Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Standards and Solutions
2.2. Preparation of Photocatalysts
2.3. Characterization of Photocatalysts
2.4. Photodegradation Experiments
2.5. Chromatographic Analysis
3. Results and Discussion
3.1. Characterization of Photocatalysts
3.1.1. CD Characterization
3.1.2. CD Nanocomposites Characterization
3.2. Photodegradation Experiments
3.2.1. Evaluation of the Photocatalyst Performance
3.2.2. Evaluation of the Photocatalyst Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). State of World Fisheries and Aquaculture 2020: Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar]
- Almeida, A.; Duarte, S.; Nunes, R.; Rocha, H.; Pena, A.; Meisel, L. Human and Veterinary Antibiotics Used in Portugal—A Ranking for Ecosurveillance. Toxics 2014, 2, 188–225. [Google Scholar] [CrossRef]
- Cui, J.; Fu, L.; Tang, B.; Bin, L.; Li, P.; Huang, S.; Fu, F. Occurrence, ecotoxicological risks of sulfonamides and their acetylated metabolites in the typical wastewater treatment plants and receiving rivers at the Pearl River Delta. Sci. Total Environ. 2020, 709, 136192. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Zhao, H. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China. Environ. Pollut. 2020, 261, 114155. [Google Scholar] [CrossRef]
- Toledo-Neira, C.; Bravo, M.A.; Álvarez-Lueje, A. New approach for determination of flumequine and oxolinic acid in aqueous samples by ionic liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography-fluorescence detection. J. Chil. Chem. Soc. 2016, 61, 3262–3266. [Google Scholar] [CrossRef] [Green Version]
- Panja, S.; Sarkar, D.; Zhang, Z.; Datta, R. Removal of Antibiotics and Nutrients by Vetiver Grass (Chrysopogon zizanioides) from a Plug Flow Reactor Based Constructed Wetland Model. Toxics 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.M.; Ingerslev, F.; Baun, A. Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ. Toxicol. Chem. 2006, 25, 2208–2215. [Google Scholar] [CrossRef]
- Granada, L.; Sousa, N.; Lopes, S.; Lemos, M.F.L. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?—A review. Rev. Aquac. 2016, 8, 283–300. [Google Scholar] [CrossRef]
- Grigorakis, K.; Rigos, G. Aquaculture effects on environmental and public welfare—The case of Mediterranean mariculture. Chemosphere 2011, 85, 899–919. [Google Scholar] [CrossRef]
- Islam, M.S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: Review and analysis towards model development. Mar. Pollut. Bull. 2005, 50, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Lalumera, G.M.; Calamari, D.; Galli, P.; Castiglioni, S.; Crosa, G.; Fanelli, R. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere 2004, 54, 661–668. [Google Scholar]
- Read, P.; Fernandes, T. Management of environmental impacts of marine aquaculture in Europe. Aquaculture 2003, 226, 139–163. [Google Scholar] [CrossRef]
- Kreuzig, R.; Höltge, S. Investigations on the fate of sulfadiazine in manured soil: Laboratory experiments and test plot studies. Environ. Toxicol. Chem. 2005, 24, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-T.; Lin, J.-J. Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments. Chemosphere 2009, 75, 462–468. [Google Scholar] [CrossRef]
- Abdurahman, M.H.; Abdullah, A.Z.; Shoparwe, N.F. A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chem. Eng. J. 2021, 413, 127412. [Google Scholar] [CrossRef]
- Baaloudj, O.; Assadi, I.; Nasrallah, N.; El Jery, A.; Khezami, L.; Assadi, A.A. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review. J. Water Process. Eng. 2021, 42, 102089. [Google Scholar] [CrossRef]
- Shurbaji, S.; Huong, P.; Altahtamouni, T. Review on the Visible Light Photocatalysis for the Decomposition of Ciprofloxacin, Norfloxacin, Tetracyclines, and Sulfonamides Antibiotics in Wastewater. Catalysts 2021, 11, 437. [Google Scholar] [CrossRef]
- Wu, S.; Lin, Y.; Hu, Y.H. Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: A review. J. Mater. Chem. A 2021, 9, 2592–2611. [Google Scholar] [CrossRef]
- Chuaicham, C.; Sekar, K.; Pawar, R.R.; Xiong, Y.; Dado, I.; Ohtani, B.; Kim, Y.; Song, J.T.; Ishihara, T.; Sasaki, K. Energy-resolved distribution of electron traps for O/S-doped carbon nitrides by reversed double-beam photoacoustic spectroscopy and the photocatalytic reduction of Cr(VI). Chem. Commun. 2020, 56, 3793–3796. [Google Scholar] [CrossRef]
- Chuaicham, C.; Sekar, K.; Xiong, Y.; Balakumar, V.; Mittraphab, Y.; Shimizu, K.; Ohtani, B.; Dabo, I.; Sasaki, K. Single-step synthesis of oxygen-doped hollow porous graphitic carbon nitride for photocatalytic ciprofloxacin decomposition. Chem. Eng. Sci. 2021, 425, 130502. [Google Scholar]
- Wu, T.; He, Q.; Liu, Z.; Shao, B.; Liang, Q.; Pan, Y.; Huang, J.; Peng, Z.; Liu, Y.; Zhao, C.; et al. Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4. J. Hazard. Mater. 2022, 424, 127177. [Google Scholar] [CrossRef]
- Balakumar, V.; Sekar, K.; Chuaicham, C.; Manivannan, R.; Sasaki, K. Synergistic ternary porous CN–PPy–MMt nanocomposite for efficient photocatalytic metronidazole mineralization: Performance, mechanism, and pathways. Environ. Sci. Nano 2021, 8, 2261. [Google Scholar] [CrossRef]
- Balakumar, V.; Ramalingam, M.; Sekar, K.; Chuaicham, C.; Sasaki, K. Fabrication and characterization of carbon quantum dots decorated hollow porous graphitic carbon nitride through polyaniline for photocatalysis. Chem. Eng. J. 2021, 426, 131739. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants. J. Hazard. Mater. 2022, 423, 127207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, T.; Li, X.; Xu, J.; Zeng, H. Progress of Carbon Quantum Dots in Photocatalysis Applications. Part. Part. Syst. Charact. 2016, 33, 457–472. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Guan, W.; Huang, H.; Liu, Y. Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 2017, 173, 295. [Google Scholar] [CrossRef]
- Hazarika, D.; Karak, N. Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach. Appl. Surf. Sci. 2016, 376, 276–285. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L.; Wu, W.; Wang, S.; Qiang, L. Highly efficient photocatalysis toward tetracycline under simulated solar-light by Ag+-CDs-Bi2WO6: Synergistic effects of silver ions and carbon dots. Appl. Catal. B Environ. 2016, 192, 277. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, D.; Chen, T.; Cai, M.; Zhang, Q.; Xie, Z.; Li, R.; Xiao, Z.; Liu, G.; Lv, W. Study on heterogeneous photocatalytic ozonation degradation of ciprofloxacin by TiO2/carbon dots: Kinetic, mechanism and pathway investigation. Chemosphere 2019, 227, 198–206. [Google Scholar] [CrossRef] [PubMed]
- De, B.; Karak, N. Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. J. Mater. Chem. A 2017, 5, 1826–1859. [Google Scholar] [CrossRef]
- Bozetine, H.; Wang, Q.; Barras, A.; Li, M.; Hadjersi, T.; Szunerits, S.; Boukherroub, R. Green chemistry approach for the synthesis of ZnO–carbon dots nanocomposites with good photocatalytic properties under visible light. J. Colloid Interface Sci. 2016, 465, 286–294. [Google Scholar] [CrossRef]
- Bhaisare, M.L.; Talib, A.; Khan, M.S.; Pandey, S.; Wu, H.-F. Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim. Acta 2015, 182, 2173–2181. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, M.; Ma, J.; Han, G.; Li, S.; Zhao, H.; Zhao, B.; Zhu, Q.; Tong, Z. Enhanced photocatalytic capability of SiO2/CQD nanocomposites. J. Nanopart. Res. 2014, 16, 2635. [Google Scholar] [CrossRef]
- Yu, B.Y.; Kwak, S.-Y. Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J. Mater. Chem. 2012, 22, 8345–8353. [Google Scholar] [CrossRef]
- Ahmadpour, N.; Sayadi, M.H.; Sobhani, S.; Hajiani, M. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. J. Environ. Manag. 2020, 271, 110964. [Google Scholar] [CrossRef]
- Manioudakis, J.; Victoria, F.; Thompson, C.A.; Brown, L.; Movsum, M.; Lucifero, R.; Naccache, R. Effects of nitrogen-doping on the photophysical properties of carbon dots. J. Mater. Chem. 2019, C7, 853–862. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Zhan, Q.; Pu, Y.; Wang, J.-X.; Foster, N.R.; Dai, L. Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications. Engineering 2017, 3, 402–408. [Google Scholar] [CrossRef]
- Padmini, M.; Balaganapathi, T.; Thilakan, P. Mesoporous rutile TiO2: Synthesis, characterization and photocatalytic performance studies. Mater. Res. Bull. 2021, 144, 111480. [Google Scholar] [CrossRef]
- Saravanan, L.; Patil, R.A.; Gultom, P.; Kumar, B.; Manikandan, A.; Fu, Y.-P.; Chueh, Y.-L.; Cheng, C.-L.; Yeh, W.-C.; Ma, Y.-R. Rutile-phase TiO2@carbon core-shell nanowires and their photoactivation in visible light region. Carbon 2021, 181, 280–289. [Google Scholar] [CrossRef]
- Yan, D.; Liu, Y.; Liu, C.-Y.; Zhang, Z.-Y.; Nie, S.-D. Multi-component in situ and in-step formation of visible-light response C-dots composite TiO2 mesocrystals. RSC Adv. 2016, 6, 14306–14313. [Google Scholar] [CrossRef]
- Chen, P.; Wang, F.; Chen, Z.-F.; Zhang, Q.; Su, Y.; Shen, L.; Yao, K.; Liu, Y.; Cai, Z.; Lv, W.; et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Appl. Catal. B Environ. 2017, 204, 250–259. [Google Scholar] [CrossRef]
- Yadav, M.S.P.; Neghi, N.; Kumar, M.; Varghese, G.K. Photocatalytic-oxidation and photo-persulfate-oxidation of sulfadiazine in a laboratory-scale reactor: Analysis of catalyst support, oxidant dosage, removal-rate and degradation pathway. J. Environ. Manag. 2018, 222, 164–173. [Google Scholar] [CrossRef]
- Louros, V.L.; Silva, C.P.; Nadais, H.; Otero, M.; Esteves, V.I.; Lima, D.L.D. Oxolinic acid in aquaculture waters: Can natural attenuation through photodegradation decrease its concentration? Sci. Total Environ. 2020, 749, 141661. [Google Scholar] [CrossRef]
- Sharma, S.; Umar, A.; Mehta, S.K.; Ibhadond, A.O.; Kansal, S.K. Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dot nanocomposites. New J. Chem. 2018, 42, 7445–7456. [Google Scholar] [CrossRef]
- Calisto, V.; Domingues, M.R.; Erny, G.; Esteves, V.I. Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Res. 2011, 45, 1095–1104. [Google Scholar] [CrossRef]
- Dos Louros, V.L.; Silva, C.P.; Nadais, H.; Otero, M.; Esteves, V.I.; Lima, D.L. Photodegradation of sulfadiazine in different aquatic environments—Evaluation of influencing factors. Environ. Res. 2020, 188, 109730. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Jiang, W.; Chen, L.; Xu, P.; Wang, H. Treatment of Produced Water with Photocatalysis: Recent Advances, Affecting Factors and Future Research Prospects. Catalysis 2020, 10, 924. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Sirtori, C.; Agüera, A.; Gernjak, W.; Malato, S. Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Res. 2010, 44, 2735–2744. [Google Scholar] [CrossRef] [PubMed]
Sample | Titanium (at%) | Oxygen (at%) | Chlorine (at%) | Carbon (at%) |
---|---|---|---|---|
CD@TiO2 | 13.04 ± 1.29 | 30.2 ± 7.80 | 2.14 ± 0.27 | 54.39 ± 8.07 |
CD/TiO2 | 2.32 ± 0.34 | 7.98 ± 2.21 | 31.56 ± 1.20 | 58.14 ± 9.01 |
TiO2 | 4.88 ± 0.58 | 10.21 ± 3.18 | 28.19 ± 1.45 | 56.72 ± 10.74 |
k ± SD (h−1) | r2 | t1/2 ± SD (h) | SSD ± SD | |
---|---|---|---|---|
SDZ, UW | 0.054 ± 0.003 | 0.9769 | 12.8 ± 0.8 | 3.4 ± 0.2 |
SDZ + CD@TiO2, UW | 0.71 ± 0.02 | 0.9973 | 0.98 ± 0.03 | 0.258 ± 0.008 |
SDZ, SSS | 0.048 ± 0.002 | 0.9915 | 14.5 ± 0.7 | 3.8 ± 0.2 |
SDZ + CD@TiO2, SSS | 1.8 ± 0.2 | 0.9803 | 0.38 ± 0.04 | 0.10 ± 0.01 |
OXA, UW | 0.45 ± 0.02 | 0.9925 | 1.54 ± 0.07 | 0.41 ± 0.02 |
OXA + CD/TiO2, UW | 0.63 ± 0.03 | 0.9937 | 1.10 ± 0.05 | 0.29 ± 0.01 |
OXA, SSS | 0.20 ± 0.02 | 0.9646 | 3.5 ± 0.3 | 0.91 ± 0.09 |
OXA + CD/TiO2, SSS | 0.18 ± 0.02 | 0.9693 | 3.9 ± 0.4 | 1.0 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louros, V.L.; Ferreira, L.M.; Silva, V.G.; Silva, C.P.; Martins, M.A.; Otero, M.; Esteves, V.I.; Lima, D.L.D. Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites. Toxics 2021, 9, 330. https://doi.org/10.3390/toxics9120330
Louros VL, Ferreira LM, Silva VG, Silva CP, Martins MA, Otero M, Esteves VI, Lima DLD. Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites. Toxics. 2021; 9(12):330. https://doi.org/10.3390/toxics9120330
Chicago/Turabian StyleLouros, Vitória L., Liliana M. Ferreira, Valentina G. Silva, Carla Patrícia Silva, Manuel A. Martins, Marta Otero, Valdemar I. Esteves, and Diana L. D. Lima. 2021. "Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites" Toxics 9, no. 12: 330. https://doi.org/10.3390/toxics9120330
APA StyleLouros, V. L., Ferreira, L. M., Silva, V. G., Silva, C. P., Martins, M. A., Otero, M., Esteves, V. I., & Lima, D. L. D. (2021). Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites. Toxics, 9(12), 330. https://doi.org/10.3390/toxics9120330