The Electrical Conductivity of a Bacterial Cellulose and Polyaniline Composite Significantly Improved by Activated Carbon: A Nano-Based Platform for Electrodes
Abstract
:1. Introduction
2. Experimental Sections
2.1. Materials
2.2. Methods
2.2.1. Bacterial Cellulose Extraction and Purification
2.2.2. Fabrication of the Bacterial Cellulose (BC) and Polyaniline (PAN) Sheet with Added Activated Carbon (AC)
2.3. Material Characterization
2.4. Measurement of Electrical Conductivity
2.5. Measurement of Electrochemical Performance
3. Results and Discussion
3.1. Development of a Bacterial Cellulose and Polyaniline Composite Sheet with Added Activated Carbon
3.2. Evaluation of Electrical and Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Zhang, W.; Xia, T.; Hu, H.; Zhang, Z.; Li, X. Insight into faradaic mechanism of NiCo-CHH microspheres in high-performance Ni-Cu batteries. Scr. Mater. 2022, 215, 114691. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Du, X.; Dai, S.; Wang, Y.; Xu, T.; Liu, M.; Cheng, S. Reaction Mechanism and Structural Evolution of Tunnel-Structured KCu7S4 Nanowires in Li+/Na+-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2407105. [Google Scholar] [CrossRef]
- Qu, J.; Bai, Y.; Li, X.; Song, K.; Zhang, S.; Wang, X.; Wang, X.; Dai, S. Rational design of NiSe2@rGO nanocomposites for advanced hybrid supercapacitors. J. Mater. Res. Technol. 2021, 15, 6155–6161. [Google Scholar] [CrossRef]
- Chantereau, G.; Sharma, M.; Abednejad, A.; Vilela, C.; Costa, E.M.; Veiga, M.; Antunes, F.; Pintado, M.M.; Sèbe, G.; Coma, V.; et al. Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J. Mol. Liquids 2020, 302, 112547. [Google Scholar] [CrossRef]
- Khamwongsa, P.; Wongjom, P.; Cheng, H.; Lin, C.C.; Ummartyotin, S. Significant enhancement of electrical conductivity of conductive cellulose derived from bamboo and polypyrrole. Compos. Part C Open Access 2022, 9, 100314. [Google Scholar] [CrossRef]
- Zheng, W.; Fan, L.; Zhou, J.; Meng, Z.; Ye, D.; Xu, J. Flexible, ultrathin and integrated nanopaper supercapacitor based on cationic bacterial cellulose. Int. J. Biol. Macromol. 2024, 256, 128497. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, J.; Du, X.; Kimura, H.; Ni, C.; Hou, C.; Zhang, Y.; Sun, X.; Yang, X.; Du, W. Morphology evolution of bacterial cellulose carbon and loaded with MnO2 microspheres for high performance supercapacitors. J. Alloys Compd. 2024, 994, 174713. [Google Scholar] [CrossRef]
- Shen, Y.-H.; Yadav, R.; Wong, A.J.; Balzer, A.H.; Epps, T.H.; Sumerlin, B.S.; Veige, A.S. Fibril size control, tensile strength, and electrical properties of cyclic polyacetylene. React. Funct. Polym. 2024, 195, 105810. [Google Scholar] [CrossRef]
- Sun, P.; Shen, X.; Xu, P.; Huang, W.; Xu, Q. Conductive polyaniline film synthesized through in-situ polymerization as a conductive seed layer for hole metallization of printed circuit boards. Appl. Surf. Sci. 2024, 655, 159649. [Google Scholar] [CrossRef]
- Shindalkar, S.S.; Reddy, M.; Singh, R.; Nainar, M.A.M.; Kandasubramanian, B. Polythiophene blends and composites as potential energy storage materials. Synth. Met. 2023, 299, 117467. [Google Scholar] [CrossRef]
- Li, E.; Liu, R.; Huang, S.; Mei, J.; Xu, J.; Yuan, G. Flexible N-doped active carbon/bacterial cellulose paper for supercapacitor electrode with high areal performance. Synth. Met. 2017, 226, 104–112. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Kim, H.; Fujishima, A.; Terashima, C. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications. J. Hazard. Mater. 2021, 419, 126453. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.A.; Hunge, Y.M.; Ko, S.; Kang, S.-W. Chemically Synthesized Iron-Oxide-Based Pure Negative Electrode for Solid-State Asymmetric Supercapacitor Devices. Materials 2022, 15, 6133. [Google Scholar] [CrossRef] [PubMed]
- Jorn-am, T.; Pholauyphon, W.; Supchocksoonthorn, P.; Sirisit, N.; Chanthad, C.; Manyam, J.; Liang, X.; Song, S.; Paoprasert, P. High-performance supercapacitors using synergistic hierarchical Ni-doped copper compounds/activated carbon composites with MXenes and carbon dots as simultaneous performance enhancers. Electrochim. Acta 2023, 447, 142147. [Google Scholar] [CrossRef]
- Piili, H. A study on usage of on-site multi-monitoring system in laser processing of paper materials. Physics Procedia 2015, 78, 147–156. [Google Scholar] [CrossRef]
- Liu, R.; Ma, L.; Huang, S.; Mei, J.; Xu, J.; Yuan, G. Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors. RSC Adv. 2016, 6, 107426–107432. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Karthick, K.; Allen, J.A.; Nirmal Ghosh, O.S.; Chandranayaka, S.; Gupta, V.K.; Krishna, K.; Mudili, V. Application of activated carbon derived from seed shells of Jatropha curcas for decontamination of zearalenone mycotoxin. Front. Pharmacol. 2017, 8, 308339. [Google Scholar] [CrossRef]
- Thongsai, N.; Hrimchum, K.; Aussawasathien, D. Carbon fiber mat from palm-kernel-shell lignin/polyacrylonitrile as intrinsic-doping electrode in supercapacitor. Sustain. Mater. Technol. 2021, 30, e00341. [Google Scholar] [CrossRef]
- Truong, D.H.; Dam, M.S.; Bujna, E.; Rezessy-Szabo, J.; Farkas, C.; Vi, V.N.H.; Csernus, O.; Nguyen, V.D.; Gathergood, N.; Friedrich, L. In situ fabrication of electrically conducting bacterial cellulose-polyaniline-titanium-dioxide composites with the immobilization of Shewanella xiamenensis and its application as bioanode in microbial fuel cell. Fuel 2021, 285, 119259. [Google Scholar] [CrossRef]
- Luo, H.; Dong, J.; Zhang, Y.; Li, G.; Guo, R.; Zuo, G.; Ye, M.; Wang, Z.; Yang, Z.; Wan, Y. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors. Chem. Eng. J. 2018, 334, 1148–1158. [Google Scholar] [CrossRef]
- Kabiri, R.; Namazi, H. Synthesis of cellulose/reduced graphene oxide/polyaniline nanocomposite and its properties. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 675–682. [Google Scholar] [CrossRef]
- Gao, P.; Yuan, P.; Wang, S.; Shi, Q.; Zhang, C.; Shi, G.; Xing, Y.; Shen, B. Preparation and comparison of polyaniline composites with lotus leaf-derived carbon and lotus petiole-derived carbon for supercapacitor applications. Electrochim. Acta 2024, 486, 144112. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, Z.; Liu, Q.; Liu, X.-T.; Miao, Y.-N.; Yao, C.-L. MXene (Ti3C2Tx)/cellulose nanofiber/polyaniline film as a highly conductive and flexible electrode material for supercapacitors. Carbohydr. Polym. 2023, 304, 120519. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Navik, R.; Liu, Z.; Xiang, Q.; Zhao, Y. Preparation of high load carbon fiber/graphene/bacterial cellulose/polyaniline electrodes facilitated by plasma towards high capacitive supercapacitors. Chem. Phys. Lett. 2022, 802, 139741. [Google Scholar] [CrossRef]
- Lei, C.; Amini, N.; Markoulidis, F.; Wilson, P.; Tennison, S.; Lekakou, C. Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J. Mater. Chem. A 2013, 1, 6037–6042. [Google Scholar] [CrossRef]
- Chaisit, S.; Chanlek, N.; Khajonrit, J.; Sichumsaeng, T.; Maensiri, S. Preparation, characterization, and electrochemical properties of KOH-activated carbon from cassava root. Mater. Res. Express 2020, 7, 105605. [Google Scholar] [CrossRef]
- Guan, F.; Chen, S.; Sheng, N.; Chen, Y.; Yao, J.; Pei, Q.; Wang, H. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. 2019, 360, 829–837. [Google Scholar] [CrossRef]
- Rabani, I.; Yoo, J.; Kim, H.-S.; Hussain, S.; Karuppasamy, K.; Seo, Y.-S. Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale 2021, 13, 355–370. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, S.; Geng, A.; Wang, L.; Song, C.; Xu, L.; Jia, C.; Shi, J.; Gan, L. Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: Inspired from a Chinese cuisine. Compos. Sci. Technol. 2020, 196, 108226. [Google Scholar] [CrossRef]
- Yu, W.; Lin, W.; Shao, X.; Hu, Z.; Li, R.; Yuan, D. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 2014, 272, 137–143. [Google Scholar] [CrossRef]
- Wannasen, L.; Swatsitang, E.; Pinitsoontorn, S. Flexible supercapacitors based on mesoporous nanocrystalline cobalt ammonium phosphates and bacterial cellulose composite electrode. Int. J. Energy Res. 2021, 45, 3075–3088. [Google Scholar] [CrossRef]
Sample | BC (mL) | PAN (mL) | Activated Carbon (wt%) |
---|---|---|---|
BC/PAN | 20 | 10 | - |
BC/PAN/AC-1 | 20 | 10 | 0.2 |
BC/PAN/AC-2 | 20 | 10 | 0.4 |
BC/PAN/AC-3 | 20 | 10 | 0.6 |
BC/PAN/AC-4 | 20 | 10 | 0.8 |
BC/PAN/AC-5 | 20 | 10 | 1.0 |
Materials | Conductivity Level (S/cm) | Application | References |
---|---|---|---|
Bacteria cellulose/polyaniline/titanium dioxide | 0.037 | Bioanode in microbial fuel cell | [19] |
Cellulose/graphene/polyaniline | 1.66 | Supercapacitors | [20] |
Cellulose/reduced graphene oxide/polyaniline | 3.1 | Biosensors, supercapacitors | [21] |
Polyaniline composites with lotus-leaf-derived carbon | 3.57 × 10−3 | Supercapacitor | [22] |
MXene (Ti3C2Tx)/cellulose nanofiber/polyaniline | N/A | Supercapacitor | [23] |
Carbon fiber/graphene/bacterial cellulose/polyaniline | N/A | Supercapacitor | [24] |
BC/PAN/AC sheet composites | 0.0325 | Supercapacitors | Our work |
Condition | Cs (F g−1) at 10 mV s−1 | E (Wh kg−1) | P (W kg−1) |
---|---|---|---|
BC/PAN/AC-1 | 33.174 | 4.61 | 677.01 |
BC/PAN/AC-2 | 60.443 | 8.39 | 499.53 |
BC/PAN/AC-3 | 70.091 | 9.73 | 449.29 |
BC/PAN/AC-4 | 73.051 | 10.21 | 397.30 |
BC/PAN/AC-5 | 63.283 | 8.79 | 550.29 |
Materials | Specific Capacitance (F g−1) | Current Density (A g−1) | References |
---|---|---|---|
Graphene oxide/bacterial cellulose film | 65.9 | 0.4 | [27] |
Co3O4 nanoparticles incorporated into a cellulose nanofiber | 80 | 1.0 | [28] |
TEMPO-oxidized nanocellulose-stabilized carbon nanotubes | 65 | 0.4 | [29] |
Ni3S2/carbon nanofibers derived from bacterial cellulose | 56.6 | 1.0 | [30] |
NH4CoPO4/bacterial cellulose composite | 43.3 | 0.25 | [31] |
BC/PAN/AC sheet composites | 73.051 | 0.25 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirichaibhinyo, T.; Supchocksoonthorn, P.; Paoprasert, P.; Ummartyotin, S. The Electrical Conductivity of a Bacterial Cellulose and Polyaniline Composite Significantly Improved by Activated Carbon: A Nano-Based Platform for Electrodes. ChemEngineering 2024, 8, 87. https://doi.org/10.3390/chemengineering8050087
Sirichaibhinyo T, Supchocksoonthorn P, Paoprasert P, Ummartyotin S. The Electrical Conductivity of a Bacterial Cellulose and Polyaniline Composite Significantly Improved by Activated Carbon: A Nano-Based Platform for Electrodes. ChemEngineering. 2024; 8(5):87. https://doi.org/10.3390/chemengineering8050087
Chicago/Turabian StyleSirichaibhinyo, Thanakrit, Preeyanuch Supchocksoonthorn, Peerasak Paoprasert, and Sarute Ummartyotin. 2024. "The Electrical Conductivity of a Bacterial Cellulose and Polyaniline Composite Significantly Improved by Activated Carbon: A Nano-Based Platform for Electrodes" ChemEngineering 8, no. 5: 87. https://doi.org/10.3390/chemengineering8050087
APA StyleSirichaibhinyo, T., Supchocksoonthorn, P., Paoprasert, P., & Ummartyotin, S. (2024). The Electrical Conductivity of a Bacterial Cellulose and Polyaniline Composite Significantly Improved by Activated Carbon: A Nano-Based Platform for Electrodes. ChemEngineering, 8(5), 87. https://doi.org/10.3390/chemengineering8050087