Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Waste Orange Peels (WOP)
2.3. Organosolv Treatment/Extraction Process
2.4. Response Surface Methodology and Process Optimization
2.5. Extraction Efficiency Factor
2.6. Severity Factor (SF)
2.7. Total Polyphenol and Antioxidant Activity Determination
2.8. Liquid Chromatography–Diode Array–Mass Spectrometry (LC–DAD–MS) Analyses
2.9. Statistical Processing
3. Results and Discussion
3.1. Organosolv Process Modeling
3.2. Efficiency and Severity of the Process
3.3. Effect on Metabolite Profile and Stability
3.4. Process Impact on Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lizárraga-Velázquez, C.E.; Leyva-López, N.; Hernández, C.; Gutiérrez-Grijalva, E.P.; Salazar-Leyva, J.A.; Osuna-Ruíz, I.; Martínez-Montaño, E.; Arrizon, J.; Guerrero, A.; Benitez-Hernández, A. Antioxidant molecules from plant waste: Extraction techniques and biological properties. Processes 2020, 8, 1566. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [Green Version]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Boateng, N.A.S.; Ma, H. Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends Food Sci. Technol. 2020, 99, 375–388. [Google Scholar] [CrossRef]
- Dassoff, E.S.; Guo, J.X.; Liu, Y.; Wang, S.C.; Li, Y.O. Potential development of non-synthetic food additives from orange processing by-products—A review. Food Qual. Saf. 2021, 5, 1–14. [Google Scholar] [CrossRef]
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Recent trends on the valorization strategies for the management of citrus by-products. Food Rev. Int. 2021, 37, 91–120. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Recent advances in valorization of citrus fruits processing waste: A way forward towards environmental sustainability. Food Sci. Biotechnol. 2021, 30, 1601–1626. [Google Scholar] [CrossRef]
- Khan, M.K.; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients 2017, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Ma, S.; Ren, D. Phytochemistry and bioactivity of Citrus flavonoids: A focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem. Rev. 2017, 16, 479–511. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—A review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef] [Green Version]
- Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High biological value compounds extraction from citrus waste with non-conventional methods. Foods 2020, 9, 811. [Google Scholar] [CrossRef]
- Makris, D.P.; Lalas, S. Glycerol and glycerol-based deep eutectic mixtures as emerging green solvents for polyphenol extraction: The evidence so far. Molecules 2020, 25, 5842. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Sarker, T.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K.; Meda, V.; Naik, S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 2021, 284, 131372. [Google Scholar] [CrossRef]
- Song, B.; Lin, R.; Lam, C.H.; Wu, H.; Tsui, T.-H.; Yu, Y. Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renew. Sustain. Energy Rev. 2021, 135, 110370. [Google Scholar] [CrossRef]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Gao, Y.; Zietsman, A.J.; Vivier, M.A.; Moore, J.P. Deconstructing wine grape cell walls with enzymes during winemaking: New insights from glycan microarray technology. Molecules 2019, 24, 165. [Google Scholar] [CrossRef] [Green Version]
- Wei Kit Chin, D.; Lim, S.; Pang, Y.L.; Lam, M.K. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels Bioprod. Biorefin. 2020, 14, 808–829. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Villaflores, O.B.; Ordono, E.E.; Caparanga, A.R. Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. Bioresour. Technol. 2017, 228, 264–271. [Google Scholar] [CrossRef]
- Morsli, F.; Grigorakis, S.; Halahlah, A.; Poulianiti, K.P.; Makris, D.P. Appraisal of the combined effect of time and temperature on the total polyphenol yield in batch stirred-tank extraction of medicinal and aromatic plants: The extraction efficiency factor. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100340. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron processing wastes as a bioresource of high-value added compounds: Development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Houasni, A.; Grigorakis, S.; Kellil, A.; Makris, D.P. Organosolv treatment/polyphenol extraction from olive leaves (Olea europaea L.) using glycerol and glycerol-based deep eutectic solvents: Effect on metabolite stability. Biomass 2022, 2, 46–61. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar]
- Ruiz, H.A.; Galbe, M.; Garrote, G.; Ramirez-Gutierrez, D.M.; Ximenes, E.; Sun, S.-N.; Lachos-Perez, D.; Rodríguez-Jasso, R.M.; Sun, R.-C.; Yang, B. Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept. Bioresour. Technol. 2021, 342, 125961. [Google Scholar] [CrossRef]
- Svärd, A.; Brännvall, E.; Edlund, U. Rapeseed straw polymeric hemicelluloses obtained by extraction methods based on severity factor. Ind. Crops Prod. 2017, 95, 305–315. [Google Scholar] [CrossRef]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers. Biorefin. 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Anagnostopoulou, M.A.; Kefalas, P.; Kokkalou, E.; Assimopoulou, A.N.; Papageorgiou, V.P. Analysis of antioxidant compounds in sweet orange peel by HPLC–diode array detection–electrospray ionization mass spectrometry. Biomed. Chromatogr. 2005, 19, 138–148. [Google Scholar] [CrossRef] [PubMed]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Proc. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- M’hiri, N.; Irina, I.; Cédric, P.; Ghoul, M.; Boudhrioua, N. Antioxidants of maltease orange peel: Comparative investigation of the efficiency of four extraction methods. J. Appl. Pharm. Sci. 2017, 7, 126–135. [Google Scholar]
- Dalmau, E.; Rosselló, C.; Eim, V.; Ratti, C.; Simal, S. Ultrasound-assisted aqueous extraction of biocompounds from orange byproduct: Experimental kinetics and modeling. Antioxidants 2020, 9, 352. [Google Scholar] [CrossRef]
- Lakka, A.; Lalas, S.; Makris, D.P. Hydroxypropyl-β-yclodextrin as a green co-solvent in the aqueous extraction of polyphenols from waste orange peels. Beverages 2020, 6, 50. [Google Scholar] [CrossRef]
- Gómez-Urios, C.; Viñas-Ospino, A.; Penadés-Soler, A.; Lopez-Malo, D.; Frígola, A.; Esteve, M.; Blesa, J. Natural deep eutectic solvents as main solvent for the extraction of total polyphenols of orange peel. Biol. Life Sci. Forum 2021, 68, 1–5. [Google Scholar]
- Xu, H.; Peng, J.; Kong, Y.; Liu, Y.; Su, Z.; Li, B.; Song, X.; Liu, S.; Tian, W. Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. Bioresour. Technol. 2020, 310, 123416. [Google Scholar] [CrossRef]
- Chotirotsukon, C.; Raita, M.; Champreda, V.; Laosiripojana, N. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Ind. Crops Prod. 2019, 141, 111753. [Google Scholar] [CrossRef]
- Martín, C.; Puls, J.; Schreiber, A.; Saake, B. Optimization of sulfuric acid-assisted glycerol pretreatment of sugarcane bagasse. Holzforschung 2013, 67, 523–530. [Google Scholar] [CrossRef]
- Chotirotsukon, C.; Raita, M.; Yamada, M.; Nishimura, H.; Watanabe, T.; Laosiripojana, N.; Champreda, V. Sequential fractionation of sugarcane bagasse using liquid hot water and formic acid-catalyzed glycerol-based organosolv with solvent recycling. BioEnergy Res. 2021, 14, 135–152. [Google Scholar] [CrossRef]
- van den Bruinhorst, A.; Kouris, P.; Timmer, J.; de Croon, M.; Kroon, M. Exploring orange peel treatment with deep eutectic solvents and diluted organic acids. Nat. Prod. Chem. Res. 2016, 4, 1–5. [Google Scholar]
- Ravindran, R.; Desmond, C.; Jaiswal, S.; Jaiswal, A.K. Optimisation of organosolv pretreatment for the extraction of polyphenols from spent coffee waste and subsequent recovery of fermentable sugars. Bioresour. Technol. Rep. 2018, 3, 7–14. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Dragović-Uzelac, V. Optimizing acidity and extraction time for polyphenolic recovery and antioxidant capacity in grape pomace skin extracts with response surface methodology approach. J. Food Proc. Preserv. 2016, 40, 1256–1263. [Google Scholar] [CrossRef]
- Makris, D.P.; Passalidi, V.; Kallithraka, S.; Mourtzinos, I. Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology. Prep. Biochem. Biotechnol. 2016, 46, 176–182. [Google Scholar] [CrossRef]
- Boudries, H.; Souagui, S.; Nabet, N.; Ydjedd, S.; Kefalas, P.; Madani, K.; Chibane, M. Valorisation of Clementine peels for the recovery of minerals and antioxidants: Evaluation and characterisation by LC-DAD-MS of solvent extracts. Int. Food Res. J. 2015, 22, 1218–1226. [Google Scholar]
- Razola-Díaz, M.D.C.; Guerra-Hernández, E.J.; Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; García-Villanova, B.; Verardo, V. Optimization of ultrasound-assisted extraction via sonotrode of phenolic compounds from orange by-products. Foods 2021, 10, 1120. [Google Scholar] [CrossRef]
Process Variables | Codes | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
t (min) | X1 | 10 | 30 | 50 |
T (°C) | X2 | 110 | 125 | 140 |
Design Point | Independent Variables | Response (YTP, mg GAE g−1 DM) | ||||||
---|---|---|---|---|---|---|---|---|
t (min) (X1) | T (°C) (X2) | GL | GL + HCl | GL + CA | ||||
Measured | Predicted | Measured | Predicted | Measured | Predicted | |||
1 | 10 (−1) | 110 (−1) | 11.63 | 12.31 | 13.04 | 11.84 | 16.67 | 17.21 |
2 | 10 (−1) | 140 (1) | 20.02 | 21.74 | 27.48 | 27.84 | 22.61 | 21.81 |
3 | 50 (1) | 110 (−1) | 16.85 | 17.02 | 28.65 | 28.46 | 25.61 | 25.69 |
4 | 50 (1) | 140 (1) | 42.86 | 44.09 | 23.02 | 24.33 | 36.92 | 35.66 |
5 | 10 (−1) | 125 (0) | 15.05 | 12.58 | 20.38 | 21.18 | 19.28 | 19.54 |
6 | 50 (1) | 125 (0) | 27.51 | 26.11 | 28.86 | 27.73 | 29.53 | 30.70 |
7 | 30 (0) | 110 (−1) | 16.28 | 15.43 | 23.07 | 24.42 | 20.39 | 19.77 |
8 | 30 (0) | 140 (1) | 36.65 | 33.68 | 32.04 | 30.35 | 25.04 | 27.05 |
9 | 30 (0) | 125 (0) | 19.68 | 20.10 | 28.31 | 28.72 | 25.12 | 23.44 |
10 | 30 (0) | 125 (0) | 18.40 | 20.10 | 28.35 | 28.72 | 22.99 | 23.44 |
11 | 30 (0) | 125 (0) | 18.39 | 20.10 | 29.18 | 28.72 | 23.76 | 23.44 |
Solvent | 2nd Order Polynomial Equations | R2 | p |
---|---|---|---|
GL | 20.10 + 6.76X1 + 9.12X2 + 4.41X1X2 + 4.45X22 | 0.97 | 0.0009 |
GL + HCl | 28.72 + 3.28X1 + 2.97X2 − 5.03 X1X2 − 4.27X12 | 0.96 | 0.0012 |
GL + CA | 23.44 + 5.58X1 + 3.64X2 | 0.96 | 0.0015 |
Solvent | Maximum Predicted Response (mg GAE g−1 DM) | Optimal Conditions | Indices | ||
---|---|---|---|---|---|
t (min) | T (°C) | FEE | SF or CSF | ||
GL | 44.09 ± 5.46 | 50 | 140 | 2.20 | 2.88 |
GL + HCl | 30.54 ± 2.63 | 26 | 140 | 2.08 | 2.24 * |
GL + CA | 35.66 ± 3.44 | 50 | 140 | 2.29 | 2.88 |
Water | 13.24 ± 0.93 | 60 | 70 | 2.50 | 0.89 |
60% ethanol | 14.21 ± 0.99 | 185 | 70 | 2.96 | 1.38 |
Peak | Rt (min) | UV-Vis | [M+H]+ (m/z) | Other Ions (m/z) | Tentative Identity |
---|---|---|---|---|---|
A | 4.70 | 274 | 213 | 173 | Unknown |
B | 5.64 | 274 | 213 | 173 | Unknown |
C | 10.08 | 280 | 201 | 223 (Na+ adduct), 195 | Unknown |
D | 10.31 | 280 | 201 | 223 (Na+ adduct), 195 | Unknown |
1 | 15.87 | 270, 340 | 595 | 617 (Na+ adduct) | Apigenin 6,8-di-C-hexoside (vicenin-2) |
2 | 19.92 | 286, 328 | 581 | 603 (Na+ adduct), 273 | Narirutin |
3 | 22.02 | 280, 332 | 611 | 633 (Na+ adduct), 303 | Hesperidin |
4 | 28.15 | 280, 330 | 595 | 617 (Na+ adduct), 287 | Didymin |
5 | 39.86 | 248, 264, 334 | 373 | 395 (Na+ adduct) | Sinensetin |
6 | 40.69 | 254, 340 | 403 | - | Nobiletin |
7 | 41.35 | 270, 330 | 389 | - | Demethylnobiletin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoun, R.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P. Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents. ChemEngineering 2022, 6, 35. https://doi.org/10.3390/chemengineering6030035
Abdoun R, Grigorakis S, Kellil A, Loupassaki S, Makris DP. Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents. ChemEngineering. 2022; 6(3):35. https://doi.org/10.3390/chemengineering6030035
Chicago/Turabian StyleAbdoun, Rehab, Spyros Grigorakis, Abdessamie Kellil, Sofia Loupassaki, and Dimitris P. Makris. 2022. "Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents" ChemEngineering 6, no. 3: 35. https://doi.org/10.3390/chemengineering6030035
APA StyleAbdoun, R., Grigorakis, S., Kellil, A., Loupassaki, S., & Makris, D. P. (2022). Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents. ChemEngineering, 6(3), 35. https://doi.org/10.3390/chemengineering6030035