Influence of the Absolute Pressure of the Extraction System on the Yield and Composition of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson Leaf Essential Oil Extracted by Steam Distillation
Abstract
:1. Introduction
2. Experimental
2.1. Collection and Preparation of Plant Material
2.2. Essential Oil Extraction
2.3. Chromatographic Analysis
2.4. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Determination of Corymbia citriodora (Hook.) Leaf Essential Oil Yield
3.2. Effect of the Absolute Pressure of the System on Essential Oil Yield
3.3. Effect of the Absolute Pressure of the System on Essential Oil Composition
3.4. Effect of the Absolute Pressure of the System on the Extracted Mass of the Major Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A step forward on sustainability in the cosmetics industry: A review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Sahraoui, A.L.-H. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and Their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Simões, C.M.O.; Schenkel, E.P.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Do Produto Natural ao Medicamento; Artmed: Porto Alegre, Brazil, 2016. [Google Scholar]
- Almeida, R.N.; Soares, R.D.P.; Cassel, E. Fractionation process of essential oils by batch distillation. Braz. J. Chem. Eng. 2018, 35, 1129–1140. [Google Scholar] [CrossRef]
- Silvestre, W.; Livinalli, N.; Baldasso, C.; Tessaro, I. Pervaporation in the separation of essential oil components: A review. Trends Food Sci. Technol. 2019, 93, 42–52. [Google Scholar] [CrossRef]
- de Souza, E.L.; Stamford, T.L.M.; Lima, E.d.O.; Filho, J.M.B.; Marques, M.O.M. Interference of heating on the antimicrobial activity and chemical composition of Origanum vulgare L. (Lamiaceae) essential oil. Food Sci. Technol. 2008, 28, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Soares, V.B.; Coelho, G.L.V. Safety study of an experimental apparatus for extraction with supercritical CO2. Braz. J. Chem. Eng. 2012, 29, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Iovine, A.; Molino, A.; Casella, P.; Marino, T.; Chianese, S.; Musmarra, D. Risk Analysis of a Supercritical Fluid Extraction Plant Through the Phast Safeti Software with Extraction Vessel Rupture as Scenario. Chem. Eng. Trans. 2021, 86, 253–258. [Google Scholar] [CrossRef]
- Silvestre, W.; Agostini, F.; Muniz, L.; Pauletti, G. Fractionating of green mandarin (Citrus deliciosa Tenore) essential oil by vacuum fractional distillation. J. Food Eng. 2016, 178, 90–94. [Google Scholar] [CrossRef]
- Smith, J.M.; Van Ness, H.C.; Abbott, M.M. Introdução à Termodinâmica da Engenharia Química; LTC: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Cusin, Y.T.; Silvestre, W.P.; Pauletti, G.F.; Muniz, L.A.R. Extraction of Citrus deliciosa Tenore petitgrain (leaf) essential oil by steam distillation under different operating pressures. Indian Chem. Eng. 2022, 1–11. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, L.; Li, Y.; Wang, Y.; Wang, X.; Wan, N.; Huang, X.; Zhang, X.; Yang, M. A novel application of the vacuum distillation technology in extracting Origanum vulgare L. essential oils. Ind. Crops Prod. 2019, 139, 111516. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, S.; Luo, J.; Liu, X.; Lu, W.; Wang, C.; Arnold, R.J. Landrace origins and phenotypic diversity through seedling morphology in Corymbia citriodora subsp. citriodora. Aust. For. 2017, 80, 43–56. [Google Scholar] [CrossRef]
- Silou, T.; Loumouamou, A.N.; Loukakou, E.; Chalchat, J.-C.; Figuérédo, G. Intra and Interspecific Variations of Yield and Chemical Composition of Essential Oils From Five Eucalyptus Species Growing in the Congo-Brazzaville. Corymbia Subgenus. J. Essent. Oil Res. 2009, 21, 203–211. [Google Scholar] [CrossRef]
- Tolba, H.; Moghrani, H.; Benelmouffok, A.; Kellou, D.; Maachi, R. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity. J. Med. Mycol. 2015, 25, e128–e133. [Google Scholar] [CrossRef]
- Ayinde, B.A. Eucalyptus (Eucalyptus citriodora Hook., Myrtaceae) oils. In Essential Oils in Food Preservation, Flavor, and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2016; pp. 413–418. [Google Scholar]
- Miguel, M.G.; Gago, C.; Antunes, M.D.; Lagoas, S.; Faleiro, M.L.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Figueiredo, A.C. Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species. Medicines 2018, 5, 61. [Google Scholar] [CrossRef] [Green Version]
- Benchaa, S.; Hazzit, M.; Abdelkrim, H. Allelopathic Effect of Eucalyptus citriodora Essential Oil and Its Potential Use as Bioherbicide. Chem. Biodivers. 2018, 15, e1800202. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Estrela. 2021. Available online: https://cidades.ibge.gov.br/brasil/rs/estrela/historico (accessed on 3 April 2022).
- Silvestre, W.P.; Medeiros, F.R.; Agostini, F.; Toss, D.; Pauletti, G.F. Fractionation of rosemary (Rosmarinus officinalis L.) essential oil using vacuum fractional distillation. J. Food Sci. Technol. 2019, 56, 5422–5434. [Google Scholar] [CrossRef] [PubMed]
- Vicenço, C.B.; Silvestre, W.P.; Da Silva, V.T.; Menegol, I.V.; Hahn, R.C.; Lima, T.S.; Agostini, F.; Pauletti, G.F. Bioactivity of Schinus molle L. and Schinus terebinthifolia Raddi. Essential Oils on Anticarsia gemmatalis (Hübner 1818). Braz. Arch. Biol. Technol. 2020, 63, e20200111. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Waco, TX, USA, 2017. [Google Scholar]
- Rebelo, R.A.; Tizziani, T.; Begnini, I.M.; Crestani, I.; Dognini, J.; de Gasper, A.L.; de Cordova, C.M.M.; dos Santos, L.; Hochheim, S.; Baldovini, N. Essential oils from leaves of Vernonanthura montevidensis (Spreng.) H. Rob.: Chemical profile and antimollicute potential. Nat. Prod. Res. 2020, 36, 2393–2398. [Google Scholar] [CrossRef]
- Pauletti, G.F.; Silvestre, W.P.; Rota, L.D.; Echeverrigaray, S.; De Barros, I.B.I. Poejo (Cunila galioides Benth.) Production in Five Agroecological Regions of Rio Grande do Sul. Braz. Arch. Biol. Technol. 2020, 63, e20190481. [Google Scholar] [CrossRef]
- Pansera, M.R.; Silvestre, W.P.; Gonzatti, F.; Pauletti, G.F.; Sartori, V.C. Chemical composition and antifungal activity of the essential oils from native species of the ‘Campos de Cima da Serra’ region, South Brazil. J. Essent. Oil Res. 2021, 33, 488–501. [Google Scholar] [CrossRef]
- Pino, J.A.; Quert, R.; Hernández, I.; Rodeiro, I.; Fernández, M.D.; Cuellar, C.; Pérez, J.C. Chemical composition and antioxidant activity of the essential oil from leaves of Corymbia citriodora Hook grown in western Cuba. Am. J. Essent. Oils Nat. Prod. 2020, 8, 18–22. [Google Scholar]
- Ka, M.-H.; Choi, E.H.; Chun, H.-S.; Lee, K.-G. Antioxidative Activity of Volatile Extracts Isolated from Angelica tenuissimae Roots, Peppermint Leaves, Pine Needles, and Sweet Flag Leaves. J. Agric. Food Chem. 2005, 53, 4124–4129. [Google Scholar] [CrossRef]
- Tumen, I.; Hafizoglu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and Constituents of Essential Oil from Cones of Pinaceae spp. Natively Grown in Turkey. Molecules 2010, 15, 5806. [Google Scholar] [CrossRef] [Green Version]
- Soltanbeigi, A.; Özgüven, M.; Hassanpouraghdam, M.B. Planting-date and cutting-time affect the growth and essential oil composition of Mentha × piperita and Mentha arvensis. Ind. Crops Prod. 2021, 170, 113790. [Google Scholar] [CrossRef]
- Yadegarinia, D.; Gachkar, L.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 2006, 67, 1249–1255. [Google Scholar] [CrossRef]
- Kim, N.S.; Lee, D.S. Comparison of different extraction methods for the analysis of fragrances from Lavandula species by gas chromatography-mass spectrometry. J. Chromatogr. A 2002, 982, 31–47. [Google Scholar] [CrossRef]
- Tamura, H.; Nakamoto, H.; Yang, R.-H.; Sugisawa, H. Characteristic Aroma Compounds in Green Algae (Ulva pertusa) Volatiles. J. Jpn. Soc. Food Sci. Technol. 1995, 42, 887–891. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.M. Extractions with superheated water. J. Chromatogr. A 2002, 975, 31–46. [Google Scholar] [CrossRef]
- Kubota, K.; Someya, S.; Kurobayashi, Y.; Kobayashi, A. Flavor characteristics and stereochemistry of the volatile constituents of greater galangal (Alpinia galanga Willd.). In Flavor Chemistry of Ethnic Foods; Shahidi, F., Ho, C.T., Eds.; Springer Science + Business Media: New York, NY, USA, 1999; pp. 97–104. [Google Scholar]
- Cavalcanti, A.D.S.; Alves, M.D.S.; da Silva, L.C.P.; Patrocínio, D.D.S.; Sanches, M.N.; Chaves, D.S.D.A.; de Souza, M.A.A. Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit. Braz. J. Pharmacogn. 2015, 25, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Song, C.; Shi, H.; Xing, Y.; Song, X.; Liang, G. Parameter Effects and Kinetics of Ultrasound Assisted Ionic Liquid Mediated Hydro-distillation and Essential Oil Composition of Flowers of Paeonia suffruticosa Andr‘Jitsugetsu Nishiki’ from Central China. J. Essent. Oil Bear. Plants 2019, 22, 762–773. [Google Scholar] [CrossRef]
Absolute Pressure (Torr) | Steam Temperature (°C) | Average Essential Oil Yield (% v/w) |
---|---|---|
690 | 97.3 | 6.53 ± 0.24 a |
540 | 90.7 | 5.40 ± 0.20 b |
390 | 82.3 | 3.53 ± 0.31 c |
240 | 70.5 | 1.40 ± 0.20 d |
F-value | 264.40 | |
p-value | <0.0001 | |
Coefficient of variation (%) | 7.33 |
Compound | Lit. LRI 1 | Calc. LRI 2 | Chemical Class | Absolute Pressure of the System (Torr) | |||
---|---|---|---|---|---|---|---|
690 | 540 | 390 | 240 | ||||
Content (wt.%) | |||||||
β-pinene | 974 | 970 | Monoterpene | 0.09 a | 0.12 a | 0.00 a | 0.00 a |
Eucalyptol | 1026 | 1028 | Oxygenated monoterpene | 0.13 a | 0.32 a | 0.03 a | 0.07 a |
Isopulegol | 1145 | 1140 | Oxygenated monoterpene | 0.09 a | 0.22 a | 0.30 a | 0.23 a |
Citronellal | 1148 | 1250 | Oxygenated monoterpene | 91.51 b | 92.63 a | 92.57 a | 92.20 ab |
Citronellol | 1223 | 1223 | Oxygenated monoterpene | 4.89 c | 5.21 c | 5.81 b | 6.55 a |
PMD 3 | 1301 * | 1304 | Oxygenated monoterpene | 0.42 a | 0.20 ab | 0.10 b | 0.06 b |
(E)-Caryophyllene | 1408 | 1405 | Sesquiterpene | 0.70 a | 0.41 b | 0.30 c | 0.27 c |
Total identified | 97.84 | 99.11 | 99.11 | 99.37 | |||
Not identified | 2.16 | 0.89 | 0.89 | 0.63 |
Compound | Absolute Pressure of the System (Torr) | |||
---|---|---|---|---|
690 | 540 | 390 | 240 | |
Mass of Compound Extracted (mg) | ||||
Citronellal | 2554 a | 2137 b | 1400 c | 552 d |
Citronellol | 137 a | 120 b | 88 c | 39 d |
(E)-caryophyllene | 21 a | 10 b | 5 c | 2 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araujo, J.; Silvestre, W.P.; Pauletti, G.F.; Muniz, L.A.R. Influence of the Absolute Pressure of the Extraction System on the Yield and Composition of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson Leaf Essential Oil Extracted by Steam Distillation. ChemEngineering 2023, 7, 67. https://doi.org/10.3390/chemengineering7040067
de Araujo J, Silvestre WP, Pauletti GF, Muniz LAR. Influence of the Absolute Pressure of the Extraction System on the Yield and Composition of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson Leaf Essential Oil Extracted by Steam Distillation. ChemEngineering. 2023; 7(4):67. https://doi.org/10.3390/chemengineering7040067
Chicago/Turabian Stylede Araujo, Juliana, Wendel Paulo Silvestre, Gabriel Fernandes Pauletti, and Luis Antonio Rezende Muniz. 2023. "Influence of the Absolute Pressure of the Extraction System on the Yield and Composition of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson Leaf Essential Oil Extracted by Steam Distillation" ChemEngineering 7, no. 4: 67. https://doi.org/10.3390/chemengineering7040067
APA Stylede Araujo, J., Silvestre, W. P., Pauletti, G. F., & Muniz, L. A. R. (2023). Influence of the Absolute Pressure of the Extraction System on the Yield and Composition of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson Leaf Essential Oil Extracted by Steam Distillation. ChemEngineering, 7(4), 67. https://doi.org/10.3390/chemengineering7040067