Groundwater Bodies Subdivision in Corsica: A Critical Approach Based on Multivariate Water Quality Criteria Using Large Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corsica Island
2.2. Sise-Eaux Database Extraction
2.3. Data Treatments
3. Results
3.1. Principal Component Analysis
3.2. Unsupervised Agglomerative Hierarchical Clustering
3.3. Explained Variance Measured from R2
4. Discussion
4.1. A multifactorial Information Set
4.2. A Sub-GWB Division Better Suited to Monitoring the Resource
4.3. A Result Closer to the Distribution of Lithology
4.4. Other Environmental Factors
- The nature of the soils, an important factor in the vulnerability of water catchment structures;
- The altitude, which has an impact on temperature and therefore on human land use, the type of forest, the intensity of pedogenesis, etc.;
- The geomorphology;
- The lithological diversity within the crystalline region, with an important aspect regarding the presence of flocculent cations.
4.5. Methodological Contribution
- The study confirms that the method implemented, and progressively improved, is suitable for highlighting the information contained in Sise-Eaux type databases. Of course, the existence of such a database is a prerequisite for its application;
- Quantifying the loss of information that accompanies the grouping of GWBs makes it possible to measure the effectiveness of the method.
- This analysis method, developed for vast regions of the order of 60,000 to 80,000 km2, can be deployed for regions around 10 times smaller, even if the European Commission recommends an even larger scale, that of the major European watersheds (Danube, Rhône, Rhine, Seine, Loire, Po, etc.);
- While it now appears that the information analysis method can be extended to other administrative regions, we do not know whether it can be extended to new parameters not taken into account here (pesticides, land use, fractured medium, water–rock contact time, etc.). The use of databases of much larger dimensions is currently being tested in the Provence-Alpes-Côte d’Azur administrative region (PACA, France);
- However, the proposed method has certain limitations. In particular, at this stage, the analysis is carried out parameter by parameter, which does not take into account the interrelations between several parameters. Access to a greater number of parameters over a larger number of observations should make it possible to establish a typology of parameter behaviour, while separating their variability in space (range of each variable) and in time (common variability of parameters during rainy events, more or less marked seasons, or even multi-annual dry or wet periods). This typology of parameters would be a further step forward in the type of information extracted from large databases.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, D.B.; Baumgartner, D.J.; Gerba, C.P.; Fitzsimmons, K. Chapter 16—Surface Water Pollution. In Environmental and Pollution Science, 3rd ed.; Brusseau, M.L., Pepper, I.L., Gerba, C.P.B.T.-E., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 261–292. ISBN 978-0-12-814719-1. [Google Scholar]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and Consequences of Groundwater Contamination. Arch. Environ. Contam. Toxicol. 2021, 80, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Woldt, W.; Bogardi, I. Ground water monitoring network design using multiple criteria decision making and geostatistics. JAWRA J. Am. Water Resour. Assoc. 1992, 28, 45–62. [Google Scholar] [CrossRef]
- Hudak, P.F.; Loaiciga, H.A. An optimization method for monitoring network design in multilayered groundwater flow systems. Water Resour. Res. 1993, 29, 2835–2845. [Google Scholar] [CrossRef]
- Frapporti, G.; Hoogendoorn, J.H.; Vriend, S.P. Detailed Hydrochemical Studies as a Useful Extension of National Ground-Water Monitoring Networks. Groundwater 1995, 33, 817–828. [Google Scholar] [CrossRef]
- Meyer, P.D.; Brill, E.D., Jr. A method for locating wells in a groundwater monitoring network under conditions of uncertainty. Water Resour. Res. 1988, 24, 1277–1282. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Yi, M.-J.; Yoo, Y.-K.; Ahn, K.-H.; Kim, G.-B.; Won, J.-H. A review of the National Groundwater Monitoring Network in Korea. Hydrol. Process. 2007, 21, 907–919. [Google Scholar] [CrossRef]
- Esquivel, J.M.; Morales, G.P.; Esteller, M.V. Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis. Water Resour. Manag. 2015, 29, 3175–3194. [Google Scholar] [CrossRef]
- European Commission Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union 2006, 372, 19–31.
- Allan, I.J.; Vrana, B.; Greenwood, R.; Mills, G.A.; Knutsson, J.; Holmberg, A.; Guigues, N.; Fouillac, A.-M.; Laschi, S. Strategic monitoring for the European Water Framework Directive. TrAC Trends Anal. Chem. 2006, 25, 704–715. [Google Scholar] [CrossRef]
- Martínez-Navarrete, C.; Jiménez-Madrid, A.; Sánchez-Navarro, I.; Carrasco-Cantos, F.; Moreno-Merino, L. Conceptual Framework for Protecting Groundwater Quality. Int. J. Water Resour. Dev. 2011, 27, 227–243. [Google Scholar] [CrossRef]
- Masciale, R.; Amalfitano, S.; Frollini, E.; Ghergo, S.; Melita, M.; Parrone, D.; Preziosi, E.; Vurro, M.; Zoppini, A.; Passarella, G. Assessing Natural Background Levels in the Groundwater Bodies of the Apulia Region (Southern Italy). Water 2021, 13, 958. [Google Scholar] [CrossRef]
- Frollini, E.; Preziosi, E.; Calace, N.; Guerra, M.; Guyennon, N.; Marcaccio, M.; Menichetti, S.; Romano, E.; Ghergo, S. Groundwater quality trend and trend reversal assessment in the European Water Framework Directive context: An example with nitrates in Italy. Environ. Sci. Pollut. Res. 2021, 28, 22092–22104. [Google Scholar] [CrossRef]
- Goldscheider, N. Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany. Hydrogeol. J. 2005, 13, 555–564. [Google Scholar] [CrossRef]
- Raihan, A.T.; Bauer, S.; Mukhopadhaya, S. An AHP based approach to forecast groundwater level at potential recharge zones of Uckermark District, Brandenburg, Germany. Sci. Rep. 2022, 12, 6365. [Google Scholar] [CrossRef]
- Flindt Jørgensen, L.; Villholth, K.G.; Refsgaard, J.C. Groundwater management and protection in Denmark: A review of pre-conditions, advances and challenges. Int. J. Water Resour. Dev. 2017, 33, 868–889. [Google Scholar] [CrossRef]
- Masses d’eau Souterraines-Métropole-Version État Des Lieux. 2019. Available online: https://geo.data.gouv.fr/fr/datasets/1a983edfe5ea441fef359a652e98217c9c3ce3c6 (accessed on 10 November 2023).
- Tiouiouine, A.; Jabrane, M.; Kacimi, I.; Morarech, M.; Bouramtane, T.; Bahaj, T.; Yameogo, S.; Rezende-Filho, A.; Dassonville, F.; Moulin, M.; et al. Determining the relevant scale to analyze the quality of regional groundwater resources while combining groundwater bodies, physicochemical and biological databases in southeastern france. Water 2020, 12, 3476. [Google Scholar] [CrossRef]
- Tiouiouine, A.; Yameogo, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Moulin, M.; Bouramtane, T.; Bahaj, T.; Morarech, M.; Kacimi, I. Dimension reduction and analysis of a 10-year physicochemical and biological water database applied to water resources intended for human consumption in the provence-alpes-cote d’azur region, France. Water 2020, 12, 525. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; Valles, V.; Barbiero, L. Data Conditioning Modes for the Study of Groundwater Resource Quality Using a Large Physico-Chemical and Bacteriological Database, Occitanie Region, France. Water 2023, 15, 84. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Valles, V.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; El Jarjini, Y.; Morarech, M.; Duran, Y.; Barbiero, L. Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France). Hydrology 2023, 10, 89. [Google Scholar] [CrossRef]
- Mohsine, I.; Kacimi, I.; Abraham, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Bahaj, T.; Kassou, N.; Touiouine, A.; Jabrane, M.; et al. Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering. Water 2023, 15, 1603. [Google Scholar] [CrossRef]
- De Graciansky, P.-C.; Roberts, D.G.; Tricart, P. Chapter Nine—The Tethyan Margin in Corsica. In The Western Alps, from Rift to Passive Margin to Orogenic Belt; De Graciansky, P.-C., Roberts, D.G., Tricart, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 14, pp. 183–188. ISBN 0928-2025. [Google Scholar]
- Chery, L.; Laurent, A.; Vincent, B.; Tracol, R. Echanges SISE-Eaux/ADES: Identification Des Protocoles Compatibles Avec Les Scénarios D’échange SANDRE; ONEMA: Vincennes/Orléans, France, 2011. [Google Scholar]
- Gran-Aymeric, L. Un portail national sur la qualite des eaux destinees a la consommation humaine. Tech. Sci. Méthodes 2010, 12, 45–48. [Google Scholar] [CrossRef]
- Steinskog, D.J.; Tjøstheim, D.B.; Kvamstø, N.G. A Cautionary Note on the Use of the Kolmogorov–Smirnov Test for Normality. Mon. Weather Rev. 2007, 135, 1151–1157. [Google Scholar] [CrossRef]
- Feng, C.; Wang, H.; Lu, N.; Chen, T.; He, H.; Lu, Y.; Tu, X.M. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105–109. [Google Scholar] [PubMed]
- Barbel-Périneau, A.; Barbiero, L.; Danquigny, C.; Emblanch, C.; Mazzilli, N.; Babic, M.; Simler, R.; Valles, V. Karst flow processes explored through analysis of long-term unsaturated-zone discharge hydrochemistry: A 10-year study in Rustrel, France. Hydrogeol. J. 2019, 27, 1711–1723. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Rezende Filho, A.; Furian, S.; Victoria, R.; Mascré, C.; Valles, V.; Barbiero, L. Hydrochemical variability at the upper paraguay basin and pantanal wetland. Hydrol. Earth Syst. Sci. 2012, 16, 2723–2737. [Google Scholar] [CrossRef]
- Gleser, L.J. A Note on the Sphericity Test. Ann. Math. Stat. 1966, 37, 464–467. [Google Scholar] [CrossRef]
- Achen, C.H. What Does “Explained Variance“ Explain?: Reply. Polit. Anal. 1990, 2, 173–184. [Google Scholar] [CrossRef]
- Miles, J. R Squared, Adjusted R Squared. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014; ISBN 9781118445112. [Google Scholar]
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | |
---|---|---|---|---|---|---|---|
Explained variance % | 37.1 | 12.3 | 12.1 | 9.5 | 8 | 6.5 | 6 |
Cumulative explained variance % | 37.1 | 49.4 | 61.5 | 70.9 | 79 | 85.5 | 91.5 |
Eigenvalue | 5.56 | 1.84 | 1.82 | 1.42 | 1.2 | 0.98 | 0.91 |
Groups | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Ent. | 0.15 | 0.00 | 0.00 | 0.45 | 0.17 | 0.32 | 0.12 | 0.49 | 1.12 | 1.56 | 0.56 | 0.08 |
E. coli | 0.05 | 0.08 | 0.00 | 0.45 | 0.11 | 0.39 | 0.05 | 0.35 | 1.20 | 2.06 | 0.36 | 0.11 |
Col. | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.12 | 0.00 |
Aer.22 | 0.00 | 0.00 | 0.55 | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 | 0.00 | 0.06 | 0.01 | 0.00 |
Aer.37 | 0.00 | 0.00 | 0.27 | 0.00 | 0.02 | 0.02 | 0.00 | 0.01 | 0.00 | 0.05 | 0.01 | 0.00 |
EC | 2.52 | 3.03 | 2.75 | 2.16 | 2.23 | 2.40 | 2.52 | 2.39 | 2.00 | 2.28 | 1.77 | 1.93 |
Ca | 1.31 | 2.11 | 1.55 | 0.82 | 0.92 | 1.09 | 1.53 | 1.44 | 0.70 | 1.05 | 0.46 | 0.82 |
Mg | 1.04 | 1.01 | 1.26 | 0.55 | 0.64 | 0.79 | 0.99 | 0.82 | 0.37 | 0.72 | 0.11 | 0.25 |
Cl | 1.55 | 2.15 | 1.90 | 1.32 | 1.39 | 1.57 | 1.24 | 1.09 | 1.12 | 1.41 | 0.84 | 0.83 |
SO4 | 1.28 | 1.58 | 1.34 | 0.82 | 0.92 | 1.03 | 1.12 | 0.95 | 0.62 | 0.86 | 0.55 | 0.46 |
Na | 1.44 | 1.88 | 1.69 | 1.17 | 1.21 | 1.39 | 1.06 | 0.89 | 0.99 | 1.23 | 0.74 | 0.82 |
HCO3 | 1.91 | 2.57 | 2.15 | 1.49 | 1.56 | 1.74 | 2.17 | 2.03 | 1.36 | 1.70 | 1.08 | 1.51 |
NO3 | 1.23 | 0.87 | 0.67 | 0.25 | 0.29 | 0.26 | 0.56 | 0.15 | 0.17 | 0.17 | 0.35 | −0.24 |
Fe | 1.04 | 0.98 | 1.05 | 1.13 | 1.47 | 1.28 | 1.18 | 1.18 | 1.29 | 1.46 | 1.20 | 1.43 |
Mn | 1.04 | 0.98 | 1.04 | 1.05 | 1.35 | 1.07 | 1.08 | 1.10 | 1.08 | 1.06 | 1.11 | 1.24 |
Explained Variance | ||||
---|---|---|---|---|
Group Sub-GWB | GWB | Sub-GWB | Sampling Points | |
Number of units | 12 | 15 | 40 | 662 |
Colif. | 0.194 | 0.171 | 0.292 | 1 |
Fe | 0.134 | 0.125 | 0.283 | 1 |
Aer. 25 °C | 0.064 | 0.007 | 0.045 | 1 |
Mn | 0.176 | 0.139 | 0.243 | 1 |
Aer. 37 °C | 0.100 | 0.004 | 0.122 | 1 |
NO3 | 0.145 | 0.266 | 0.392 | 1 |
Enter. | 0.328 | 0.327 | 0.529 | 1 |
E. coli | 0.394 | 0.359 | 0.593 | 1 |
Cl | 0.327 | 0.278 | 0.552 | 1 |
SO4 | 0.445 | 0.375 | 0.540 | 1 |
Na | 0.304 | 0.330 | 0.581 | 1 |
HCO3 | 0.508 | 0.581 | 0.706 | 1 |
EC | 0.528 | 0.439 | 0.630 | 1 |
Mg | 0.442 | 0.405 | 0.573 | 1 |
Ca | 0.516 | 0.595 | 0.706 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar, H.; Ayach, M.; Barry, A.-A.; Mohsine, I.; Touiouine, A.; Huneau, F.; Mori, C.; Garel, É.; Kacimi, I.; Valles, V.; et al. Groundwater Bodies Subdivision in Corsica: A Critical Approach Based on Multivariate Water Quality Criteria Using Large Database. Hydrology 2023, 10, 213. https://doi.org/10.3390/hydrology10110213
Lazar H, Ayach M, Barry A-A, Mohsine I, Touiouine A, Huneau F, Mori C, Garel É, Kacimi I, Valles V, et al. Groundwater Bodies Subdivision in Corsica: A Critical Approach Based on Multivariate Water Quality Criteria Using Large Database. Hydrology. 2023; 10(11):213. https://doi.org/10.3390/hydrology10110213
Chicago/Turabian StyleLazar, Hajar, Meryem Ayach, Abdoul-Azize Barry, Ismail Mohsine, Abdessamad Touiouine, Frédéric Huneau, Christophe Mori, Émilie Garel, Ilias Kacimi, Vincent Valles, and et al. 2023. "Groundwater Bodies Subdivision in Corsica: A Critical Approach Based on Multivariate Water Quality Criteria Using Large Database" Hydrology 10, no. 11: 213. https://doi.org/10.3390/hydrology10110213
APA StyleLazar, H., Ayach, M., Barry, A. -A., Mohsine, I., Touiouine, A., Huneau, F., Mori, C., Garel, É., Kacimi, I., Valles, V., & Barbiero, L. (2023). Groundwater Bodies Subdivision in Corsica: A Critical Approach Based on Multivariate Water Quality Criteria Using Large Database. Hydrology, 10(11), 213. https://doi.org/10.3390/hydrology10110213