameters CCW (mm) F34 (mm) AXL (mm) ALG (mm)

Precipitation 982.7 982.7 982.7 982.7
Snow Fall 98.53 99.37 98.61 98.60
Snow Melt 97.88 98.65 97.82 97.82
Sublimation 0.00 0.01 0.00 0.00
Surface Runoff Flow 166.58 148.27 163.47 168.01
Lateral Soil Flow 21.13 8.92 9.68 9.66
Tile Flow 19.40 8.63 9.33 8.89
Groundwater (SHAL AQ) Flow 177.88 197.90 225.65 217.83
Groundwater (DEEP AQ) Flow 0.00 0.00 0.00 0.00
Deep AQ Recharge 38.61 34.67 1.72 1.67
Total AQ Recharge 218.52 234.42 229.24 222.17
Total Water YLD 385.10 363.89 408.28 404.54
Percolation out of Soil 218.99 233.81 228.86 221.76
ET 557.8 585.9 572.8 575.7
PET 817.6 817.5 813.5 813.5
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Table A2. Average annual nutrients balance for CCW, F34, AXL, and ALG watersheds.

Nutrients Parameters CCW (kg/ha) F34 (kg/ha) AXL (kg/ha) ALG (kg/ha)

Organic N 11.231 10.456 11.176 11.575
Organic P 1.445 1.364 1.461 1.515
NO3 Yield (Surface Flow) 0.743 2.592 2.315 1.883
NO3 Yield (LAT) 0.351 0.265 0.21 0.202
NO3 Yield (TILE) 2.478 3.031 1.807 1.797
SOLP Yield (TILE) 0.074 0.052 0.045 0.052
SOL P Yield 0.065 0.126 0.103 0.119
NO3 Leached 14.061 45.058 22.311 22.059
P Leached 0.091 0.097 0.095 0.092
N Uptake 145.345 185.108 165.347 164.242
P Uptake 24.774 31.632 28.161 27.94
NO3 Yield (Ground Water Flow) 0.521 2.264 1.042 1.002
Active to Solution P Flow 4.028 1.437 1.971 1.436
Active to STABLE P Flow 3.49 1.191 1.707 1.245
N Fertilizer Applied 42.47 36.406 40.128 38.975
P Fertilizer Applied 11.335 11.335 11.335 11.199
N Fixation 91.153 87.209 99.911 98.864
Denitrification 74.212 8.776 55.434 51.257
Humus Mineral on Active Organic N 36.133 37.882 34.755 31.757
Humus Mineral on Active Organic P 6.211 6.522 5.996 5.48
Mineral from Fresh Organic N 74.784 100.079 82.817 82.187
Mineral from Fresh Organic P 15.055 19.938 16.901 16.759
NO3 in Rainfall 9.457 8.676 9.379 9.38
Initial NO3 in Soil 68.926 68.926 68.926 68.926
Final NO3 in Soil 11.386 58.248 23.709 24.496
Initial Organic N in Soil 12,462.135 12,462.135 12,462.135 12,462.135
Final Organic N in Soil 12,159.925 12,261.58 12,228.893 12,268.814
Initial Mineral P in Soil 4037.205 4037.205 4037.205 4037.205
Final Mineral P in Soil 4099.935 4053.268 4070.857 4061.598
Initial Organic P in Soil 1526.612 1526.612 1526.612 1526.612
Final Organic P in Soil 1486.104 1504.575 1499.159 1506.023
NO3 in Fertilizer 42.323 36.258 39.98 38.825
Ammonia in Fertilizer 0.148 0.148 0.148 0.151
Organic N in Fertilizer 0 0 0 0
Mineral P in Fertilizer 11.335 11.335 11.335 11.199
Organic P in Fertilizer 0 0 0 0
N removed in Yield 61.491 79.163 72.643 72.354
P removed in Yield 8.378 10.621 9.836 9.788
Ammonia Volatilization 0.007 0.007 0.007 0.007
Ammonia Nitrification 0.141 0.141 0.141 0.144
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