Recent Developments in Supercapacitor Electrodes: A Mini Review
Abstract
:1. Introduction
2. Transition Metal Oxide Electrode Materials
2.1. Co3O4
2.2. Co3O4 Nanoparticles
2.3. Synthesis of Co3O4 Nanomaterials
2.4. MnO2
2.5. Carbon@MnO2
2.6. Nickel Oxide
2.7. Copper Oxide
2.8. Battery Type MOs (Metal Oxides)
2.9. ZnO
2.10. ZnO Composites
2.11. XCo2O4 (X-Cu, Ni, Mn)
2.12. Transition Metal Molybdates
2.13. Design of Transition Metal Oxides
3. Pseudocapacitors
3.1. Metal Oxide-Pseudocapacitors
3.2. Asymmetric Supercapacitors
3.3. Composite Supercapacitor
3.4. Battery Type Rechargeable Hybrid Supercapacitor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, D.; Manivannan, S. Unusual battery type pseudocapacitive behaviour of graphene oxynitride electrode: High energy solid-state asymmetric supercapacitor. J. Alloys Compd. 2021, 854, 156853. [Google Scholar] [CrossRef]
- Hu, T.; Gao, L.; Zhou, W.; Zhang, J. Design and syntheses of Ni(OH)2@Co/C nanocomposite as electrode material for supercapacitor. J. Alloys Compd. 2021, 895, 162577. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Castro-Gutiérrez, J.; Celzard, A.; Fierro, V. Energy Storage in Supercapacitors: Focus on Tannin-Derived Carbon Electrodes. Front. Mater. 2020, 7. [Google Scholar] [CrossRef]
- Demir, M.; Saraswat, S.K.; Gupta, R.B. Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 2017, 7, 42430–42442. [Google Scholar] [CrossRef] [Green Version]
- Reece, R.; Lekakou, C.; Smith, P.A. A High-Performance Structural Supercapacitor. ACS Appl. Mater. Interfaces 2020, 12, 25683–25692. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Choudhary, N.; Pandey, D.; Hurtado, L.; Chung, H.-S.; Tetard, L.; Jung, Y.; Thomas, J. High-performance flexible asymmetric supercapacitor based on rGO anode and WO3/WS2 core/shell nanowire cathode. Nanotechnology 2020, 31, 435405. [Google Scholar] [CrossRef]
- Yu, J.; Gao, X.; Cui, Z.; Jiao, Y.; Zhang, Q.; Dong, H.; Yu, L.; Dong, L. Facile synthesis of binary transition metal sulfide tubes derived from NiCo-MOF-74 for high-performance supercapacitors. Energy Technol. 2019, 7, 1900018. [Google Scholar] [CrossRef]
- Shin, S.; Shin, M.W. Nickel metal–organic framework (Ni-MOF) derived NiO/C@ CNF composite for the application of high performance self-standing supercapacitor electrode. Appl. Surf. Sci. 2021, 540, 148295. [Google Scholar] [CrossRef]
- Yu, J.; Fu, N.; Zhao, J.; Liu, R.; Li, F.; Du, Y.; Yang, Z. High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons. ACS Omega 2019, 4, 15904–15911. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Murtaza, I.; Shuja, A.; Meng, H. Interfacial modification for heightening the interaction between PEDOT and substrate towards enhanced flexible solid supercapacitor performance. Chem. Eng. J. 2020, 379, 122326. [Google Scholar] [CrossRef]
- Meng, Z.; Yan, W.; Zou, M.; Miao, H.; Ma, F.; Patil, A.B.; Yu, R.; Liu, X.Y.; Lin, N. Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2021, 583, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.P.; Huang, K.-J. NiCo2 S4 Materials for Supercapacitor Applications. Chem.—Asian J. 2017, 12, 1969–1984. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, Y.; Xu, J.; Li, J.; Wei, B.; Ding, Y.; Amorim, I.; Thomas, R.; Thalluri, S.; Liu, Y.; et al. High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano 2019, 13, 10612–10621. [Google Scholar] [CrossRef]
- Du, Y.; Xiao, P.; Yuan, J.; Chen, J. Research Progress of Graphene-Based Materials on Flexible Supercapacitors. Coatings 2020, 10, 892. [Google Scholar] [CrossRef]
- Chameh, B.; Moradi, M.; Hajati, S.; Hessari, F.A. Design and construction of ZIF(8 and 67) supported Fe3O4 composite as advanced materials of high performance supercapacitor. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 126, 114442. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Q.; Xu, M.; Zhai, Q.; Zhang, C. Two-for-one strategy: Three-dimensional porous Fe-doped Co3O4 cathode and N-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor. J. Colloid Interface Sci. 2021, 583, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Xiao, Z.; Wang, S.; Zhai, S.; Qin, L.; Zhao, Z.; An, Q. Synthesis of nickel sulfide-supported on porous carbon from a natural seaweed-derived polysaccharide for high-performance supercapacitors. J. Alloys Compd. 2021, 853, 157123. [Google Scholar] [CrossRef]
- Pettong, T.; Iamprasertkun, P.; Krittayavathananon, A.; Suktha, P.; Sirisinudomkit, P.; Seubsai, A.; Chareonpanich, M.; Kongkachuichay, P.; Limtrakul, J.; Sawangphruk, M. High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel. ACS Appl. Mater. Interfaces 2016, 8, 34045–34053. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Liu, T.; Ye, K.; Cheng, K.; Yin, J.; Cao, D.; Wang, G.; Li, Q. Preparation of binder-free CuO/Cu2O/Cu composites: A novel electrode material for supercapacitor applications. RSC Adv. 2016, 6, 28270–28278. [Google Scholar] [CrossRef]
- Wang, X.; Yin, S.; Jiang, J.; Xiao, H.; Li, X. A tightly packed Co3O4/C&S composite for high-performance electrochemical supercapacitors from a cobalt (III) cluster-based coordination precursor. J. Solid State Chem. 2020, 288, 121435. [Google Scholar]
- Lu, J.; Li, J.; Wan, J.; Han, X.; Ji, P.; Luo, S.; Gu, M.; Wei, D.; Hu, C. A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. Nano Res. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Chatterjee, M.; Sain, S.; Roy, A.; Das, S.; Pradhan, S.K. Enhanced electrochemical properties of Co3O4 with morphological hierarchy for energy storage application: A comparative study with different electrolytes. J. Phys. Chem. Solids 2021, 148, 109733. [Google Scholar] [CrossRef]
- Cao, J.; Li, J.; Zhou, L.; Xi, Y.; Cao, X.; Zhang, Y.; Han, W. Tunable agglomeration of Co3O4 nanowires as the growing core for in-situ formation of Co2NiO4 assembled with polyaniline-derived carbonaceous fibers as the high-performance asymmetric supercapacitors. J. Alloys Compd. 2021, 853, 157210. [Google Scholar] [CrossRef]
- Deng, J.; Kang, L.; Bai, G.; Li, Y.; Li, P.; Liu, X.; Yang, Y.; Gao, F.; Liang, W. Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochimica Acta 2014, 132, 127–135. [Google Scholar] [CrossRef]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 2013, 226, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Youssry, S.M.; Soe, H.M.; Abdel-Galeil, M.M.; Kawamura, G.; Matsuda, A. Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J. Energy Storage 2020, 30, 101539. [Google Scholar] [CrossRef]
- Gong, Y.; An, J.; Dai, H.; Chen, R.; Yu, C.; Chen, Q.; Zhou, J.; Sun, G.; Huang, W. Hierarchically tubular architectures composed of vertical carbon nanosheets embedded with oxygen-vacancy enriched hollow Co3O4 nanoparticles for improved energy storage. Electrochim. Acta 2020, 356, 136843. [Google Scholar] [CrossRef]
- Saraf, M.; Rajak, R.; Mobin, S.M. MOF Derived High Surface Area Enabled Porous Co3O4 Nanoparticles for Supercapacitors. ChemistrySelect 2019, 4, 8142–8149. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Y.; Liang, X.; Zhang, D.; Miao, M. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 2019, 371, 145–153. [Google Scholar] [CrossRef]
- Wu, K.; Ye, Z.; Ding, Y.; Zhu, Z.; Peng, X.; Li, D.; Ma, G. Facile co-deposition of the carbon nanotube@ MnO2 heterostructure for high-performance flexible supercapacitors. J. Power Sources 2020, 477, 229031. [Google Scholar] [CrossRef]
- Zhao, Y.; Ran, W.; He, J.; Huang, Y.; Liu, Z.; Liu, W.; Tang, Y.; Zhang, L.; Gao, D.; Gao, F. High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 2015, 11, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ouyang, Y.; Jiao, X.; Xia, X.; Lei, W.; Hao, Q. Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem. Eng. J. 2018, 334, 1–9. [Google Scholar] [CrossRef]
- Bose, N.; Sundararajan, V.; Prasankumar, T.; Jose, S.P. α–MnO2 coated anion intercalated carbon nanowires: A high rate capability electrode material for supercapacitors. Mater. Lett. 2020, 278, 128457. [Google Scholar] [CrossRef]
- Sui, Z.; Chang, Z.; Xu, X.; Li, Y.; Zhu, X.; Zhao, C.; Chen, Q. Direct growth of MnO2 on highly porous nitrogen-doped carbon nanowires for asymmetric supercapacitors. Diam. Relat. Mater. 2020, 108, 107988. [Google Scholar] [CrossRef]
- Cakici, M.; Kakarla, R.R.; Alonso-Marroquin, F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 2017, 309, 151–158. [Google Scholar] [CrossRef]
- Kate, R.S.; Khalate, S.A.; Deokate, R. Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. J. Alloys Compd. 2018, 734, 89–111. [Google Scholar] [CrossRef]
- Sk, M.; Yue, C.Y.; Ghosh, K.; Jena, R.K. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 2016, 308, 121–140. [Google Scholar] [CrossRef]
- Xiao, H.; Yao, S.; Liu, H.; Qu, F.; Zhang, X.; Wu, X. NiO nanosheet assembles for supercapacitor electrode materials. Prog. Nat. Sci. 2016, 26, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Lattanzi, M.W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K.M.; Chen, J.G.; Xiao, J.Q. Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6847–6850. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.; Tang, X.; Hu, W. High-performance three-dimensional nanoporousNiO film as a supercapacitor electrode. J. Mater. Chem. 2012, 22, 11062–11067. [Google Scholar] [CrossRef]
- Xia, X.; Tu, J.; Mai, Y.; Chen, R.; Wang, X.; Gu, C.; Zhao, X. Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chem.—A Eur. J. 2011, 17, 10898–10905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, X.; Tu, J.; Mai, Y.; Shi, S.; Wang, X.; Gu, C. Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J. Power Sources 2012, 199, 413–417. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Hao, J.; Han, S.; Lian, J.; Jiang, Q. High Density Arrayed Ni/NiO Core-shell Nanospheres Evenly Distributed on Graphene for Ultrahigh Performance Supercapacitor. Sci. Rep. 2017, 7, 17709. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Zou, R.; Li, W.; Liu, Q.; Wang, T.; Yang, J.; Chen, Z.; Hu, J. Carbon-coated mesoporous NiO nanoparticles as an electrode material for high performance electrochemical capacitors. New J. Chem. 2013, 37, 4031–4036. [Google Scholar] [CrossRef]
- Xu, W.; Dai, S.; Liu, G.; Xi, Y.; Hu, C.; Wang, X. CuO Nanoflowers growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors. Electrochim. Acta 2016, 203, 1–8. [Google Scholar] [CrossRef]
- Shahsank, M.; Naik, H.B.; Sumedha, H.; Nagaraju, G. Implementing an in-situ carbon formation of MoO3 nanoparticles for high performance lithium-ion battery. Ceram. Int. 2021, 47, 10261–10267. [Google Scholar] [CrossRef]
- Zhou, L.; He, Y.; Jia, C.; Pavlinek, V.; Saha, P.; Cheng, Q. Construction of hierarchical CuO/Cu2O@ NiCo2S4 nanowire arrays on copper foam for high performance supercapacitor electrodes. Nanomaterials 2017, 7, 273. [Google Scholar] [CrossRef] [Green Version]
- Chuai, M.; Chen, X.; Zhang, K.; Zhang, J.; Zhang, M. CuO–SnO2 reverse cubic heterojunctions as high-performance supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 1160–1167. [Google Scholar] [CrossRef]
- Yang, Y.; Pei, L.; Xu, X.; Xu, J.; Shen, J.; Ye, M. In-situ growth of self-assembled 3D Cu2O@Cu foam with enhanced electrochemical properties. Electrochim. Acta 2016, 221, 56–61. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Radhakrishnan, C.; Ramasamy, M.; Kaliaperumal, R.; Britten, A.J.; Mkandawire, M. Copper oxide/mesoporous carbon nanocomposite synthesis, morphology and electrochemical properties for gel polymer-based asymmetric supercapacitors. J. Electroanal. Chem. 2019, 852, 113504. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.; Zhang, M. Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor. Mater. Res. Bull. 2008, 43, 3221–3226. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.; Liu, X.; Huang, J.; Yin, J.; Wang, G.; Cao, D. Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim. Acta 2012, 85, 393–398. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Ganjali, M.R. Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: A novel preparation strategy and characterization. J. Mater. Sci. 2017, 53, 295–308. [Google Scholar] [CrossRef]
- Serrapede, M.; Rafique, A.; Fontana, M.; Zine, A.; Rivolo, P.; Bianco, S.; Chetibi, L.; Tresso, E.; Lamberti, A. Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers. Carbon 2019, 144, 91–100. [Google Scholar] [CrossRef]
- Qu, Q.; Yang, S.; Feng, X. 2D Sandwich-like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Adv. Mater. 2011, 23, 5574–5580. [Google Scholar] [CrossRef] [PubMed]
- Eskusson, J.; Rauwel, P.; Nerut, J.; Jänes, A. A hybrid capacitor based on Fe3O4-graphene nanocomposite/few-layer graphene in different aqueous electrolytes. J. Electrochem. Soc. 2016, 163, A2768. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Chen, H.-C.; Lyu, Y.-R.; Fang, A.; Lee, G.-J.; Karuppasamy, L.; Wu, J.J.; Lin, C.-K.; Anandan, S.; Chen, C.-Y. The Design of ZnO Nanorod Arrays Coated with MnOx for High Electrochemical Stability of a Pseudocapacitor Electrode. Nanomaterials 2020, 10, 475. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, I.; Yasin, A.S.; Liu, C. Synthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceram. Int. 2020, 46, 3912–3920. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Si, H.; Shi, Y.; Sun, C.; Zhang, Y. Porous Mo–C coverage on ZnO rods for enhanced supercapacitive performance. Dalton Trans. 2020, 49, 5134–5142. [Google Scholar] [CrossRef]
- He, D.; Wan, J.; Liu, G.; Suo, H.; Zhao, C. Design and construction of hierarchical α-Co(OH)2-coated ultra-thin ZnO flower nanostructures on nickel foam for high performance supercapacitors. J. Alloy. Compd. 2020, 838, 155556. [Google Scholar] [CrossRef]
- Ding, S.; Li, X.; Jiang, X.; Hu, Q.; Yan, Y.; Zheng, Q.; Lin, D. Core-shell nanostructured ZnO@ CoS arrays as advanced electrode materials for high-performance supercapacitors. Electrochimica Acta 2020, 354, 136711. [Google Scholar] [CrossRef]
- Wu, D.; Han, H.; Hong, X.; Tao, S.; Xu, S.; Qian, B.; Wang, L.; Chen, X.; Chu, P.K. A novel self-branching MnCo2O4/nanographene hybrid composites on macroporous electrically conductive network as bifunctional electrodes for boosting miniature supercapacitors and sodium ion batteries. J. Alloys Compd. 2020, 846, 155720. [Google Scholar] [CrossRef]
- Sumedha, H.; Alsaiari, M.A.; Jalalah, M.S.; Shashank, M.; Alharthi, F.A.; Ahmad, N.; Algethami, J.S.; Vishwanth, V.; Ganganagappa, N. Rapid Microwave Synthesis of β-SnWO4 Nanoparticles: An Efficient Anode Material for Lithium Ion Batteries. Crystals 2021, 11, 334. [Google Scholar] [CrossRef]
- Saren, P.; De Adhikari, A.; Khan, S.; Nayak, G.C. Self-assembled GNS wrapped flower-like MnCo2O4 nanostructures for supercapacitor application. J. Solid State Chem. 2019, 271, 282–291. [Google Scholar] [CrossRef]
- Ma, L.; Shen, X.; Zhou, H.; Ji, Z.; Chen, K.; Zhu, G. High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem. Eng. J. 2015, 262, 980–988. [Google Scholar] [CrossRef]
- Lei, Y.; Li, J.; Wang, Y.; Gu, L.; Chang, Y.; Yuan, H.; Xiao, D. Rapid Microwave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo2O4 Microsphere for High-Performance Supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 1773–1780. [Google Scholar] [CrossRef]
- Li, Z.; Yao, Y.; Zheng, Y.; Gao, T.; Liu, Z.; Zhou, G. Fabrication of core-shell Fe3O4@ C@ MnO2 microspheres and their application in supercapacitors. J. Electrochem. Soc. 2018, 165, E58. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Matras-Postolek, K.; Yang, P. Ni2P nanosheets modified N-doped hollow carbon spheres towards enhanced supercapacitor performance. J. Alloys Compd. 2021, 854, 157111. [Google Scholar] [CrossRef]
- Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S.S. Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. J. Alloys Compd. 2021, 852, 156929. [Google Scholar] [CrossRef]
- Yi, M.; Lu, B.; Zhang, X.; Tan, Y.; Zhu, Z.; Pan, Z.; Zhang, J. Ionic liquid-assisted synthesis of nickel cobalt phosphide embedded in N, P codoped-carbon with hollow and folded structures for efficient hydrogen evolution reaction and supercapacitor. Appl. Catal. B Environ. 2021, 283, 119635. [Google Scholar] [CrossRef]
- Sumedha, H.; Shashank, M.; Alharthi, F.A.; Santosh, M.S.; Praveen, B.; Nagaraju, G. Synthesis of novel pseudo-capacitive perovskite nanostructured flowerlike KTaO3 for lithium-ion storage. Int. J. Hydrogen Energy 2021, 46, 28214–28220. [Google Scholar] [CrossRef]
- Chen, H.; Du, X.; Sun, J.; Wu, R.; Wang, Y.; Xu, C. Template-free synthesis of novel Co3O4 micro-bundles assembled with flakes for high-performance hybrid supercapacitors. Ceram. Int. 2021, 47, 716–724. [Google Scholar] [CrossRef]
- Dai, M.; Zhao, D.; Wu, X. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin. Chem. Lett. 2020, 31, 2177–2188. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Yu, Z.; Wei, L.; Guo, X. Mesoporous NiMoO4 microspheres decorated by Ag quantum dots as cathode material for asymmetric supercapacitors: Enhanced interfacial conductivity and capacitive storage. Appl. Surf. Sci. 2020, 505, 144513. [Google Scholar] [CrossRef]
- Xuan, H.; Li, H.; Yang, J.; Liang, X.; Xie, Z.; Han, P.; Wu, Y. Rational design of hierarchical core-shell structured CoMoO4@CoS composites on reduced graphene oxide for supercapacitors with enhanced electrochemical performance. Int. J. Hydrogen Energy 2020, 45, 6024–6035. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, C.; Zou, Y.; Liang, J.; Zhang, H.; Yan, E.; Xu, F.; Hu, X.; Cheng, Q.; Sun, L. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes. J. Mater. Sci. Technol. 2020, 55, 223–230. [Google Scholar] [CrossRef]
- Adhikari, S.; Selvaraj, S.; Ji, S.; Kim, D. Encapsulation of Co3O4Nanocone Arrays via Ultrathin NiO for Superior Performance Asymmetric Supercapacitors. Small 2020, 16, e2005414. [Google Scholar] [CrossRef]
- Liu, G.; Ma, L.; Liu, Q. The preparation of Co3O4@ MnO2 hierarchical nano-sheets for high-output potential supercapacitors. Electrochimica Acta 2020, 364, 137265. [Google Scholar] [CrossRef]
- Yi, T.-F.; Mei, J.; Guan, B.; Cui, P.; Luo, S.; Xie, Y.; Liu, Y.-G. Construction of spherical NiO@ MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor. Ceram. Int. 2020, 46, 421–429. [Google Scholar] [CrossRef]
- Arunpandiyan, S.; Bharathi, S.; Pandikumar, A.; Arasi, S.E.; Arivarasan, A. Structural analysis and redox additive electrolyte based supercapacitor performance of ZnO/CeO2 nanocomposite. Mater. Sci. Semicond. Process. 2020, 106, 104765. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, W.; Liang, R.; Tjandra, R.; Yu, A. Graphene quantum dot induced tunable growth of nanostructured MnCo2O4.5 composites for high-performance supercapacitors. Sustain. Energy Fuels 2019, 3, 2499–2508. [Google Scholar] [CrossRef]
- Hussain, I.; Ali, A.; Lamiel, C.; Mohamed, S.G.; Sahoo, S.; Shim, J.-J. A 3D walking palm-like core–shell CoMoO4@NiCo2S4@nickel foam composite for high-performance supercapacitors. Dalton Trans. 2019, 48, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hong, X.; Zhang, X.; Wang, W.; Guo, W.; Liu, X.; Ye, M. Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem. Eng. J. 2019, 356, 985–993. [Google Scholar] [CrossRef]
- Chen, H.; Hu, H.; Han, F.; Liu, J.; Zhang, Y.; Zheng, Y. CoMoO4/bamboo charcoal hybrid material for high-energy-density and high cycling stability supercapacitors. Dalton Trans. 2020, 49, 10799–10807. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Sun, X.; Yu, J.; Liu, Q.; Liu, J.; Chen, R.; Zhang, H.; Li, R.; Yu, J.; Wang, J. Rationally designed CuCo2O4@Ni(OH)2 with 3D hierarchical core-shell structure for flexible energy storage. J. Colloid Interface Sci. 2019, 557, 76–83. [Google Scholar] [CrossRef]
- Shi, K.; Zhitomirsky, I. Influence of current collector on capacitive behavior and cycling stability of Tiron doped polypyrrole electrodes. J. Power Sources 2013, 240, 42–49. [Google Scholar] [CrossRef]
- Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and PolypyrrolePseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett. 2014, 14, 2522–2527. [Google Scholar] [CrossRef]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, C.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 2015, 9, 11200–11208. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef] [Green Version]
- Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S.O.; Tolbert, S.H.; Smarsly, B.M.; Dunn, B.; Brezesinski, T. Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains. J. Am. Chem. Soc. 2010, 132, 6982–6990. [Google Scholar] [CrossRef]
- Vangari, M.; Pryor, T.; Jiang, L. Supercapacitors: Review of Materials and Fabrication Methods. J. Energy Eng. 2013, 139, 72–79. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.; Ruoff, R. Graphene-Based Ultracapacitors. ECS Meet. Abstr. 2010, 8, 3498–3502. [Google Scholar] [CrossRef]
- Najib, S.; Erdem, E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Adv. 2019, 1, 2817–2827. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.Y.; Khiew, P.; Isa, D.; Tan, T.K.; Chiu, W.S.; Chia, C.H. A review of metal oxide composite electrode materials for electrochemical capacitors. Nano 2014, 9. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Ramaprabhu, S. Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J. Phys. Chem. C 2007, 111, 7727–7734. [Google Scholar] [CrossRef]
- Yoo, H.D.; Han, S.-D.; Bayliss, R.D.; Gewirth, A.A.; Genorio, B.; Rajput, N.N.; Persson, K.A.; Burrell, A.K.; Cabana, J. “Rocking-chair”-type metal hybrid supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 30853–30862. [Google Scholar] [CrossRef]
- Gao, H.; Xiao, F.; Ching, C.B.; Duan, H. High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2. ACS Appl. Mater. Interfaces 2012, 4, 2801–2810. [Google Scholar] [CrossRef]
- Shi, L.; Jin, L.; Meng, Z.; Sun, Y.; Li, C.; Shen, Y. A novel porous carbon material derived from the byproducts of bean curd stick manufacture for high-performance supercapacitor use. RSC Adv. 2018, 8, 39937–39947. [Google Scholar] [CrossRef] [Green Version]
- Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E.E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441–473. [Google Scholar] [CrossRef]
- Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.T.; Lee, T.H.; Luong, D.H.; Yao, F.; Ghosh, A.; Le, V.T.; Kim, T.H.; Li, B.; Chang, J.; Lee, Y.H. Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors. ACS Nano 2015, 9, 2018–2027. [Google Scholar] [CrossRef]
- Zhi, M.; Manivannan, A.; Meng, F.; Wu, N. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. J. Power Sources 2012, 208, 345–353. [Google Scholar] [CrossRef]
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gomez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef]
Maaterials | Elecctrolyte | Specific Capacitance | Cycles | References |
---|---|---|---|---|
Co3O4 | 2 M KOH | 282 C/g | 4000 (90.1%) | [76] |
Ag-Co3O4/NF | 3 M KOH | 1425 F/g | 5000 (96.4%) | [80] |
NiO@Co3O4 | 3 M KOH | 1242 C/g | 12,000 (95.5%) | [81] |
Co3O4/MnO2 | 1 M Na2SO4 | 616 F/g | 10,000 (83.1%) | [82] |
NiO@MnO2 | - | 1219 F/g | 10,000 (76.7%) | [83] |
ZnO/CeO2 | 0.2 M K4[Fe(CN)6] in 3 M KOH | 495 F/g | 2000 (95%) | [84] |
ZnO/Mo-C graphene QD/MnCo2O4.5 | 2 M KOH | 1625 F/g | 5000 (80%) | [85] |
Co3O4@NiCo2S4/NF | 3 M KOH | 17 F/cm−2 | 10,000 (114%) | [86] |
Ag Quantum dots/NiMoO4 | 3 M KOH | 2074 F/g | 1000 (81%) | [78] |
Co9S8@NiCo2O4 | 3 M KOH | 1966 F/g | 5000 (92%) | [87] |
CoMoO4@MoZn22 | 3 M KOH | 923 C/g | 7000 (92%) | [88] |
CuCo2O4@Ni(OH)2 | 2 M KOH | 2160 F/g | 5000 (92%) | [89] |
Supercapacitors | Batteries | |
---|---|---|
Cost | Lower cost | Some material are higher cost |
Heat build | Due to 95% of cycle efficiency, Low thermal energy releases | Charging of a cell causes serious damage, by producing enormous amount of heat |
Charge protection | No danger if overcharged | Circuits are required to detect the overcharging |
Environmental | No corrosive chemicals | Chemicals required to create and dispose of |
Energy density | Stores only 10–20% of that of an electrochemical battery, but it has highest energy density of all capacitors | Stores about 10 times the capacity of supercapacitors |
Power density | Very rapid discharge of energy, and voltage level is non usable for about 3/4th of the discharge cycle | Steady and linear discharge of energy and uses specific voltage for 95% of the batteries discharge cycle |
Voltage range | Maximum voltage is low | Maximum voltage can reach double digits |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagarajarao, S.H.; Nandagudi, A.; Viswanatha, R.; Basavaraja, B.M.; Santosh, M.S.; Praveen, B.M.; Pandith, A. Recent Developments in Supercapacitor Electrodes: A Mini Review. ChemEngineering 2022, 6, 5. https://doi.org/10.3390/chemengineering6010005
Nagarajarao SH, Nandagudi A, Viswanatha R, Basavaraja BM, Santosh MS, Praveen BM, Pandith A. Recent Developments in Supercapacitor Electrodes: A Mini Review. ChemEngineering. 2022; 6(1):5. https://doi.org/10.3390/chemengineering6010005
Chicago/Turabian StyleNagarajarao, Sumedha Harike, Apurva Nandagudi, Ramarao Viswanatha, Basavanakote Mahadevappa Basavaraja, Mysore Sridhar Santosh, Beekanahalli Mokshanatha Praveen, and Anup Pandith. 2022. "Recent Developments in Supercapacitor Electrodes: A Mini Review" ChemEngineering 6, no. 1: 5. https://doi.org/10.3390/chemengineering6010005
APA StyleNagarajarao, S. H., Nandagudi, A., Viswanatha, R., Basavaraja, B. M., Santosh, M. S., Praveen, B. M., & Pandith, A. (2022). Recent Developments in Supercapacitor Electrodes: A Mini Review. ChemEngineering, 6(1), 5. https://doi.org/10.3390/chemengineering6010005