Functional Nanostructured Materials in the Cosmetics Industry: A Review
Abstract
:1. Introduction
1.1. Significance of Nanomaterials
1.2. Worldwide Scenario of Cosmetics Production
1.3. Market Analysis of Nano-Cosmetic Pigments on the Basis of Type, Application, and Geography
2. Synthesis of Nanostructured Materials
2.1. Phytogenic and Microbial Biosynthesis of Metallic Nanoparticles
2.2. Chemical and Physical Methods of Synthesis
3. Organic Nanostructured Materials in Cosmetics Industry
3.1. Liposomes
3.2. Nano-Emulsions
3.3. Niosomes
3.4. Nanocapsules
3.5. Solid Lipid Nanostructured Particles (SLN)
3.6. Cubosomes
3.7. Dendrimers
4. Inorganic Nanostructured Materials in Cosmetics Industries
4.1. Nanostructured Particles of Silver and Gold
4.2. Silica Nanostructured Particles
4.3. Titanium Oxide and Zinc Oxide Nanostructured Particles
5. Major Cosmetic Products Containing NPs
5.1. Skin Care
5.2. Lip Care
5.3. Nail Care
5.4. Hair Care
6. Toxicity Factors in Cosmetic Products
7. Health and Environmental Aspects
7.1. Toxicity of Inorganic Nanoparticles on Skin
7.1.1. Copper Oxide Nanoparticles (CuO-NP)
7.1.2. Iron Oxide Nanoparticles (FeO-NP)
7.1.3. Zinc Oxide Nanoparticles (ZnO-NP)
7.1.4. Silver Nanoparticles (Ag-NP)
7.1.5. Titanium Dioxide Nanoparticles (TiO2-NP)
7.1.6. Silica Nanoparticles (Si-NP)
7.1.7. Gold Nanoparticles (Au-NP)
7.1.8. Aluminum Oxide Nanoparticles (Al2O3-NP)
7.2. Toxicity of Organic Nanostructured Materials Carrier on the Skin
7.2.1. Nano-emulsion
7.2.2. Solid Lipid Nanoparticles
7.2.3. Liposome
7.2.4. Nanocapsule
7.2.5. Nanosponge
7.2.6. Dendrimer
7.2.7. Cubosome
7.2.8. Niosome
8. Regulatory Affairs Involved for Safety Concerns
- If a substance or finished product is designed to have at least one intrinsic or surface structure, or at least one exterior dimension, in the nanoscale range (about 1–100 nm) [225].
- Whether a material or finished product has been designed to display characteristics or phenomena, such as physical or chemical characteristics or biological consequences, which are due to its parameters, even if those dimensions are beyond the nanoscale range up to 1000 nm [225].
9. Future Perspective and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barik, T.K.; Maity, G.C.; Gupta, P.; Mohan, L.; Santra, T.S. Nanomaterials: An Introduction. Nanomater. Their Biomed. Appl. 2021, 16, 1–27. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, C. Emerging trends of nanotechnology in beauty solutions: A review. Mater. Today Proc. 2021, 81, 1052–1059. [Google Scholar] [CrossRef]
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. J. Pharm. 2018, 2018, 3420204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhapte-Pawar, V.; Kadam, S.; Saptarsi, S.; Kenjale, P.P. Nanocosmeceuticals: Facets and aspects. Futur. Sci. OA 2020, 6, FSO613. [Google Scholar] [CrossRef]
- Manikanika; Kumar, J.; Jaswal, S. Role of nanotechnology in the world of cosmetology: A review. Mater. Today Proc. 2021, 45, 3302–3306. [Google Scholar] [CrossRef]
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in Cosmetics: Recent Updates. Nanomaterials 2020, 10, 979. [Google Scholar] [CrossRef]
- Nath, R.; Chakraborty, R.; Roy, R. Nanotechnology Based Cosmeceut icals. Int. J. Sci. Res. Sci. Technol. 2021, 8, 94–106. [Google Scholar]
- Shende, P.; Patel, D.; Takke, A. Nanomaterial-based cosmeceuticals. In Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 775–791. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.C.; Morais, F.; Simões, A.; Pereira, I.; Sequeira, J.A.D.; Pereira-Silva, M.; Veiga, F.; Ribeiro, A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 2019, 16, 313–330. [Google Scholar] [CrossRef]
- Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-Based Cosmeceuticals. Int. Sch. Res. Not. 2014, 2014, 843687. [Google Scholar] [CrossRef]
- Hameed, A.; Fatima, G.R.; Malik, K.; Muqadas, A. Scope of Nanotechnology in Cosmetics: Dermatology and Skin Care Products. J. Med. Chem. Sci. 2019, 2019, 9–16. [Google Scholar]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekpa Effiong, D.; Uwah, T.O.; Udofa Jumbo, E.; Akpabio, A.E. Nanotechnology in Cosmetics: Basics, Current Trends and Safety Concerns—A Review. Adv. Nanopart. 2020, 9, 1–22. [Google Scholar]
- Singh, T.G.; Sharma, N. Nanobiomaterials in cosmetics: Current status and future prospects. In Nanobiomaterials in Galenic Formulations and Cosmetics: Applications of Nanobiomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 149–174. [Google Scholar]
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef]
- Yadav, A.R.; Mohite, S.K. Applications of nanotechnology in cosmeceuticals. Res. J. Top. Cosmet. Sci. 2020, 11, 83–88. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Mohd-Nasir, H.; Ahmad, A.; Setapar, S.H.M.; Peng, W.L.; Chuo, S.C.; Khatoon, A.; Umar, K.; Yaqoob, A.A.; Ibrahim, M.N.M. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front. Chem. 2019, 7, 1–15. [Google Scholar] [CrossRef]
- Zhang, L. Applications, challenges and development of nanomaterials and nanotechnology. J. Chem. Soc. Pak. 2020, 42, 658–666. [Google Scholar]
- Yadwade, R.; Gharpure, S.; Ankamwar, B. Nanotechnology in cosmetics pros and cons. Nano Express 2021, 2, 022003. [Google Scholar] [CrossRef]
- Abu Hajleh, M.N.; Abu-Huwaij, R.; Al-Samydai, A.; Al-Halaseh, L.K.; Al-Dujaili, E.A. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects. J. Cosmet. Dermatol. 2021, 20, 3818–3828. [Google Scholar] [CrossRef]
- Ferraris, C.; Rimicci, C.; Garelli, S.; Ugazio, E.; Battaglia, L. Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021, 13, 1408. [Google Scholar] [CrossRef]
- Beauty and Personal Care Products Market—Growth, Trends, and Forecasts (2023–2028). Available online: https://www.mordorintelligence.com/industry-reports/global-beauty-and-personal-care-products-market-industry (accessed on 8 March 2023).
- Global Beauty Products Market and Luxury Beauty Market 2022—Product Demand, Worldwide Consumption, Top Brands, Competition, Growth Rates, Investments, Production, Supply Chain and Future Stats Projection 2028. Available online: https://www.globenewswire.com/en/news-release/2022/02/21/2388521/0/en/Global-Beauty-Products-Market-and-Luxury-Beauty-Market-2022-Product-Demand-Worldwide-Consumption-Top-Brands-Competition-Growth-Rates-Investments-Production-Supply-Chain-and-Future-.html (accessed on 11 March 2023).
- Demir, N. Nanotechnology in cosmetics: Opportunities and challenges. NanoEra 2021, 1, 19–23. [Google Scholar]
- Cosmeceuticals Market (By Product: Skin Care, Hair Care, Injectable, Others; By Packaging Material: Glass, Plastic, Metal, Others; By Ingredient: Anti-Oxidants, Sunscreens, Botanicals, Peptides & Proteins, Exfoliants, Moisturizers, Retinoids; By Distribution Channel: Online Platforms, Supermarkets and Specialty Stores)—Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2022–2030. Available online: https://www.precedenceresearch.com/cosmeceuticals-market (accessed on 11 March 2023).
- Cosmetic Pigments Market (By Elemental Composition: Inorganic Pigments, Organic Pigments; By Application: Facial Makeup, Eye Makeup, Lip Products, Nail Products, Hair Color Products, Special effect & Special Purpose Products, Others; By Type: Special Effect Pigments, Surface Treated Pigments, Nano Pigments, Natural Colorants)—Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2022–2030. Available online: https://www.precedenceresearch.com/cosmetic-pigments-market (accessed on 11 March 2023).
- Nanomaterials Market (By Product: Carbon Nanotubes, Titanium Nanoparticles, Silver Nanoparticles, Aluminum Oxide Nanomaterials, Gold (Au), Iron (Fe), Copper (Cu), Platinum (Pt), Nickel (Ni), Antimony Tin Oxide, Bismuth Oxide, Others; By Application: Aeros. Available online: https://www.precedenceresearch.com/nanomaterials-market (accessed on 8 March 2023).
- Global Nano Cosmetic Pigments Market by Types (Titanium Dioxide, Zinc Oxide, Carbon Black, Iron Oxide, and Others), Applications (Facial Make-up, Lip Products, Eye Make-Up, Nail Products, Hair Color Products, Special Effect & Special Purpose Products, and Others), Distribution Channels (Online, Supermarkets/Hypermarkets, Specialty Stores, and Others), Age Groups (Teens, Adults, and Seniors), and Regions (Asia Pacific, Europe, North America, Middle East & Africa, and Latin America)—Global Industry Analysis, Growth, Share, Size, Trends, Opportunities, and Forecast From 2023 To 2031. Available online: https://dataintelo.com/report/nano-cosmetic-pigments-market/ (accessed on 11 March 2023).
- Inorganic Cosmetic Pigments Market: Information by Type, Application and Region-Forcast Till 2030. Available online: https://www.marketresearchfuture.com/reports/inorganic-cosmetics-pigments-market-10531 (accessed on 8 March 2023).
- Global Cosmetic Pigments Market Size By Elemental Composition (Organic [Lakes, True Pigments, Toner], Inorganic [Zinc Oxide, Others], By Product [Surface Treated Pigments, Natural Colorants, Nano Pigments, Special Effect Pigments], By Application Facial Make-Up [Foundation, Blusher], Eye Makeup, Lip care, Hair Care Products, Nail Care, Others [Soaps, Toothpaste] Industry Analysis Report, Country Outlook Application Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026. Available online: https://www.gminsights.com/industry-analysis/cosmetic-pigments-market (accessed on 11 March 2023).
- Cosmetics Market (By Category: Skin & sun care products, Hair care products, Deodorants & fragrances, Makeup & color cosmetics; By Gender: Men, Women, Unisex; By Distribution Channel: Hypermarkets/Supermarkets, Specialty Stores, Pharmacies, Online sales channels, Other)—Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2021–2030. Available online: https://www.precedenceresearch.com/cosmetics-market (accessed on 10 March 2023).
- Vaseghi, Z.; Nematollahzadeh, A.; Tavakoli, O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review. Rev. Chem. Eng. 2018, 34, 529–559. [Google Scholar] [CrossRef]
- Sidhu, A.K.; Verma, N.; Kaushal, P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front. Nanotechnol. 2022, 3, 801620. [Google Scholar] [CrossRef]
- Ghosh, S.; Ahmad, R.; Banerjee, K.; AlAjmi, M.F.; Rahman, S. Mechanistic Aspects of Microbe-Mediated Nanoparticle Synthesis. Front. Microbiol. 2021, 12, 638068. [Google Scholar] [CrossRef]
- Ghosh, S.; Ahmad, R.; Zeyaullah; Khare, S.K. Microbial Nano-Factories: Synthesis and Biomedical Applications. Front. Chem. 2021, 9, 626834. [Google Scholar] [CrossRef]
- Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019, 9, 12944–12967. [Google Scholar] [CrossRef]
- Khandel, P.; Shahi, S.K. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J. Nanostruct. Chem. 2018, 8, 369–391. [Google Scholar] [CrossRef] [Green Version]
- Karthik, L.; Kumar, G.; Kirthi, A.V.; Rahuman, A.A.; Rao, K.V.B. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst. Eng. 2014, 37, 261–267. [Google Scholar] [CrossRef]
- Eugenio, M.; Müller, N.; Frases, S.; Almeida-Paes, R.; Lima, L.M.T.; Lemgruber, L.; Farina, M.; de Souza, W.; Sant’Anna, C. Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. Univ. Glas. 2016, 6, 13–52. [Google Scholar] [CrossRef] [Green Version]
- Gade, A.; Ingle, A.; Whiteley, C.; Rai, M. Mycogenic metal nanoparticles: Progress and applications. Biotechnol. Lett. 2010, 32, 593–600. [Google Scholar] [CrossRef]
- Owaid, M.N.; Ibraheem, I.J. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur. J. Nanomed. 2017, 9, 5–23. [Google Scholar] [CrossRef]
- Shu, M.; He, F.; Li, Z.; Zhu, X.; Ma, Y.; Zhou, Z.; Yang, Z.; Gao, F.; Zeng, M. Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents. Nanoscale Res. Lett. 2020, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods 2019, 163, 105656. [Google Scholar] [CrossRef] [PubMed]
- Kargozar, S.; Mozafari, M. Nanotechnology and Nanomedicine: Start small, think big. Mater. Today Proc. 2018, 5, 15492–15500. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Zaini, M.A.A. Nanomaterials in detergents and cosmetics products: The mechanisms and implications. In Handbook of Nanomaterials for Manufacturing Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 23–49. [Google Scholar] [CrossRef]
- Naz, M.Y.; Shukrullah, S.; Ghaffar, A.; Ali, K.; Sharma, S.K. Synthesis and Processing of Nanomaterials. In Handbook of Materials Structures, Properties, Processing and Performance; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–17. [Google Scholar]
- Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 270974. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019, 12, 3576–3600. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003, 28, 313–318. [Google Scholar] [CrossRef]
- Singaravelu, G.; Arockiamary, J.; Kumar, V.G.; Govindaraju, K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces 2007, 57, 97–101. [Google Scholar] [CrossRef]
- Mulens, V.; del Puerto Morales, M.; Barber, D.F. Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ISRN Nanomater. 2013, 2013, 646284. [Google Scholar] [CrossRef] [Green Version]
- Sriondee, M.; Dungsuwan, W.; Thountom, S. Synthesis and characterization of Bi0.5 (Na1−xKx)0.5 TiO3 powders by sol–gel combustion method with glycine fuel. Ceram. Int. 2018, 44, S168–S171. [Google Scholar] [CrossRef]
- Yu, S.; Jing, W.; Tang, M.; Xu, T.; Yin, W.; Kang, B. Fabrication of Nd:YAG transparent ceramics using powders synthesized by citrate sol-gel method. J. Alloys Compd. 2019, 772, 751–759. [Google Scholar] [CrossRef]
- Hao, S.; Lin, T.; Ning, S.; Qi, Y.; Deng, Z.; Wang, Y. Research on cracking of SiO2 nanofilms prepared by the sol-gel method. Mater. Sci. Semicond. Process. 2018, 91, 181–187. [Google Scholar] [CrossRef]
- Xu, H.; Xin, L.; Liu, L.; Pang, D.; Jiao, Y.; Cong, R.; Yu, W. Large area MoS2/Si heterojunction-based solar cell through sol-gel method. Mater. Lett. 2019, 238, 13–16. [Google Scholar] [CrossRef]
- Manawi, Y.M.; Ihsanullah, S.A.; Al-Ansari, T.; Atieh, M.A. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 2018, 11, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleckley, S.; Wang, H.; Oladeji, I.; Chow, L.; Daly, T.K.; Buseck, P.R.; Solouki, T.; Marshall, A. Fullerenes and Polymers Produced by the Chemical Vapor Deposition Method; ACS Publications: Washington, DC, USA, 1998. [Google Scholar]
- Zhang, Z.; Wang, L.; Xu, X.; Dong, Y.; Zhang, L. Development of a validated HPLC method for the determination of tenofovir disoproxil fumarate using a green enrichment process. Anal. Methods 2015, 7, 6290–6298. [Google Scholar] [CrossRef]
- Wongpratat, U.; Maensiri, S.; Swatsitang, E. EXAFS study of cations distribution dependence of magnetic properties in Co1−xZnxFe2O4 nanoparticles prepared by hydrothermal method. Microelectron. Eng. 2015, 146, 68–75. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Xu, T.; Nie, Y.; Li, H.; Zhang, C. Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method. J. Magn. Magn. Mater. 2017, 439, 228–235. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Viswanath, I.K.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Qiu, W.; Feng, X.; Zhang, H.; Huang, H. Synthesis and luminescence properties of CaB4O7:Eu3+ via two-step hydrothermal method. Optik 2019, 182, 1039–1045. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.-M.; Niu, H.-L.; Mao, C.-J.; Zhang, S.-Y.; Shen, Y.-H. ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone. Sens. Actuators B Chem. 2015, 221, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, R.; Maleki, A.; Maleki, S.; Morsali, A.; Rahimi, M.J. Synthesis and characterization of magnetic dichromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles (Fe3O4@SiO2@PPh3@Cr2O72−). Solid State Sci. 2014, 28, 9–13. [Google Scholar] [CrossRef]
- Amiri, S.; Shokrollahi, H. Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 2013, 345, 18–23. [Google Scholar] [CrossRef]
- Azizi, M.; Maleki, A.; Hakimpoor, F.; Firouzi-Haji, R.; Ghassemi, M.; Rahimi, J. Green Approach for Highly Efficient Synthesis of Polyhydroquinolines Using Fe3O4@PEO-SO3H as a Novel and Recoverable Magnetic Nanocomposite Catalyst. Lett. Org. Chem. 2018, 15, 753–759. [Google Scholar] [CrossRef]
- Xing, Y.; Jin, Y.-Y.; Si, J.-C.; Peng, M.-L.; Wang, X.-F.; Chen, C.; Cui, Y.-L. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles. J. Magn. Magn. Mater. 2015, 380, 150–156. [Google Scholar] [CrossRef]
- Mittapally, S.; Aziz, A.; Student, A.; Afnan, A.A. A review on nanotechnology in cosmetics. Pharma Innov. Int. J. 2019, 8, 668–671. [Google Scholar]
- Drbohlavova, J.; Hrdy, R.; Adam, V.; Kizek, R.; Schneeweiss, O.; Hubalek, J. Preparation and Properties of Various Magnetic Nanoparticles. Sensors 2009, 9, 2352–2362. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Koop-Santa, C.; López-Mena, E.R.; Orozco-Guareño, E.; García-Guaderrama, M. N-doped TiO2 nanoparticles obtained by a facile coprecipitation method at low temperature. Ceram. Int. 2018, 44, 5273–5283. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, J.; Li, W.; Guo, H.; You, B. Fabrication of cobalt aluminate nanopigments by coprecipitation method in threonine waterborne solution. Dyes Pigments 2018, 151, 130–139. [Google Scholar] [CrossRef]
- El Ghandoor, H.; Zidan, H.M.; Khalil, M.M.H.; Ismail, M.I.M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 2012, 7, 5734–5745. [Google Scholar] [CrossRef]
- Cao, D.; Wang, X.; Pan, L.; Li, H.; Jing, P.; Wang, J.; Liu, Q. Nonmetal sulfur-doped coral-like cobalt ferrite nanoparticles with enhanced magnetic properties. J. Mater. Chem. C 2016, 4, 951–957. [Google Scholar] [CrossRef]
- Dong, H.; Du, S.-R.; Zheng, X.-Y.; Lyu, G.-M.; Sun, L.-D.; Li, L.-D.; Zhang, P.-Z.; Zhang, C.; Yan, C.-H. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem. Rev. 2015, 115, 10725–10815. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Deng, F.; Xu, M.; Wang, J.; Wei, Z.; Wang, Y. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B Chem. 2018, 273, 498–504. [Google Scholar] [CrossRef]
- Mansoureh, G.; Parisa, V. Synthesis of metal nanoparticles using laser ablation technique. In Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 575–596. [Google Scholar]
- Kurland, H.-D.; Grabow, J.; Staupendahl, G.; Andrä, W.; Dutz, S.; Bellemann, M.E. Magnetic iron oxide nanopowders produced by CO2 laser evaporation. J. Magn. Magn. Mater. 2007, 311, 73–77. [Google Scholar] [CrossRef]
- Kurland, H.-D.; Grabow, J.; Staupendahl, G.; Müller, F.A.; Müller, E.; Dutz, S.; Bellemann, M.E. Magnetic iron oxide nanopowders produced by CO2 laser evaporation—‘In situ’ coating and particle embedding in a ceramic matrix. J. Magn. Magn. Mater. 2009, 321, 1381–1385. [Google Scholar] [CrossRef]
- Stötzel, C.; Kurland, H.-D.; Grabow, J.; Dutz, S.; Müller, E.; Sierka, M.; Müller, F.A. Control of the crystal phase composition of FexOy Nanopowders Prepared by CO2 laser vaporization. Cryst. Growth Des. 2013, 13, 4868–4876. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Nagaich, U. Nanocosmeceuticals: A boon to personal care products. J. Adv. Pharm. Technol. Res. 2016, 7, 1. [Google Scholar] [CrossRef]
- Tiwari, S.; Talreja, M.S. A concept of nanotechnology in cosmetics: A complete overview. Adalya J. 2020, 9, 14–23. [Google Scholar]
- Abbasi, B.H.; Fazal, H.; Ahmad, N.; Ali, M.; Giglioli-Guivarch, N.; Hano, C. Nanomaterials for cosmeceuticals: Nanomaterials-induced advancement in cosmetics, challenges, and opportunities. In Nanocosmetics; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 79–108. [Google Scholar] [CrossRef]
- Souto, E.B.; Fernandes, A.R.; Martins-Gomes, C.; Coutinho, T.E.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. Appl. Sci. 2020, 10, 1594. [Google Scholar] [CrossRef] [Green Version]
- Milam, E.C.; A Rieder, E. An Approach to Cosmeceuticals. J. Drugs Dermatol. 2016, 15, 452–456. [Google Scholar]
- Milam, E.C.; Rieder, E.A. An approach to cosmeceuticals. In Essential Psychiatry for the Aesthetic Practitioner; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 42–48. [Google Scholar] [CrossRef]
- Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Kouhbanani, M.A.J.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886. [Google Scholar] [CrossRef] [PubMed]
- Nikam, N.R.; Patil, P.R.; Vakhariya, R.R.; Magdum, C.S. Liposomes: A Novel Drug Delivery System: An Overview. Asian J. Pharm. Res. 2020, 10, 23–28. [Google Scholar] [CrossRef]
- Faria-Silva, A.C.; Costa, A.M.; Ascenso, A.; Ribeiro, H.M.; Marto, J.; Gonçalves, L.M.; Carvalheiro, M.; Simões, S. Nanoemulsions for cosmetic products. Nanocosmetics 2020, 59–77. [Google Scholar] [CrossRef]
- Sonneville-Aubrun, O.; Yukuyama, M.N.; Pizzino, A. Application of Nanoemulsions in Cosmetics. In Nanoemulsions: Formulation, Applications, and Characterization; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 435–475. [Google Scholar] [CrossRef]
- Pandey, V.; Shukla, R.; Garg, A.; Kori, M.L.; Rai, G. Nanoemulsion in cosmetic: From laboratory to market. In Nanocosmetics; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 201, pp. 327–347. [Google Scholar] [CrossRef]
- Marzuki, N.H.C.; Wahab, R.A.; Hamid, M.A. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol. Biotechnol. Equip. 2019, 33, 779–797. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, Y.; Bolzinger, M.-A. Micelles and Nanoemulsions. In Nanocosmetics; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 47–72. [Google Scholar] [CrossRef]
- Khan, R.; Irchhaiya, R. Niosomes: A potential tool for novel drug delivery. J. Pharm. Investig. 2016, 46, 195–204. [Google Scholar] [CrossRef]
- Mehrarya, M.; Gharehchelou, B.; Poodeh, S.H.; Jamshidifar, E.; Karimifard, S.; Far, B.F.; Akbarzadeh, I.; Seifalian, A. Niosomal formulation for antibacterial applications. J. Drug Target. 2022, 30, 476–493. [Google Scholar] [CrossRef]
- Suttee, A.; Mishra, V.; Nayak, P.; Singh, M.; Sriram, P. Niosomes: Potential Nanocarriers for Drug Delivery. Int. J. Pharm. Qual. Assur. 2020, 11, 389–394. [Google Scholar] [CrossRef]
- Kaur, D.; Kumar, S. Niosomes: Present Scenario and Future Aspects. J. Drug Deliv. Ther. 2018, 8, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Aparajay, P.; Dev, A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur. J. Pharm. Sci. 2022, 168, 106052. [Google Scholar] [CrossRef]
- Pandey, P.; Purohit, D.; Jalwal, P.; Manchanda, D.; Saini, S.; Verma, R.; Kaushik, D.; Mittal, V.; Kumar, M.; Bhattacharya, T.; et al. Nanocapsules: An Emerging Drug Delivery System. Recent Patents Nanotechnol. 2022. [Google Scholar] [CrossRef]
- Chawla, S.; Thakkar, D.; Rai, P. Utilization of Consumer Nanoproducts for Cosmetics and Their Impacts. In Handbook of Consumer Nanoproducts; Springer: Singapore, 2021; pp. 1–23. [Google Scholar] [CrossRef]
- Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J.-M.; Müller, R.; Bégu, S. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin. Int. J. Pharm. 2018, 542, 176–185. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Ni, X.; Liu, D.; Zhang, Y.; Cao, Y. Preparation and evaluation of polymer-encapsulated UV filter nanocapsules with miniemulsion polymerization. J. Dispers. Sci. Technol. 2021, 42, 1593–1600. [Google Scholar] [CrossRef]
- Mohd-Setapar, S.H.; John, C.P.; Mohd-Nasir, H.; Azim, M.M.; Ahmad, A.; Alshammari, M.B. Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics. Cosmetics 2022, 9, 110. [Google Scholar] [CrossRef]
- Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Das, K.B.; Sahu, M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020, 30, 179–194. [Google Scholar] [CrossRef]
- Ahmad, J. Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders. Cosmetics 2021, 8, 84. [Google Scholar] [CrossRef]
- Formulation, N.F. Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation. Cosmetics 2020, 7, 14. [Google Scholar]
- Jose, J.; Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol. 2019, 18, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Sadhu, V.R.; Beram, N.S.; Kantamneni, P. A review on cubosome: The novel drug delivery system. GSC Biol. Pharm. Sci. 2018, 5, 076–081. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, K.; Sharma, D. Cubosomes: A Potential Drug Delivery System. Asian J. Pharm. Res. Dev. 2021, 9, 93–101. [Google Scholar] [CrossRef]
- Kaur, S.D.; Singh, G.; Singh, G.; Singhal, K.; Kant, S.; Bedi, N. Cubosomes as Potential Nanocarrier for Drug Delivery: A Comprehensive Review. J. Pharm. Res. Int. 2021, 33, 118–135. [Google Scholar] [CrossRef]
- Gaballa, S.; El Garhy, O.; Abdelkader, H. Cubosomes: Composition, preparation, and drug delivery applications. J. Adv. Biomed. Pharm. Sci. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Dhadwal, A.; Sharma, D.R.; Pandit, V.; Ashawat, M.S.; Kumar, P. Cubosomes: A Novel Carrier for Transdermal Drug Delivery. J. Drug Deliv. Ther. 2020, 10, 123–130. [Google Scholar] [CrossRef]
- Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm. 2018, 548, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Kraeling, M.E.; Topping, V.D.; Belgrave, K.R.; Schlick, K.; Simanek, E.; Man, S.; Dadiboyena, S.; Patri, A.K.; Sprando, R.L.; Yourick, J.J. In Vitro Skin Penetration of Dendrimer Nanoparticles. Appl. Vitr. Toxicol. 2019, 5, 134–149. [Google Scholar] [CrossRef]
- Ambre, P.K.; Gupta, C.R.; Martis, E.A.F.; Coutinho, E.C. Chapter 8—Self-assemblies, dendrimers, and nanoparticles. In Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications; Anand, K., Saravanan, M., Chandrasekaran, B., Kanchi, S., Jeeva Panchu, S., Chen, Q., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 151–189. [Google Scholar] [CrossRef]
- Simonescu, C.M. Introductory Chapter: Dendrimers as Nanoengineered Materials and Their Applications. Dendrimers-Fundam. Appl. 2018, 10–13. [Google Scholar] [CrossRef]
- Yukuyama, M.N.; Ghisleni, D.D.M.; Pinto, T.D.J.A.; Bouchacra, N.A. Nanoemulsion: Process selection and application in cosmetics—A review. Int. J. Cosmet. Sci. 2016, 38, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozbu, M.R.; Nuzhat, S.; Selvakumar, P.M. Role of Nanotechnology in Cosmeceuticals. In Handbook of Consumer Nanoproducts; Springer Nature: Singapore, 2022; pp. 985–1003. [Google Scholar]
- Elavia, P.F.; Suvarna, V. A review on applications of nanotechnology in cosmetics. Int. Res. J. Pharm. 2018, 9, 1–4. [Google Scholar] [CrossRef]
- Pulit-Prociak, J.; Grabowska, A.; Chwastowski, J.; Majka, T.M.; Banach, M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf. B Biointerfaces 2019, 183, 110416. [Google Scholar] [CrossRef]
- Rudolf, R.; Jelen, Z.; Zadravec, M.; Majeric, P.; Jovic, Z.; Vuksanovic, M.; Stankovic, I.; Matija, L.; Dragicevic, A.; Thompson, N.M.; et al. A gold nanoparticles and hydroxylated fullerene water complex as a new product for cosmetics. Adv. Prod. Eng. Manag. 2022, 17, 89–107. [Google Scholar] [CrossRef]
- Kantorová, V.; Loula, M.; Kaňa, A.; Mestek, O. Determination of silver nanoparticles in cosmetics using single particle ICP-MS. Chem. Pap. 2021, 75, 5895–5905. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, D.H.; Choi, S.; Yang, J.-Y.; Jung, K.; Jeong, J.; Oh, J.H.; Lee, J.H. Skin Sensitization Potential and Cellular ROS-Induced Cytotoxicity of Silica Nanoparticles. Nanomaterials 2021, 11, 2140. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Deng, J.; Hu, L.; Zhang, Z.; Jiang, H.; Li, Y.; Yi, Z.; Ngai, T. Investigation of the stability in Pickering emulsions preparation with commercial cosmetic ingredients. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125082. [Google Scholar] [CrossRef]
- Åhlén, M.; Cheung, O.; Strømme, M. Amorphous Mesoporous Magnesium Carbonate as a Functional Support for UV-Blocking Semiconductor Nanoparticles for Cosmetic Applications. ACS Omega 2019, 4, 4429–4436. [Google Scholar] [CrossRef]
- Kose, O.; Tomatis, M.; Leclerc, L.; Belblidia, N.-B.; Hochepied, J.-F.; Turci, F.; Pourchez, J.; Forest, V. Impact of the Physicochemical Features of TiO2 Nanoparticles on Their In Vitro Toxicity. Chem. Res. Toxicol. 2020, 33, 2324–2337. [Google Scholar] [CrossRef]
- Lu, P.-J.; Huang, S.-C.; Chen, Y.-P.; Chiueh, L.-C.; Shih, D.Y.-C. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J. Food Drug Anal. 2015, 23, 587–594. [Google Scholar] [CrossRef]
- Vinod, T.P.; Jelinek, R. Inorganic Nanoparticles in Cosmetics. In Nanocosmetics: From Ideas to Products; Cornier, J., Keck, C.M., de Voorde, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 29–46. [Google Scholar]
- Draelos, Z.D. The science behind skin care: Cleansers. J. Cosmet. Dermatol. 2017, 17, 8–14. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Chapter 18—Nanomaterials in sun-care products. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Rajendran, S., Slimani, Y., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 349–373. [Google Scholar]
- Ngoc, L.T.N.; Van Tran, V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Mallakpour, S.; Hussain, C.M.; Gulati, S.; Kumar, S.; Wadhwa, R.; Lamba, S.; Batra, K. Nanocosmeceuticals: Novel and Advanced Self-Care Materials. In Handbook of Consumer Nanoproducts; Springer Nature: Singapore, 2021; pp. 1–26. [Google Scholar]
- Rosen, J.; Landriscina, A.; Friedman, A.J. Nanotechnology-Based Cosmetics for Hair Care. Cosmetics 2015, 2, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Silva, M.; Martins, A.M.; Sousa-Oliveira, I.; Ribeiro, H.M.; Veiga, F.; Marto, J.; Paiva-Santos, A.C. Nanomaterials in hair care and treatment. Acta Biomater. 2022, 142, 14–35. [Google Scholar] [CrossRef]
- Hydra Zen Oil-Free Gel Moisturizer with Salicylic Acid. Available online: https://www.lancome.com.au/skincare/face-moisturisers-creams/hydra-zen-moisturizing-gel-cream-day-cream/00206-LAC.html (accessed on 8 March 2023).
- NEOVA SmartSkincare. Available online: https://www.neova.com/ (accessed on 8 March 2023).
- Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci. 2021, 293, 102437. [Google Scholar] [CrossRef]
- Nafisi, S.; Maibach, H.I. Nanotechnology in cosmetics. Cosmet. Sci. Technol. Theor. Princ. Appl. 2017, 337–369. [Google Scholar]
- “Kara Vita” the Project of Emerging Nanotechnologies. 2023. Available online: https://www.nanotechproject.tech/cpi/browse/companies/kara-vita/ (accessed on 10 March 2023).
- Zhou, H.; Luo, D.; Chen, D.; Tan, X.; Bai, X.; Liu, Z.; Yang, X.; Liu, W. Current Advances of Nanocarrier Technology-Based Active Cosmetic Ingredients for Beauty Applications. Clin. Cosmet. Investig. Dermatol. 2021, 14, 867–887. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Carbon nanofiber in cosmetics. In Carbon Nanofibers: Fundamentals and Applications; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 341–363. [Google Scholar] [CrossRef]
- Acnel lotion N. Available online: https://www.nanotechproject.tech/cpi/products/acnel-lotion-n/ (accessed on 11 March 2023).
- Clear Complexion. Available online: https://www.beautyexpert.com/campaign/clear-complexion.list (accessed on 11 March 2023).
- Hydralane Ultra Moisturizing Day Cream with Nanospheres 1.7 Oz.—Beauty—Skin Care—Moisturizers & Creams. Available online: https://www.sears.com/hydralane-ultra-moisturizing-day-cream-with-nanospheres-1.7/p-SPM11839942930 (accessed on 10 March 2023).
- Mester, L.; Govyadinov, A.A.; Chen, S.; Goikoetxea, M.; Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 2020, 11, 3359. [Google Scholar] [CrossRef] [PubMed]
- Chaukura, N.; Madzokere, T.C.; Mugocheki, N.; Masilompane, T.M. The impact of nanomaterials in aquatic systems. In The ELSI Handbook of Nanotechnology: Risk, Safety, Elsi and Commercialization; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 205–222. [Google Scholar]
- Favero, J.D.S.; dos Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Veras, D.G.; Dani, N.; Mexias, A.S.; Bergmann, C.P. Evaluation and characterization of Melo Bentonite clay for cosmetic applications. Appl. Clay Sci. 2019, 175, 40–46. [Google Scholar] [CrossRef]
- Mondéjar-López, M.; López-Jiménez, A.J.; Abad-Jordá, M.; Rubio-Moraga, A.; Ahrazem, O.; Gómez-Gómez, L.; Niza, E. Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products. Molecules 2021, 26, 4696. [Google Scholar] [CrossRef]
- Kim, K.-B.; Kwack, S.J.; Lee, J.Y.; Kacew, S.; Lee, B.-M. Current opinion on risk assessment of cosmetics. J. Toxicol. Environ. Health Part B 2021, 24, 137–161. [Google Scholar] [CrossRef]
- Carrouel, F.; Viennot, S.; Ottolenghi, L.; Gaillard, C.; Bourgeois, D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. Nanomaterials 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Rieder, E.A.; Fried, R.G. Front Matter. In Essential Psychiatry for the Aesthetic Practitioner; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. i–xvi. [Google Scholar]
- Lee, C.-C.; Lin, Y.-H.; Hou, W.-C.; Li, M.-H.; Chang, J.-W. Exposure to ZnO/TiO2 Nanoparticles Affects Health Outcomes in Cosmetics Salesclerks. Int. J. Environ. Res. Public Health 2020, 17, 6088. [Google Scholar] [CrossRef]
- Filon, F.L.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- Krewski, D.; Andersen, M.; Tyshenko, M.G.; Krishnan, K.; Hartung, T.; Boekelheide, K.; Wambaugh, J.; Jones, D.; Whelan, M.; Thomas, R.; et al. Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Arch. Toxicol. 2020, 94, 1–58. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When I’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, M.T.; Cable, S.; Carmichael, P.L.; Cubberley, R.; Cull, T.; Delagrange, M.; Dent, M.P.; Hatherell, S.; Houghton, J.; Kukic, P.; et al. A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products. Toxicol. Sci. 2020, 176, 236–252. [Google Scholar] [CrossRef] [PubMed]
- Burden, N.; Clift, M.J.D.; Jenkins, G.J.S.; Labram, B.; Sewell, F. Opportunities and Challenges for Integrating New In Vitro Methodologies in Hazard Testing and Risk Assessment. Small 2021, 17, e2006298. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.; Fauzi, M.B. Current Update of Collagen Nanomaterials—Fabrication, Characterisation and Its Applications: A Review. Pharmaceutics 2021, 13, 316. [Google Scholar] [CrossRef]
- Patil, R.M.; Thorat, N.D.; Townley, H. Nanomaterials exposure to human. In Nano-Pharmacokinetics and Theranostics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 55–70. [Google Scholar]
- Bencsik, A.; Lestaevel, P.; Canu, I.G. Nano- and neurotoxicology: An emerging discipline. Prog. Neurobiol. 2018, 160, 45–63. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.-M.; Choi, M.; Shin, I.; Kim, J.; Choi, Z.; Kim, K.; Choi, K.; Yang, S.; So, D.Y.; Ju, S.T.; et al. Risk communication for labeling all ingredients in consumer products. J. Toxicol. Environ. Health Part A 2020, 83, 509–524. [Google Scholar] [CrossRef]
- Niska, K.; Zielinska, E.; Radomski, M.W.; Inkielewicz-Stepniak, I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem. Biol. Interact. 2018, 295, 38–51. [Google Scholar] [CrossRef]
- Avila, A.M.; Bebenek, I.; Bonzo, J.A.; Bourcier, T.; Davis Bruno, K.L.; Carlson, D.B.; Dubinion, J.; Elayan, I.; Harrouk, W.; Lee, S.-L.; et al. An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Regul. Toxicol. Pharmacol. 2020, 114, 104662. [Google Scholar] [CrossRef]
- Andersen, M.E.; McMullen, P.; Phillips, M.; Yoon, M.; Pendse, S.N.; Clewell, H.J.; Hartman, J.K.; Moreau, M.; Becker, R.A.; Clewell, R.A. Developing context appropriate toxicity testing approaches using new alternative methods (NAMs). Altex 2019, 36, 532–534. [Google Scholar] [CrossRef]
- Barthe, M.; Bavoux, C.; Finot, F.; Mouche, I.; Cuceu-Petrenci, C.; Forreryd, A.; Hansson, A.C.; Johansson, H.; Lemkine, G.; Thénot, J.-P.; et al. Safety Testing of Cosmetic Products: Overview of Established Methods and New Approach Methodologies (NAMs). Cosmetics 2021, 8, 50. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Sakharwade, S. Silver Nanoparticles in Cosmetics. J. Cosmet. Dermatol. Sci. Appl. 2016, 6, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Fragoso, A.; Wajs, E. Nanosponges in Catalysis and Sensing. Nanosponges 2019, 263–282. [Google Scholar] [CrossRef]
- Subramaniam, V.D.; Prasad, S.V.; Banerjee, A.; Gopinath, M.; Murugesan, R.; Marotta, F.; Sun, X.-F.; Pathak, S. Health hazards of nanoparticles: Understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem. Toxicol. 2019, 42, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Sarma, A.; Bania, R.; Devi, J.R.; Deka, S. Therapeutic nanostructures and nanotoxicity. J. Appl. Toxicol. 2021, 41, 1494–1517. [Google Scholar] [CrossRef] [PubMed]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016, 20, 1–11. [Google Scholar]
- Cohen, D.; Soroka, Y.; Ma’or, Z.; Oron, M.; Portugal-Cohen, M.; Brégégère, F.M.; Berhanu, D.; Valsami-Jones, E.; Hai, N.; Milner, Y. Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol. Vitr. 2013, 27, 292–298. [Google Scholar] [CrossRef]
- Coricovac, D.-E.; Moacă, E.-A.; Pinzaru, I.; Cîtu, C.; Soica, C.; Mihali, C.-V.; Păcurariu, C.; Tutelyan, V.A.; Tsatsakis, A.; Dehelean, C.-A. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile. Front. Pharmacol. 2017, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.; Roberts, M.S. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. J. Investig. Dermatol. 2019, 139, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Simaiti, A.; Xu, M.; Lv, S.; Jiang, H.; He, X.; Fan, Y.; Zhu, S.; Du, B.; Yang, W.; et al. Antagonistic Skin Toxicity of Co-Exposure to Physical Sunscreen Ingredients Zinc Oxide and Titanium Dioxide Nanoparticles. Nanomaterials 2022, 12, 2769. [Google Scholar] [CrossRef] [PubMed]
- Jain, J.; Arora, S.; Rajwade, J.M.; Omray, P.; Khandelwal, S.; Paknikar, K.M. Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use. Mol. Pharm. 2009, 6, 1388–1401. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.T.J.; Nyam, K.L. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J. Biol. Sci. 2022, 29, 2085–2094. [Google Scholar] [CrossRef]
- Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borm, P.J.; Robbins, D.; Haubold, S.; Kuhlbusch, T.; Fissan, H.; Donaldson, K.; Schins, R.; Stone, V.; Kreyling, W.; Lademann, J.; et al. The Potential Risks of Nanomaterials: A Review Carried Out for ECETOC. Part. Fibre Toxicol. 2006, 3, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-H.; Bae, H.C.; Jang, Y.; Jeong, S.H.; Na Lee, H.; Ryu, W.-I.; Yoo, M.G.; Kim, Y.-R.; Kim, M.-K.; Lee, J.K.; et al. Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol. Cell. Toxicol. 2013, 9, 67–74. [Google Scholar] [CrossRef]
- An, S.S.A.; Ryu, H.J.; Seong, N.-W.; So, B.J.; Seo, H.-S.; Kim, J.-H.; Hong, J.-S.; Park, M.-K.; Kim, M.-S.; Kim, Y.-R.; et al. Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. Int. J. Nanomed. 2014, 9, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Ben Haddada, M.; Gerometta, E.; Chawech, R.; Sorres, J.; Bialecki, A.; Pesnel, S.; Spadavecchia, J.; Morel, A.-L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces 2020, 189, 110855. [Google Scholar] [CrossRef]
- Arul Prakash, F.; Dushendra Babu, G.J.; Lavanya, M.; Shenbaga Vidhya, K.; Devasena, T. Toxicity studies of aluminium oxide nanoparticles in cell lines. Int. J. Nanotechnol. Appl. 2011, 5, 99–107. [Google Scholar]
- Wani, T.A.; Masoodi, F.A.; Jafari, S.M.; McClements, D.J. Chapter 19—Safety of Nanoemulsions and Their Regulatory Status. In Nanoemulsions; Jafari, S.M., McClements, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 613–628. [Google Scholar]
- Lémery, E.; Briançon, S.; Chevalier, Y.; Bordes, C.; Oddos, T.; Gohier, A.; Bolzinger, M.-A. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 166–179. [Google Scholar] [CrossRef]
- Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm. 2011, 414, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.C.; Weixelbaum, A.; Pagitsch, E.; Löw, M.; Resch, G.P.; Valenta, C. Nanocarriers for dermal drug delivery: Influence of preparation method, carrier type and rheological properties. Int. J. Pharm. 2012, 437, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Keck, C.M.; Kovačević, A.; Müller, R.H.; Savić, S.; Vuleta, G.; Milić, J. Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants. Int. J. Pharm. 2014, 474, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Bokrova, J.; Marova, I.; Matouskova, P.; Pavelkova, R. Fabrication of novel PHB-liposome nanoparticles and study of their toxicity in vitro. J. Nanopart. Res. 2019, 21, 49. [Google Scholar] [CrossRef]
- Van Gheluwe, L.; Buchy, E.; Chourpa, I.; Munnier, E. Three-Step Synthesis of a Redox-Responsive Blend of PEG–block–PLA and PLA and Application to the Nanoencapsulation of Retinol. Polymers 2020, 12, 2350. [Google Scholar] [CrossRef]
- Kumar, S.; Pooja; Trotta, F.; Rao, R. Encapsulation of Babchi Oil in Cyclodextrin-Based Nanosponges: Physicochemical Characterization, Photodegradation, and In Vitro Cytotoxicity Studies. Pharmaceutics 2018, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Winnicka, K.; Wroblewska, M.; Sosnowska, K.; Car, H.; Kasacka, I. Evaluation of cationic polyamidoamine dendrimers’ dermal toxicity in the rat skin model. Drug Des. Dev. Ther. 2015, 9, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Strachan, J.B.; Dyett, B.P.; Nasa, Z.; Valery, C.; Conn, C.E. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. J. Colloid Interface Sci. 2020, 576, 241–251. [Google Scholar] [CrossRef]
- Hinton, T.M.; Grusche, F.; Acharya, D.; Shukla, R.; Bansal, V.; Waddington, L.J.; Monaghan, P.; Muir, B.W. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol. Res. 2013, 3, 11–22. [Google Scholar] [CrossRef]
- Murgia, S.; Falchi, A.M.; Mano, M.; Lampis, S.; Angius, R.; Carnerup, A.M.; Schmidt, J.; Diaz, G.; Giacca, M.; Talmon, Y.; et al. Nanoparticles from Lipid-Based Liquid Crystals: Emulsifier Influence on Morphology and Cytotoxicity. J. Phys. Chem. B 2010, 114, 3518–3525. [Google Scholar] [CrossRef]
- Ali, I.; Shah, M.R.; Yousuf, S.; Ahmed, S.; Shah, K.; Javed, I. Hemolytic and cellular toxicology of a sulfanilamide-based nonionic surfactant: A niosomal carrier for hydrophobic drugs. Toxicol. Res. 2018, 7, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranei, M.; Taheri, R.A.; Tirgar, M.; Saeidi, A.; Oroojalian, F.; Uzun, L.; Asefnejad, A.; Wurm, F.R.; Goodarzi, V. Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines. Mater Today Commun. 2021, 26, 101751. [Google Scholar] [CrossRef]
- Le Gal, K.; Schmidt, E.E.; Sayin, V.I. Cellular redox homeostasis. Antioxidants 2021, 10, 1377. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.S.; Yu, S.; Kong, A.-N. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef] [Green Version]
- Yerra, V.G.; Negi, G.; Sharma, S.S.; Kumar, A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol. 2013, 1, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-Y.; Cheng, Y.-T.; Chau, C.-F.; Yen, G.-C. Effect of Diallyl Sulfide on in Vitro and in Vivo Nrf2-Mediated Pulmonic Antioxidant Enzyme Expression via Activation ERK/p38 Signaling Pathway. J. Agric. Food Chem. 2012, 60, 100–107. [Google Scholar] [CrossRef]
- Sun, T.C.; Liu, X.C.; Yang, S.H.; Song, L.L.; Zhou, S.J.; Deng, S.L.; Tian, L.; Cheng, L.Y. Melatonin Inhibits Oxidative Stress and Apoptosis in Cryopreserved Ovarian Tissues via Nrf2/HO-1 Signaling Pathway. Front. Mol. Biosci. 2020, 7, 163. [Google Scholar] [CrossRef]
- Gabbay, J.S. Cosmetic Skin Care Compositions Comprising Insoluble Copper Oxide. Patent WO2012046229A3, 12 April 2012. [Google Scholar]
- Frula Beauty. Available online: https://www.frulabeauty.com/blogs/ingredients/iron-oxides-for-skin-benefits-and-how-to-use (accessed on 28 March 2023).
- Anderson, R.G. Inside Ingredients: Zinc Oxide. 2022. Available online: https://www.cosmeticsandtoiletries.com/formulas-products/formulating-basics/article/22301527/skin-inc-magazine-inside-ingredients-zinc-oxide (accessed on 28 March 2023).
- Silver Nanoparticle Safety. A Fortis Life Sciences Company. 2023. Available online: https://nanocomposix.com/pages/silver-nanoparticle-safety (accessed on 28 March 2023).
- Shakeel, M.; Jabeen, F.; Shabbir, S.; Asghar, M.S.; Khan, M.S.; Chaudhry, A.S. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: A Review. Biol. Trace Element Res. 2016, 172, 1–36. [Google Scholar] [CrossRef]
- Silica Silylate. Available online: https://cosmetics.specialchem.com/inci-ingredients/silica-silylate (accessed on 28 March 2023).
- Anderson, K. Assessing Use of Gold Nanoparticles. 2013. Available online: https://www.cosmeticsandtoiletries.com/research/tech-transfer/blog/21837628/assessing-use-of-gold-nanoparticles (accessed on 28 March 2023).
- Rodriguez, C.; Magniez, H.; Coletta, D.; Quillet, S.; Swoboda, B. Cosmetic Nanoemulsion. Patent WO2016177704A1, 10 November 2016. [Google Scholar]
- Wissing, S.A.; Müller, R.H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Biotechnology Innovation Organisation. Liposomes for Cosmetics. Creative Biostructure. 2023. Available online: https://www.creative-biostructure.com/liposomes-for-cosmetics-487.htm (accessed on 28 March 2023).
- Bahary, W.S.; Hogan, M.P. Cleansing Compositions with Dendrimers as Mildness Agents. Patent US5658574A, 19 August 1997. [Google Scholar]
- Pandita, D. Global Regulatory Overview of Nanopharmaceuticals and Nanocosmetics. Appl. Clin. Res. Clin. Trials Regul. Aff. 2018, 5, 73. [Google Scholar] [CrossRef]
- Pastrana, H.; Avila, A.; Tsai, C.S.J. Nanomaterials in Cosmetic Products: The Challenges with regard to Current Legal Frameworks and Consumer Exposure. Nanoethics 2018, 12, 123–137. [Google Scholar] [CrossRef]
- Malik, R.; Patil, S. Nanotechnology: Regulatory outlook on nanomaterials and nanomedicines in United States, Europe and India. Appl. Clin. Res. Clin. Trials Regul. Aff. 2020, 7, 225–236. [Google Scholar] [CrossRef]
- Dave, V.; Sur, S.; Gupta, N. Current Framework, Ethical Consideration and Future Challenges of Regulatory Approach for Nano-Based Products. Nanopharm. Adv. Deliv. Syst. 2021, 447–472. [Google Scholar] [CrossRef]
- Bom, S.; Ribeiro, H.M.; Marto, J. Sustainability Calculator: A Tool to Assess Sustainability in Cosmetic Products. Sustainability 2020, 12, 1437. [Google Scholar] [CrossRef] [Green Version]
- Csóka, I.; Ismail, R.; Jójárt-Laczkovich, O.; Pallagi, E. Regulatory Considerations, Challenges and Risk-based Approach in Nanomedicine Development. Curr. Med. Chem. 2021, 28, 7461–7476. [Google Scholar] [CrossRef]
- Ruhela, M.; Nagar, L.; Gupta, A.; Popli, H. Cosmetics: Regulatory and market scenario for us and India. Pharma Innov. J. 2018, 7, 164–169. [Google Scholar]
- Riccolo, A. The lack of regulation in preventing greenwashing of cosmetics in the US. J. Legis. 2021, 47, 133. [Google Scholar]
- Morganti, P.; Chen, H.-D. Nanocosmetics: Future perspective. Nanocosmetics 2020, 455–481. [Google Scholar] [CrossRef]
- Ahmad, U.; Ahmad, Z.; Khan, A.A.; Akhtar, J.; Singh, S.P.; Ahmad, F.J. Strategies in Development and Delivery of Nanotechnology Based Cosmetic Products. Drug Res. 2018, 68, 545–552. [Google Scholar] [CrossRef]
- Morganti, P.; Paglialunga, S. EU borderline cosmetic products review of current regulatory status. Clin. Dermatol. 2008, 26, 392–397. [Google Scholar] [CrossRef]
Synthesis Method | Method Specifications | Mechanism Involved | Ref. | |
---|---|---|---|---|
Microbial/phytogenic biosynthesis of NPs |
|
| [48] | |
Intracellular synthesis |
|
| [49] | |
Extracellular synthesis |
|
| [50,51] | |
Chemical synthesis | Sol-gel method |
|
| [52,53,54,55,56] |
Chemical vapor deposition (CVD) |
|
| [57,58] | |
Hydrothermal method |
|
| [59,60,61,62,63,64] | |
Coprecipitation method |
|
| [65,66,67,68,69,70,71,72,73,74,75] | |
Physical synthesis of NPs | Laser ablation |
|
| [76,77,78,79,80] |
Ball-milling method |
|
| [81] |
Types | Size (nm) | Composition | Functions | Relative Merits | Cosmetics Usage | Ref. |
---|---|---|---|---|---|---|
Liposomes | 100–200 | Natural/synthetic lipids. | Helps to absorb active ingredients. |
| Moisturizers, serums, facial tonic, day face creams | [88,89] |
Nanocapsules | 10–1000 | Polymeric capsules surrounded by a watery or oily core. | Protects sensitive active ingredients; removes unwanted odor. |
| Serums | [100,102] |
Nano-emulsions | 20–200 | Emulsifiers are surfactants/co-surfactants; combine oil and water into a single phase. | Penetration of active ingredients into deeper skin layers. |
| Face creams, face wash, foams, moisturizers, skin toner | [92,118,119] |
Dendrimers | 1–20 | Symmetric branching units are constructed around a tiny molecule or a linear polymer core in monodispersing macromolecules. | Controls release of active molecules, extends shelf life, enhances solubilization. |
| Hair gels, shampoo, anti-acne products, face scrubs | [115,116] |
SLN | 50–1000 | Solid particle matrix. | As active carriers. |
| Physical and molecular sunscreens | [105,106] |
Niosomes | 10–1000 | Non-ionic surfactants, hydration medium, and lipids, such as cholesterol. | Improves solubility and stability. |
| Anti-aging creams, face masks, lotions, face serum, activators | [97,98] |
Cubosomes | 10–500 | Nanostructured systems self-assembled from amphiphilic lipids in water with the aid of suitable stabilizers. | Oil-in-water stabilizers, pollutant absorbents. |
| Antiperspirants | [98,112] |
Nanopigments | 10–400 | Melanin pigments. | UV protection, anti-allergy. |
| Sunscreens | [120] |
Nanosponges | 1–1000 | Carbon-containing polymer. | Antibiotic, antidotes, drug target delivery. |
| Skin medicare | [121] |
Types | Size Range (nm) | Synthesis Methods | Functions | Relative Merits | Used in Cosmetics | Ref. |
---|---|---|---|---|---|---|
Silver NPs | 5–100 | Laser ablation, electrochemical, microbial (extracellular) synthesis, sol-gel process | Anticancer, antifungal, antiviral, antibacterial. |
| Moisturizers, serums, sanitizers, day face creams, face wash | [124,130] |
Gold NPs | 5–400 | Turkevich method, γ-irradiation technique | Protects sensitive actives ingredients, removes unwanted odor. |
| Serums, face masks, face gels, moisturizers | [123] |
Titanium oxide NPs | 200–300 | Hydrothermal synthesis, CVD | Invisible application, noncomedogenic, gentle on sensitive skin, blocks UVA and UVB. |
| Lotions, sunscreen, loose powder cosmetics | [127] |
Zinc oxide NPs | 50–60 | Sol-gel method, hydrothermal, chemical synthesis | Antimicrobial, noncomedogenic, drug carrier, strong sun protection. |
| Sunscreens, anti-acne products, anti-aging, moisturizers | [128] |
Aluminum oxide NPs | 2–50 | Electrochemical process, coprecipitation method | Active drug carriers, enhance texture and hardness. |
| Concealers, foundations, mineral foundation | [131] |
Silica NPs | 5–100 | CVD, sol-gel process, micro-emulsion method, plasma synthesis | Improves solubility and stability, enhances texture. |
| Face powders, collagen boosters, serums, exfoliation treatment | [126] |
Nanoparticle | Product Name | Category | Manufacturer | References |
---|---|---|---|---|
Nanocapsules | Hydra Zen cream | Moisturizer | Lancome | [138] |
Neova | Anti-aging | ProCyte Corporation | [139] | |
Shampoo Hidratante com Batana Oil | Shampoo | Facinatus Cosmé ticos | [140] | |
Primordiale Optimum Lip | Lip care | Lancôme | [141] | |
Soleil Soft-Touch Anti-Wrinkle Sun Cream SPF 15 | Sunscreen | Lancôme | [141] | |
Liposomes | Lip tender | Lip moisturizer | Kara vita | [142] |
Celazome | Anti-acne | Celazome new zeal and limited | [143] | |
Decorte Moisture Liposome Face Cream | Moisturizer | Decorte | [3] | |
Longevity-C Serum | Anti-aging | Setare | [22] | |
Acnel Lotion N | Cleanser | Dermaviduals | [144,145] | |
Fillderma Lips Lip Volumizer | Lip care | Sesderma | [84] | |
Sunsreen | Capture total | Dior | [3,146] | |
Fullerene | Sircuit skin | Anti-aging | Sircuit skin cosmeuticals | [141] |
Zelens Fullerene C-60 Night Cream | Anti-aging | Zelens | [141] | |
Nanospheres | Clear it! Complexion | Anti-acne | Ordinary | [147] |
Fresh As A Daisy Body Lotion | Moisturizer | Kara Vita | [141] | |
Nanosphere Plus | Anti-aging | DermaSwiss | [141] | |
Hydralane Ultra Moisturizing Day Cream | Moisturizer | Hydralane Paris | [3,148] |
Types of Nanoparticles | Safe Concentration in Cosmetics | Target Organs | References |
---|---|---|---|
TiO2 | Maximum up to 25%. | Eyes, nose, throat, lungs, liver, kidney, nervous system | [149,152] |
ZnO | Maximum up to 25%. | Liver, kidney, spleen, testis, pancreas, stomach, heart | [129,150] |
Gold | 0.001–0.1% wt/w. | Lungs, heart, liver, stomach, intestines, skin | [159,122] |
Silver | Based on 0.01–1 mg/mL concentration. | Liver, kidney, spleen, heart, testes, brain | [123] |
Silica | Utilized at up to 82% in cosmetics for the face and neck and at 50% in mascaras. Up to 53% of ‘other’ nail-care products and up to 35% of rinse-off ‘other’ skin-care preparations contain kaolin. | Lungs, brain, heart, internal organs | [131] |
Nanostructured Particles/ Nanomaterials | Formulation/Concentration | Type of Skin Care Product/Cosmetic Material | Effect of Toxicity | Type of Study In Vitro: Cell Line/Skin Tissue Cultures In Vivo: Animal Model Clinical Trail | Ref. |
---|---|---|---|---|---|
CuO-NP | Cream-based formulation, implement the substance at a level of (0.15–0.75% w/w) | Rejuvenating cream, active ingredient in cosmetics |
| In vitro: human skin tissue culture | [208] |
FeO-NP | Colloidal suspension, implement the substance at different concentrations of (5, 10, 25 μg/mL) | Skin protection against visible and blue light, pigment in cosmetic formulation |
| In vitro: human keratinocyte (HaCat cell line) In vivo: employing an animal model of acute dermal toxicity | [209] |
ZnO-NP | Ointment-based formulation, implement the substance up to a maximum of 25% | Broad-spectrum sunscreen formulation |
| Clinical trial: applied topically to human skin, In vitro: human keratinocyte (HaCat) and reconstructed human epidermis (RHE) | [210] |
Ag-NP | Gel-based formulation, implement a concentration range of 0.01–1 mg/mL to incorporate the substance at a level of 0.001–0.1% w/w | Skin-care product (antibacterial and antifungal) Cosmetics (nail polisher, colored pigment in lipstick and eye shadow) |
| Clinical trial: applied topically to human skin, In vivo: applied topically to rat skin | [211] |
TiO2-NP | Cream-based formulation, implement the substance up to a maximum of 25% | Sun protecting factor in sunscreen cream |
| Clinical trial: applied topically to human skin, In vivo: applied topically to rat skin | [212] |
SiO2-NP | Colloidal solution | Anti-wrinkle cream, the stabilizer agent used in cosmetics |
| In vitro: human skin keratinocyte and fibroblast In vivo: applied topically to rat skin | [213] |
Au-NP | Colloidal solution, implement the solution up to a maximum of 15% w/w | Variety of cosmeceutical-related materials for skin, hair, lips, nails, and teeth |
| In vitro: normal human dermal fibroblasts (NHDF) | [214] |
Al2O3-NP | Micro-emulsion, implement the substance at 1 M aqueous concentration | Not used in skin-care and cosmetics |
| In vitro: treatment on multiple cell lines, but not on skin cells | [16] |
Nanoemulsion | The formulation is an oil-in-water emulsion with a weight ratio of lipophilic phase to emulsifying phase greater than 0.5 | Wild range of cosmetic products |
| In vitro: human skin keratinocyte and fibroblast | [215] |
Solid lipid nanoparticle (SLN) | Solid lipid core surrounded by a surfactant layer is commonly used in conventional oil-in-water cream, up to a maximum of 4% | Variety of cosmetic product and sunscreen cream |
| In vitro: human skin keratinocyte and fibroblast | [216] |
Liposome | Poly 3-hydroxybutyrate incorporation with phospholipid bilayers | Skin care product (cream and lotion), cosmetics (as an enhancer of product’s quality) |
| In vitro: human-skin keratinocytes (HaCat and HEK cell lines) | [217] |
Nanocapsule | Combination of Poly lactide (PLA) and Poly (ethylene glycol) –block-poly (lactide) are commonly used for nanocapsulation of anti-aging agent (retinol) | Skin care product (Anti-aging cream containing retinol) and cosmetics |
| In vitro: human skin keratinocytes (HaCat) | [195] |
Nanosponge | Using cyclodextrin in nanosponge synthesis can solubilize hydrophobic oil as bioactive compound | Encapsulation of skin-care product such as Bachi oil loaded by cyclodextrin |
| In vitro: human skin keratinocytes (HaCat) | [196] |
Dendrimer | Polyamideoamine (PAMAM-NH2) at different concentrations of 0.3, 3, 6, 30, and 300 mg/mL | Anionic surfactant as a bioactive compound in cleanser product and cationic dendrimer as an anti-irritancy activity |
| In vivo: applied topically to rat skin for acute toxicity model | [218] |
Cubosome | Ceramide and phytosphingosine as a cubosome has been developed for potential use in skin-care applications, at a level of 10–30% w/w | Moisturizing and rejuvenating cream |
| In vitro: fibroblast cells | [198,200] |
Niosome | Non-ionic surfactant | It has not been used in skin care and cosmeceutical |
| In vitro: human normal cells lines (HGF) obtained from gingiva tissue | [201,202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Agarwal, P.; Sebghatollahi, Z.; Mahato, N. Functional Nanostructured Materials in the Cosmetics Industry: A Review. ChemEngineering 2023, 7, 66. https://doi.org/10.3390/chemengineering7040066
Sharma A, Agarwal P, Sebghatollahi Z, Mahato N. Functional Nanostructured Materials in the Cosmetics Industry: A Review. ChemEngineering. 2023; 7(4):66. https://doi.org/10.3390/chemengineering7040066
Chicago/Turabian StyleSharma, Anjali, Pooja Agarwal, Zahra Sebghatollahi, and Neelima Mahato. 2023. "Functional Nanostructured Materials in the Cosmetics Industry: A Review" ChemEngineering 7, no. 4: 66. https://doi.org/10.3390/chemengineering7040066
APA StyleSharma, A., Agarwal, P., Sebghatollahi, Z., & Mahato, N. (2023). Functional Nanostructured Materials in the Cosmetics Industry: A Review. ChemEngineering, 7(4), 66. https://doi.org/10.3390/chemengineering7040066