Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = polyaniline (PAN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3903 KiB  
Article
Polyaniline-Coated Electrospun Polyacrylonitrile Nanofibers for Effective Short-Chain PFAS (GenX) Removal from Water
by Israt Jahan, Easmin Ara Tani, Harsh V. Patel, Renzun Zhao and Lifeng Zhang
Fibers 2025, 13(4), 42; https://doi.org/10.3390/fib13040042 - 9 Apr 2025
Viewed by 701
Abstract
A 6-carbon short-chain per- and polyfluoroalkyl substance (PFAS), GenX, also known as hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, has been manufactured in recent years as a replacement for perfluorooctanoic acid (PFOA), a traditional long-chain PFAS, due to the increasing environmental [...] Read more.
A 6-carbon short-chain per- and polyfluoroalkyl substance (PFAS), GenX, also known as hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, has been manufactured in recent years as a replacement for perfluorooctanoic acid (PFOA), a traditional long-chain PFAS, due to the increasing environmental regulation of PFAS compounds in recent years. GenX has received significant attention because of the fact that it is more toxic than people originally thought, and it is now one of the six PFAS compounds that are placed under legally enforceable restrictions in drinking water, i.e., 10 ppt, by the United States Environmental Protection Agency (US EPA). In this research, we extended the use of polyacrylonitrile (PAN) nanofibers from electrospinning for GenX removal from water by coating them with polyaniline (PANI) through in situ polymerization. The obtained PANI-coated electrospun PAN nanofibrous adsorbent (PANI-ESPAN) demonstrated excellent GenX adsorption capability and could remove nearly all GenX (>98%) from a 100 ppb aqueous solution. This research provided valuable insights into short-chain PFAS remediation from water by designing and developing high-performance adsorbent materials. Full article
Show Figures

Figure 1

12 pages, 1650 KiB  
Article
The Electrical Conductivity of a Bacterial Cellulose and Polyaniline Composite Significantly Improved by Activated Carbon: A Nano-Based Platform for Electrodes
by Thanakrit Sirichaibhinyo, Preeyanuch Supchocksoonthorn, Peerasak Paoprasert and Sarute Ummartyotin
ChemEngineering 2024, 8(5), 87; https://doi.org/10.3390/chemengineering8050087 - 30 Aug 2024
Cited by 2 | Viewed by 2354
Abstract
In this study, we successfully fabricated a composite sheet comprising bacterial cellulose (BC) and polyaniline (PAN), integrated with activated carbon (AC), to produce electrodes in a supercapacitor. The electrical conductivity level can be adjusted by adding AC into the composite. FTIR revealed hydrogen [...] Read more.
In this study, we successfully fabricated a composite sheet comprising bacterial cellulose (BC) and polyaniline (PAN), integrated with activated carbon (AC), to produce electrodes in a supercapacitor. The electrical conductivity level can be adjusted by adding AC into the composite. FTIR revealed hydrogen bonding interactions between the -OH groups of the bacterial cellulose and the -NH groups of the polyaniline. The XRD pattern showed the characteristic peak of activated carbon. The SEM showed that PAN was filled into the porous network of the bacterial cellulose. The AC was randomly distributed onto the composite’s surface. The composite was thermally stable up to 200 °C. The electrical conductivity was reported to be 1.5–3.5 S/m when AC was added from 0.2 to 1 wt%. Furthermore, the specific capacitances (Cs), energy densities (Es), and power density (P) were typically reported to be 30–70 F/g, 4–11 Wh/kg, and 400–700 W/kg, respectively. Moreover, the optimization of the activated carbon ratio led to a reduction in the charge transfer resistance (Rct), as demonstrated by a Nyquist plot analysis, thereby enhancing electrical conductivity. Overall, the bacterial cellulose and polyaniline composite sheet, incorporating activated carbon, exhibited excellent properties, making it a promising candidate for bioelectrode supercapacitor applications in the near future. Full article
Show Figures

Figure 1

20 pages, 7311 KiB  
Article
A Novel Organic/Inorganic Dual Z-Scheme Photocatalyst with Visible-Light Response for Organic Pollutants Degradation
by Taoming Yu, Doudou Wang, Lili Li, Wenjing Song, Xuan Pang and Ce Liang
Catalysts 2023, 13(11), 1391; https://doi.org/10.3390/catal13111391 - 24 Oct 2023
Cited by 4 | Viewed by 1850
Abstract
The design of highly efficient organic/inorganic photocatalysts with visible-light response has attracted great attention for the removal of organic pollutants. In this work, the polyacrylonitrile (PAN) worked as the matrix polymer, while polyaniline (PANI) and Sb2S3–ZnO were used as [...] Read more.
The design of highly efficient organic/inorganic photocatalysts with visible-light response has attracted great attention for the removal of organic pollutants. In this work, the polyacrylonitrile (PAN) worked as the matrix polymer, while polyaniline (PANI) and Sb2S3–ZnO were used as organic/inorganic photocatalysts. The heterojunction PAN/PANI–Sb2S3–ZnO photocatalyst was prepared using electrospinning and surface ultrasound. PAN/PANI–Sb2S3–ZnO exhibited an excellent visible-light absorption intensity in the wavelength range of 400–700 nm. The maximum removal efficiencies of PAN/PANI–Sb2S3–ZnO for four organic dyes were all greater than 99%. The mechanism study showed that a dual Z-scheme could be constructed ingeniously because of the well-matched bandgaps between organic and inorganic components in the photocatalyst, which achieved efficient separation of photogenerated carriers and reserved photogenerated electrons (e) and holes (h+) with strong redox ability. The active species •OH and •O2 played an important role in the photocatalytic process. The composite photocatalyst also had excellent stability and reusability. This work suggested a pathway for designing novel organic/inorganic composite photocatalysts with visible-light response. Full article
Show Figures

Graphical abstract

11 pages, 551 KiB  
Review
Surface Treatment of Polymer Membranes for Effective Biofouling Control
by Vinita Vishwakarma, Jaya Kandasamy and Saravanamuthu Vigneswaran
Membranes 2023, 13(8), 736; https://doi.org/10.3390/membranes13080736 - 17 Aug 2023
Cited by 2 | Viewed by 2673
Abstract
Membrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The [...] Read more.
Membrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The sizes of the pores in the membranes enable micro- and nanofiltration, ultrafiltration, and reverse osmosis. Commonly used polymers for water filter membranes are polyvinyl chloride (PVA), polyvinylidene fluoride (PVDF), polyamide (PA), polyethylene glycol (PEG), polyethersulfone (PES), polyimide (PI), polyacrylonitrile (PAN), polyvinyl alcohol (PA), poly (methacrylic acid) (PMAA), polyaniline nanoparticles (PANI), poly (arylene ether ketone) (PAEK), polyvinylidene fluoride polysulfone (PSF), poly (ether imide) (PEI), etc. However, these polymer membranes are often susceptible to biofouling because of inorganic, organic, and microbial fouling, which deteriorates the membranes and minimizes their lives, and increases operating costs. Biofouling infection on polymer membranes is responsible for many chronic diseases in humans. This contamination cannot be eliminated by periodic pre- or post-treatment processes using biocides and other chemicals. For this reason, it is imperative to modify polymer membranes by surface treatments to enhance their efficiency and longevity. The main objective of this manuscript is to discuss application-oriented approaches to control biofouling on polymer membranes using various surface treatment methods, including nanomaterials and fouling characterizations utilizing advanced microscopy and spectroscopy techniques. Full article
(This article belongs to the Special Issue Surface Modification and Performance Enhancement for Membranes)
Show Figures

Figure 1

18 pages, 2504 KiB  
Article
Adsorption Kinetics of Methyl Orange from Model Polluted Water onto N-Doped Activated Carbons Prepared from N-Containing Polymers
by Abdel-Basit Al-Odayni, Faisal S. Alsubaie, Naaser A. Y. Abdu, Haifa Masfeer Al-Kahtani and Waseem Sharaf Saeed
Polymers 2023, 15(9), 1983; https://doi.org/10.3390/polym15091983 - 22 Apr 2023
Cited by 22 | Viewed by 2800
Abstract
This study aimed to assess the role of polymeric sources (polypyrrole, polyaniline, and their copolymer) of nitrogen (N)-doped activated carbons (indexed as PAnAC, PPyAC, and PnyAC, respectively) on their adsorption efficiency to remove methyl orange (MO) as a model cationic dye. The adsorbents [...] Read more.
This study aimed to assess the role of polymeric sources (polypyrrole, polyaniline, and their copolymer) of nitrogen (N)-doped activated carbons (indexed as PAnAC, PPyAC, and PnyAC, respectively) on their adsorption efficiency to remove methyl orange (MO) as a model cationic dye. The adsorbents were characterized using FTIR, SEM, TGA, elemental analysis, and surface area. The kinetic experiments were performed in batches at different MO concentrations (C0) and adsorbent dosages. The adsorption kinetic profiles of pseudo-first-order, pseudo-second-order (PSO), Elovich, intraparticle diffusion, and liquid film diffusion models were compared. The results showed a better fit to the PSO model, suggesting a chemisorption process. The adsorption capacity (qe, mg/g) was found to have increased as MO C0 increased, yet decreased as the adsorbent quantity increased. At the adsorption operating condition, including MO C0 (200 ppm) and adsorbent dose (40 mg), the calculated qe values were in the order of PAnAC (405 mg/g) > PPyAC (204 mg/g) > PnyAC (182 mg/g). This trend proved the carbon precursor’s importance in the final properties of the intended carbons; elemental analysis confirmed that the more nitrogen atoms are in the activated carbon, the greater the number of active sites in the adsorbent for accommodating adsorbates. The diffusion mechanism also assumed a rate-limiting step controlled by the film and intraparticle diffusion. Therefore, such an efficient performance may support the target route’s usefulness in converting nitrogenous-species waste into valuable materials. Full article
(This article belongs to the Special Issue Polymeric Materials for Water/Wastewater Treatment Applications)
Show Figures

Figure 1

18 pages, 3696 KiB  
Article
Nitrogen-Rich Polyaniline-Based Activated Carbon for Water Treatment: Adsorption Kinetics of Anionic Dye Methyl Orange
by Abdel-Basit Al-Odayni, Faisal S. Alsubaie and Waseem Sharaf Saeed
Polymers 2023, 15(4), 806; https://doi.org/10.3390/polym15040806 - 6 Feb 2023
Cited by 30 | Viewed by 3263
Abstract
In the present work, a nitrogen-rich activated carbon (PAnAC) was prepared using polyaniline (PAn) as a precursor to represent one possible conversion of nitrogen-containing polymeric waste into a valuable adsorbent. PAnAC was fabricated under the chemical activation of KOH and a PAn precursor [...] Read more.
In the present work, a nitrogen-rich activated carbon (PAnAC) was prepared using polyaniline (PAn) as a precursor to represent one possible conversion of nitrogen-containing polymeric waste into a valuable adsorbent. PAnAC was fabricated under the chemical activation of KOH and a PAn precursor (in a 4:1 ratio) at 650 °C and was characterized using FTIR, SEM, BET, TGA, and CHN elemental composition. The structural characteristics support its applicability as an adsorbent material. The adsorption performance was assessed in terms of adsorption kinetics for contact time (0–180 min), methyl orange (MO) concentration (C0 = 50, 100, and 200 ppm), and adsorbent dosages (20, 40, and 80 mg per 250 mL batch). The kinetic results revealed a better fit to a pseudo-second-order, specifically nonlinear equation compared to pseudo-first-order and Elovich equations, which suggests multilayer coverage and a chemical sorption process. The adsorption capacity (qe) was optimal (405.6 mg/g) at MO C0 with PAnAC dosages of 200 ppm and 40 mg and increased as MO C0 increased but decreased as the adsorbent dosage increased. The adsorption mechanism assumes that chemisorption and the rate-controlling step are governed by mass transfer and intraparticle diffusion processes. Full article
(This article belongs to the Special Issue Polymeric Materials for Water Management)
Show Figures

Figure 1

15 pages, 3462 KiB  
Article
Design of BiOCl/WO3@Polyaniline Organic–Inorganic Nanocomposite Photocatalyst for the Efficient Decontamination of 2-Chlorophenol from Wastewater
by Rajeev Kumar, Md. Abu Taleb, Mohamed A. Barakat and Bandar Al-Mur
Catalysts 2023, 13(1), 175; https://doi.org/10.3390/catal13010175 - 11 Jan 2023
Cited by 6 | Viewed by 2510
Abstract
Advanced photocatalysts that can utilize solar energy for water purification applications are always needed. The present article reports a facile fabrication of tungsten oxide (WO3)/bismuth oxychloride (BiOCl) immobilized on polyaniline (PAn) (BiOCl/WO3@PAn) heterojunction nanocomposite photocatalyst. The designed nanocatalyst was [...] Read more.
Advanced photocatalysts that can utilize solar energy for water purification applications are always needed. The present article reports a facile fabrication of tungsten oxide (WO3)/bismuth oxychloride (BiOCl) immobilized on polyaniline (PAn) (BiOCl/WO3@PAn) heterojunction nanocomposite photocatalyst. The designed nanocatalyst was tested for 2-chlorophenol (2-CP) decontamination from the aquatic system. Synthesized WO3, BiOCl, and BiOCl/WO3@PAn nanocomposites were distinguished via UV-DSR, photoluminescence, SEM, TEM, XRD, and XPS analysis. The combination of PAn with WO3 and BiOCl showed a synergistic impact on the photocatalytic efficiency of the BiOCl/WO3@PAn nanocomposite. The synthesized BiOCl/WO3@PAn nanocomposite showed higher visible light absorption behavior and bandgap energy reduction than the WO3 and BiOCl. The obtained data shows that 2-CP photocatalysis by the BiOCl/WO3@PAn is controlled by degradation time, pH, and pollutant amount in the solution. The highest photocatalytic degradation of 2-CP (99.7%) was recorded at pH 5 and 25 mg/L concentration within 240 min. The photocatalysis mechanism and active radical scavenging study discovered that O2 and OH, were responsible for the 2-CP mineralization onto the BiOCl/WO3@PAn nanocomposite. The BiOCl/WO3@PAn nanocomposite showed enhanced decontamination properties over pristine catalysts. The reusability of the synthesized BiOCl/WO3@PAn nanocomposite was evaluated. It found that the photocatalyst could be recycled for up to four cycles for 2-CP degradation without significantly losing the photocatalytic properties. The fabricated BiOCl/WO3@PAn nanocomposite catalyst presented exceptional catalytic and recycling properties, indicating an effective method for scavenging hazardous organic contaminants under solar irradiation and green technology for wastewater purification. Full article
(This article belongs to the Special Issue Nanocatalysts for the Degradation of Refractory Pollutants)
Show Figures

Figure 1

18 pages, 4480 KiB  
Article
Polyaniline/Glauconite Nanocomposite Adsorbent for Congo Red Dye from Textile Wastewater
by Doaa Salah, Ahmed Hamd, N. K. Soliman, Ali M. Elzanaty, Abdulaziz M. Alanazi, Mohamed Shaban, Refat El-Sayed and Sayed A. Ahmed
Separations 2022, 9(11), 384; https://doi.org/10.3390/separations9110384 - 21 Nov 2022
Cited by 12 | Viewed by 3536
Abstract
Glauconite (Gl), a naturally occurring clay material, was utilized as an affordable and ecologically friendly adsorbent to explore its capturing capacity towards Congo red (CR) dye from textile industrial waste effluent. To improve adsorption and removal effectiveness, a modification technique utilizing polyaniline (PAN) [...] Read more.
Glauconite (Gl), a naturally occurring clay material, was utilized as an affordable and ecologically friendly adsorbent to explore its capturing capacity towards Congo red (CR) dye from textile industrial waste effluent. To improve adsorption and removal effectiveness, a modification technique utilizing polyaniline (PAN) was investigated. An X-ray diffractometer (XRD), a scanning electron microscope (SEM), and Fourier transformer infrared (FTI-R) were applied as strong familiar characterization techniques for all used adsorbents. The effects of starting concentration, contact duration, adsorbent dose, pH, and temperature on the adsorption process were also studied. The reusability of the adsorbent was studied over four adsorption cycles. The results show that PAN modification of Gl enhances the effectiveness of CR elimination. The clearance efficiency of raw and modified glauconite at 25 °C and pH 7 was 77% and 91%, respectively. The kinetics and isotherms of Congo red dye adsorption were investigated using batch studies to determine the impacts of various experimental conditions. The maximum adsorption capacity of the glauconite/polyaniline (Gl/PAN) nanocomposite rose from 11.9 mg/g for Gl to 14.1 mg/g in accordance with the isotherm analysis, which shows that the Langmuir isotherm properly characterizes the experimental data. The pseudo-second-order model (R2 = 0.998) properly expresses the experimental data. The reusability research proved that the adsorbents may be reused effectively. The overall results suggest that the modified Gl by PAN might be used as a low-cost, natural adsorbent for eliminating CR color from textile effluent. Full article
(This article belongs to the Special Issue Applications of Porous Materials in Adsorption)
Show Figures

Graphical abstract

12 pages, 2237 KiB  
Article
Electrospun Nanofiber Covered Polystyrene Micro-Nano Hybrid Structures for Triboelectric Nanogenerator and Supercapacitor
by Jihyeon Park, Seungju Jo, Youngsu Kim, Shakir Zaman and Daewon Kim
Micromachines 2022, 13(3), 380; https://doi.org/10.3390/mi13030380 - 26 Feb 2022
Cited by 19 | Viewed by 5680
Abstract
Recently, tremendous research on small energy supply devices is gaining popularity with the immerging Internet of Things (IoT) technologies. Especially, energy conversion and storage devices can provide opportunities for small electronics. In this research, a micro-nano structured design of electrodes is newly developed [...] Read more.
Recently, tremendous research on small energy supply devices is gaining popularity with the immerging Internet of Things (IoT) technologies. Especially, energy conversion and storage devices can provide opportunities for small electronics. In this research, a micro-nano structured design of electrodes is newly developed for high performing hybrid energy systems with the improved effective surface area. Further, it could be simply fabricated through two-steps synthesis of electrospinning and glass transition of a novel polystyrene (PS) substrate. Herein, the electro-spun nanofiber of polyacrylonitrile (PAN) and Nylon 66 (Nylon) are applied to the dielectric layer of a triboelectric generator (TENG), while the PAN and polyaniline (PANI) composites is utilized as an electroactive material of supercapacitor (SC). As a result, the self-charging power system is successfully integrated with the wrinkled PAN/PS (W-PAN/PS@PANI)-SC and W-TENG by using a rectifier. According to the fabricated hybrid energy systems, the electrical energy produced by W-TENG can be successfully stored into as-fabricated W-PAN/PS@PANI-SC and can also turn on a commercial green LED with the stored energy. Therefore, the micro-nano structured electrode designed for hybrid energy systems can contribute to improve the energy conversion and storage performance of various electronic devices. Full article
Show Figures

Graphical abstract

19 pages, 7550 KiB  
Article
EMI Shielding and Absorption of Electroconductive Textiles with PANI and PPy Conductive Polymers and Numerical Model Approach
by Tomasz Rybicki, Zbigniew Stempien and Iwona Karbownik
Energies 2021, 14(22), 7746; https://doi.org/10.3390/en14227746 - 18 Nov 2021
Cited by 25 | Viewed by 3650
Abstract
The paper presents the results and analysis of interdisciplinary research concerning electromagnetic field shielding, conductive polymers printed on textiles and numerical simulation using the finite element method (FEM). The use of conductive, layered textiles for shielding electromagnetic interference (EMI) has been proposed. After [...] Read more.
The paper presents the results and analysis of interdisciplinary research concerning electromagnetic field shielding, conductive polymers printed on textiles and numerical simulation using the finite element method (FEM). The use of conductive, layered textiles for shielding electromagnetic interference (EMI) has been proposed. After establishing the optimal conditions for deposition of polyaniline (PANI) and polypyrrole (PPy) on polyacrylonitrile (PAN) fabric, conductive composites were made by means of reactive inkjet printing. For this purpose, polyacrylonitrile (PAN) fabrics were coated with polyaniline or polypyrrole, obtained by chemical oxidation of aniline hydrochloride and pyrrole by ammonium peroxydisulfate. The morphology of the obtained coatings was observed using a scanning electron microscope (SEM). The conductive properties (surface resistance) of the fabrics were measured using the four-wire method, and the tests of the effectiveness of electromagnetic shielding were carried out using the waveguide method in the frequency range from 2.5 to 18 GHz. The results of experimental shielding effectiveness (SE) tests and numerical simulation showed that the composites of polyacrylonitrile with polyaniline PAN/PANI and polyacrylonitrile with polypyrrole PAN/PPy achieved very good and good EMI shielding efficiency, respectively. Moreover, the obtained measurement results were verified by numerical modeling with the use of FEM–ANSYS HFFS software. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

16 pages, 2145 KiB  
Article
Enhanced Storage Performance of PANI and PANI/Graphene Composites Synthesized in Protic Ionic Liquids
by Fatima Al-Zohbi, Fouad Ghamouss, Bruno Schmaltz, Mohamed Abarbri, Mustapha Zaghrioui and François Tran-Van
Materials 2021, 14(15), 4275; https://doi.org/10.3390/ma14154275 - 30 Jul 2021
Cited by 14 | Viewed by 3147
Abstract
Polyaniline (PANI) was synthesized using oxidative polymerization in a mixture of water with pyrrolidinium hydrogen sulfate [Pyrr][HSO4], which is a protic ionic liquid PIL. The obtained PANI (PANI/PIL) was compared with conventional PANI (PANI/HCl and PANI/HSO4) in terms of [...] Read more.
Polyaniline (PANI) was synthesized using oxidative polymerization in a mixture of water with pyrrolidinium hydrogen sulfate [Pyrr][HSO4], which is a protic ionic liquid PIL. The obtained PANI (PANI/PIL) was compared with conventional PANI (PANI/HCl and PANI/HSO4) in terms of their morphological, structural, and storage properties. The results demonstrate that the addition of this PIL to a polymerization medium leads to a fiber-like morphology, instead of a spherical-like morphology, of PANI/HSO4 or an agglomerated morphology of PANI/HCl. In addition, PAN/PIL exhibits an improvement of the charge transfer kinetic and storage capability in H2SO4 1 mol·L−1, compared to PANI/HCl. The combination of PANI/PIL and graphene oxide (GO), on the other hand, was investigated by optimizing the PANI/GO weight ratio to achieve the nanocomposite material with the best performance. Our results indicate that the PANI/PIL/GO containing 16 wt% of GO material exhibits a high performance and stability (223 F·g−1 at 10 A·g−1 in H2SO4 1 mol·L−1, 4.9 Wh·Kg−1, and 3700 W·Kg−1 @ 10 A·g−1). The obtained results highlight the beneficial role of PIL in building PANI and PANI/GO nanocomposites with excellent performances for supercapacitor applications. Full article
Show Figures

Figure 1

12 pages, 1552 KiB  
Article
Polymeric Composites Based on Carboxymethyl Cellulose Cryogel and Conductive Polymers: Synthesis and Characterization
by Sahin Demirci, S. Duygu Sutekin and Nurettin Sahiner
J. Compos. Sci. 2020, 4(2), 33; https://doi.org/10.3390/jcs4020033 - 29 Mar 2020
Cited by 13 | Viewed by 3907
Abstract
In this study, a super porous polymeric network prepared from a natural polymer, carboxymethyl cellulose (CMC), was used as a scaffold in the preparation of conductive polymers such as poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh). CMC–conductive polymer composites were characterized by Fourier [...] Read more.
In this study, a super porous polymeric network prepared from a natural polymer, carboxymethyl cellulose (CMC), was used as a scaffold in the preparation of conductive polymers such as poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh). CMC–conductive polymer composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) techniques, and conductivity measurements. The highest conductivity was observed as 4.36 × 10−4 ± 4.63 × 10−5 S·cm−1 for CMC–PANi cryogel composite. The changes in conductivity of prepared CMC cryogel and its corresponding PAN, PPy, and PTh composites were tested against HCl and NH3 vapor. The changes in conductivity values of CMC cryogel upon HCl and NH3 vapor treatment were found to increase 1.5- and 2-fold, respectively, whereas CMC–PANi composites showed a 143-fold increase in conductivity upon HCl and a 12-fold decrease in conductivity upon NH3 treatment, suggesting the use of natural polymer–conductive polymer composites as sensor for these gases. Full article
(This article belongs to the Special Issue Recent Advances in Conductive Polymer Composites)
Show Figures

Figure 1

15 pages, 3200 KiB  
Article
Paper Strip and Ceramic Potentiometric Platforms Modified with Nano-Sized Polyaniline (PANi) for Static and Hydrodynamic Monitoring of Chromium in Industrial Samples
by Saad S. M. Hassan, Ayman H. Kamel, Abd El-Galil E. Amr, M. Abdelwahab Fathy and Mohamed A. Al-Omar
Molecules 2020, 25(3), 629; https://doi.org/10.3390/molecules25030629 - 31 Jan 2020
Cited by 25 | Viewed by 3034
Abstract
Screen-printed membrane sensors based on the use of paper and ceramic substrates are fabricated, characterized, and used for rapid batch and continuous monitoring of CrIII in the form of CrO42− in some industrial products and wastewater samples. Strips of paper [...] Read more.
Screen-printed membrane sensors based on the use of paper and ceramic substrates are fabricated, characterized, and used for rapid batch and continuous monitoring of CrIII in the form of CrO42− in some industrial products and wastewater samples. Strips of paper and ceramic platforms (15 × 5 mm) were covered with conductive carbon paint and then modified with polyaniline (PANI) film, to act as an ion-to-electron transducer, followed by a drop casting of plasticized poly (vinyl chloride) (PVC) Rhodamine-B chromate membrane as a recognition sensing material. In a 5.0 mmol L−1 Trizma buffer solution of pH ~8, the fabricated paper and ceramic based membrane sensors exhibited a near Nernstian response for CrVI ion with slopes of −29.7 ± 0.5 and −28.6 ± 0.3 mV decade−1, limit of detection 2.5 × 10−5 and 2.4 × 10−6 mol L−1 (1.3–0.12 µg mL−1), and linear concentration range 7.5 × 10−3–5.0 × 10−5 and 7.5 × 10−3–1.0 × 10−5 mol L−1 (390-0.5 µg mL−1), respectively. Both sensors exhibited fast and stable potentiometric response, excellent reproducibility, and good selectivity with respect to a number of common foreign inorganic species. Impedance spectroscopy and chronopotentiometry data revealed a small resistance and a larger double layer capacitance due to the presence of the intermediate polyaniline (PAN) conductive layer. Furthermore, the formation of a water layer between the ion selective membrane (ISM) and the underlying conductor polymer and between the conducting polymer and the carbon conducting surface was greatly reduced. The developed disposable solid-contact potentiometric sensors offer the advantages of simple design, long term potential stability, flexibility, miniaturization ability, short conditioning time, and cost effectiveness that enable mass production. The sensors were successfully used for static and hydrodynamic measurements of total chromium in some leather tanning wastewater and nickel-chrome alloy samples. The results compare favorably with data obtained by atomic absorption spectrometry. Full article
Show Figures

Graphical abstract

15 pages, 2914 KiB  
Article
One-Pot Synthesis of 2,5-Diformylfuran from Fructose by Bifunctional Polyaniline-Supported Heteropolyacid Hybrid Catalysts
by Shuqing Liu, Xing Fu, Jinhang Dai, Zhongbao Liu, Liangfang Zhu and Changwei Hu
Catalysts 2019, 9(5), 445; https://doi.org/10.3390/catal9050445 - 13 May 2019
Cited by 18 | Viewed by 3231
Abstract
We report the preparation of bifunctional hybrid catalysts by supporting H3PMo12O40 (PMo12) heteropolyacid (HPA) on polyaniline (PAN) or formyl-functionalized PAN (F-PAN) for the “one-pot” and “one-step” synthesis of 2,5-diformylfuran (DFF) from fructose via 5-hydroxymethylfurfural (HMF) intermediate. [...] Read more.
We report the preparation of bifunctional hybrid catalysts by supporting H3PMo12O40 (PMo12) heteropolyacid (HPA) on polyaniline (PAN) or formyl-functionalized PAN (F-PAN) for the “one-pot” and “one-step” synthesis of 2,5-diformylfuran (DFF) from fructose via 5-hydroxymethylfurfural (HMF) intermediate. We show that the PMo12 HPA is the main active species for both fructose dehydration and HMF oxidation owing to its Brønsted acidic and redox characters. However, the anchoring of PMo12 on PAN reduces the Brønsted acidity by acid–base interaction between protons in HPA and quinoid diimine structure in PAN, thereby reducing the dehydration performance. We demonstrate that the catalytic dehydration performance of the hybrid catalyst could be strengthened by grafting formyl groups on PAN before HPA anchoring. The highest DFF yield of 76.7% is obtained by conducting the “one-pot” reaction over the 40-PMo12/F3-PAN catalyst at 413 K for 7 h in air, wherein the side-reactions of fructose or HMF degradation and HMF rehydration have been significantly reduced. This hybrid catalyst is reusable without significant activity loss, highlighting the designing of stable inorganic–organic hybrid catalysts for producing valuable hexose-derived platform chemicals. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

20 pages, 4722 KiB  
Article
The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers
by Iwona Karbownik, Olga Rac-Rumijowska, Marta Fiedot-Toboła, Tomasz Rybicki and Helena Teterycz
Materials 2019, 12(4), 664; https://doi.org/10.3390/ma12040664 - 22 Feb 2019
Cited by 141 | Viewed by 9314
Abstract
The paper presents a method of modifying polyacrylonitrile (PAN) fibers using polyaniline (PANI). The PAN fibers were doped with polyaniline that was obtained in two different ways. The first consisted of doping a spinning solution with polyaniline that was synthesized in an aqueous [...] Read more.
The paper presents a method of modifying polyacrylonitrile (PAN) fibers using polyaniline (PANI). The PAN fibers were doped with polyaniline that was obtained in two different ways. The first consisted of doping a spinning solution with polyaniline that was synthesized in an aqueous solution (PAN/PANI blended), and the second involved the synthesis of polyaniline directly in the spinning solution (PAN/PANI in situ). The obtained fibers were characterized by the methods: X-ray powder diffraction (XRD), scanning electron microscope (SEM), fourier-transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC). Analysis of the results showed strong interactions between the nitrile groups of polyacrylonitrile and polyaniline in the PAN/PANI in situ fibers. The results of mechanical strength tests indicated that the performance of the PAN/PANI mixture significantly improved the mechanical parameters of polyaniline, although these fibers had a weaker strength than the unmodified PAN fibers. The fibers obtained as a result of the addition of PANI to PAN were dielectric, whereas the PANI-synthesized in situ were characterized by a mass-specific resistance of 5.47 kΩg/cm2. Full article
Show Figures

Graphical abstract

Back to TopTop