Potentially Toxic Element Levels in Atmospheric Particulates and Health Risk Estimation around Industrial Areas of Maros, Indonesia
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Sampling Procedures
2.3. Human Data Collection
2.4. Health Risk Assessment
2.5. Monte Carlo Simulation
3. Results and Discussion
3.1. Concentrations of TSP and PTEs
3.2. Health Exposure Assessment
3.2.1. Daily Intake and Non-Carcinogenic Risk
3.2.2. Carcinogenic Risk
3.3. Monte Carlo Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Sakib, S.N. Bangladesh: Air Pollution Engulfs Lives, Environment. In Experts Attribute Situation to Transboundary Air Pollution, Unplanned Development and Construction Works; Anadolu Agency: Dhaka, Bangladesh, 2021; Available online: https://www.aa.com.tr/en/environment/bangladesh-air-pollution-engulfs-lives-environment/2190506# (accessed on 9 June 2021).
- Tang, M.; Li, D.; Liew, Z.; Wei, F.; Wang, J.; Jin, M.; Chen, K.; Ritz, B. The association of short-term effects of air pollution and sleep disorders among elderly residents in China. Sci. Total Environ. 2020, 708, 134846. [Google Scholar] [CrossRef]
- Greenstone, M.; Fan, Q. Indonesia’s Worsening Air Quality and Its Impact on Life Expectancy; Energy Policy Institute at The University of Chicago: Chicago, USA, 2019. [Google Scholar]
- Qadeer, A.; Saqib, Z.A.; Ajmal, Z.; Xing, C.; Khalil, S.K.; Usman, M.; Huang, Y.; Bashir, S.; Ahmad, Z.; Ahmed, S.; et al. Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration. Sustain. Cities Soc. 2019, 53. [Google Scholar] [CrossRef]
- Fry, K.L.; Gillings, M.M.; Isley, C.F.; Gunkel-Grillon, P.; Taylor, M.P. Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk. Environ. Pollut. 2021, 288, 117593. [Google Scholar] [CrossRef]
- Astuti, R.D.P.; Mallongi, A.; Amiruddin, R.; Hatta, M.; Rauf, A.U. Risk identification of heavy metals in well water surrounds watershed area of Pangkajene, Indonesia. Gac. Sanit. 2021, 35, S33–S37. [Google Scholar] [CrossRef] [PubMed]
- Haghnazar, H.; Hudson-edwards, K.A.; Kumar, V.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 2021, 285. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Cave, M.; Sorooshian, A.; Mahmoudi, M.R.; Ahmadi, M.R.; Golshani, R. In vitro bioaccessibility, phase partitioning, and health risk of potentially toxic elements in dust of an iron mining and industrial complex. Ecotoxicol. Environ. Saf. 2021, 212, 111972. [Google Scholar] [CrossRef]
- Vaziri, A.; Nazarpour, A.; Ghanavati, N.; Babainejad, T.; Watts, M.J. An integrated approach for spatial distribution of potentially toxic elements (Cu, Pb and Zn) in topsoil. Sci. Rep. 2021, 11, 7806. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Ra, K. Potentially toxic elements pollution in road deposited sediments around the active smelting industry of Korea. Sci. Rep. 2021, 11, 7238. [Google Scholar] [CrossRef]
- Krupnova, T.G.; Rakova, O.V.; Gavrilkina, S.V.; Antoshkina, E.G.; Baranov, E.O.; Yakimova, O.N. Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia. Chemosphere 2020, 261, 127799. [Google Scholar] [CrossRef]
- Liu, P.; Lei, Y.; Ren, H.; Gao, J.; Xu, H.; Shen, Z.; Zhang, Q.; Zheng, C.; Liu, H.; Zhang, R.; et al. Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China. Atmosphere 2017, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- ATSDR. Toxicological Profile for Chromium; ATSDR: Atlanta, GA, USA, 2008. [Google Scholar]
- ATSDR. Toxicological Profile for Arsenic; ATSDR: Atlanta, GA, USA, 2000. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Koszewicz, M.; Markowska, K.; Waliszewska-Prosol, M.; Poreba, R.; Gac, P.; Szymanska-Chabowska, A.; Mazur, G.; Wieczorek, M.; Ejma, M.; Slotwinski, K.; et al. The impact of chronic co-exposure to different heavy metals on small fibers of peripheral nerves. A study of metal industry workers. J. Occup. Med. Toxicol. 2021, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 227. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.U.; Mallongi, A.; Daud, A.; Hatta, M.; Wesam, A.M.; Amiruddin, R.; Rahman, S.A.; Wahyu, A.; Astuti, R.D.P. Community Health Risk Assessment of Total Suspended Particulates near a Cement Plant in Maros Regency, Indonesia. J. Health Pollut. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Astuti, R.D.P.; Mallongi, A.; Rauf, A.U. Risk identification of Hg and Pb in soil: A case study from Pangkep Regency, Indonesia. Soil Sci. Annu. 2021, 72. [Google Scholar] [CrossRef]
- IHME. GBD Compare Data Visualization; University of Washington: Washington, DC, USA, 2016. [Google Scholar]
- Rauf, A.U.; Mallongi, A.; Daud, A.; Hatta, M.; Astuti, R.D.P. Ecological risk assessment of hexavalent chromium and silicon dioxide in well water in Maros Regency, Indonesia ଝ. Gac. Sanit. 2021, 35, S4–S8. [Google Scholar] [CrossRef]
- Badan Pusat Statistik. Statistik Daerah Kabupaten Maros 2018; Maros: South Sulawesi, Indonesia, 2018. [Google Scholar]
- Fallahzadeh, R.A.; Ghaneian, M.T.; Miri, M.; Dashti, M.M. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environ. Sci. Pollut. Res. 2017, 24, 24790–24802. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K.; Mahato, M.K. Monte Carlo simulation-based probabilistic health risk assessment of metals in groundwater via ingestion pathway in the mining areas of Singhbhum copper belt, India. Int. J. Environ. Health Res. 2020, 30, 447–460. [Google Scholar] [CrossRef]
- Mainka, A. Children Health Risk Assessment of Metals in Total Suspended Particulate Matter (TSP) and PM 1 in Kindergartens during Winter and Spring Seasons. Atmosphere 2021, 12, 1096. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund Human Health Evaluation Manual (Part A); USEPA: Washington, DC, USA, 1989; Volume I.
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, Office of Emergency and Remedial Response; USEPA: Washington, DC, USA, 2002.
- USEPA. Toxicity Profiles RAGs A Format for Aluminum-CAS Number 7429905, RAIS. 2020. Available online: https://rais.ornl.gov/tox/profiles/Aluminum_ragsa.html (accessed on 13 August 2021).
- Mohammadi, A.A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.H.; Alinejad, A.; Yousefi, M.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 2019, 6, 1642–1651. [Google Scholar] [CrossRef]
- IRIS. Arsenic, Inorganic CASRN 7440-38-2|DTXSID4023886; IRIS: Washington, DC, USA, 1988. [Google Scholar]
- Sun, C.; Zhao, W.; Zhang, Q.; Yu, X.; Zheng, X.; Zhao, J.; Lv, M. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 727. [Google Scholar] [CrossRef] [Green Version]
- Cocârţă, D.M.; Neamţu, S.; Reşetar Deac, A.M. Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int. J. Environ. Sci. Technol. 2016, 13, 2025–2036. [Google Scholar] [CrossRef]
- Buranatrevedh, S. Health risk assessment of workers exposed to metals from an aluminium production plant. J. Med. Assoc. Thai. 2010, 93 (Suppl. 7), S136–S141. [Google Scholar]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health Risk Assessment of Heavy Metals in Road Dusts in Urban Parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Linn, W.S.; Kleinman, M.T.; Bailey, R.M.; Medway, D.A.; Spier, C.E.; Whynot, J.D.; Anderson, K.R.; Hackney, J.D. Human respiratory responses to an aerosol containing zinc ammonium sulfate. Environ. Res. 1981, 25, 404–414. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook: 2011 Edition; EPA/600/R-090/052F; Final Report; USEPA: Washington, DC, USA, 2011.
- Buhara, O.; Pehlivan, S. Monte Carlo simulation of reasons for early failure of implants: Effects of two risk factors. Br. J. Oral Maxillofac. Surg. 2019, 57, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Goldman, L.L. Crystal Ball Professional introductory tutorial. Proc. Winter Simul. Conf. 2002, 2, 1539–1545. [Google Scholar]
- Hwang, I.M.; Ha, J.-H. Human health risk assessment of toxic elements in South Korean cabbage, Kimchi, using Monte Carlo simulations. J. Food Compos. Anal. 2021, 102, 104046. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.; Wang, H.; Gao, X.; Huang, Q. Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation. Sci. Total Environ. 2019, 648, 805–810. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Nickel; ATSDR: Atlanta, GA, USA, 2005.
- Peraturan Pemerintah, “Peraturan Pemerintah (PP) Tentang Pengendalian Pencemaran Udara,” 1999. [Online]. Available online: https://peraturan.bpk.go.id/Home/Details/54332/pp-no-41-tahun-1999 (accessed on 21 July 2021).
- WHO. Guidelines for Air Quality; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Fakinle, B.S.; Uzodinma, O.B.; Odekanle, E.L.; Sonibare, J.A. Impact of elemental composition of particulate matter in the airshed of a University Farm on the local air quality. Heliyon 2020, 6, e03216. [Google Scholar] [CrossRef]
- USEPA. Air Pollution Aspects of Zinc and Its Compounds; Litton Systems, Inc.: Bethesda, MD, USA, 1969.
- Goudarzi, G.; Alavi, N.; Geravandi, S.; Idani, E.; Behrooz, H.R.A.; Babaei, A.A.; Alamdari, F.A.; Dobaradaran, S.; Farhadi, M.; Mohammadi, M.J. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran. Int. J. Biometeorol. 2018, 62, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- González, L.T.; Rodríguez, L.; Domínguez, M.; Cavazos, A.; Leyva-Porras, C.; Vidaurri, S.; Askar, K.A.; Kharissov, B.; Chiu, J.V.; Barbosa, J.A. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 2017, 196. [Google Scholar] [CrossRef]
- Jin, Y.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Assi, M.A.; Hezmee, M.N.M.; Haron, A.W.; Sabri, M.Y.M.; Rajion, M.A. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660–671. [Google Scholar] [CrossRef]
- Zhu, Y.; Costa, M. Metals and molecular carcinogenesis. Carcinogenesis 2020, 41, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, G.; Hopkins, R.; Poortinga, K.; McCallum, L. Systematic Review of Occupational Aluminium Exposure and Adverse Health Conditions; Workplace Safety & Insurance Board of Ontario: Toronto, ON, Canada, 2018. [Google Scholar]
- Gruszecka-kosowska, A. Deposited particulate matter enrichment in heavy metals and related health risk: A case study of Krakow, Poland. Proceedings 2020, 44, 1. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Ra, K. Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM 10 Fraction of Road Dust in Busan, South Korea. Atmosphere 2021, 12, 1229. [Google Scholar] [CrossRef]
- Mathiarasan, S.; Hüls, A. Impact of Environmental Injustice on Children’s Health-Interaction between Air Pollution and Socioeconomic Status. Int. J. Environ. Res. Public Health 2021, 18, 795. [Google Scholar] [CrossRef]
- Nordberg, G.; Fowler, B.; Nordberg, M. Handbook on the Toxicology of Metals, 4th ed.; Elsevier: London, UK, 2015; Volume I. [Google Scholar]
- Jasso-Pineda, Y.; Díaz-Barriga, F.; Calderón, J.; Yáñez, L.; Carrizales, L.; Pérez-Maldonado, I.N. DNA damage and decreased DNA repair in peripheral blood mononuclear cells in individuals exposed to arsenic and lead in a mining site. Biol. Trace Elem. Res. 2012, 146, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Orosun, M.M.; Adewuyi, A.D.; Salawu, N.B.; Isinkaye, M.O.; Orosun, O.R.; Oniku, A.S. Monte Carlo approach to risks assessment of heavy metals at automobile spare part and recycling market in Ilorin, Nigeria. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mallongi, A.; Stang, S.S.; Natsir, M.F.; Astuti, R.D.P.; Rauf, A.U.; Rachmat, M.; Muhith, A. Potential ecological risks of mercury contamination along communities area in tonasa cement industry Pangkep, Indonesia. Enferm Clin. 2020, 30. [Google Scholar] [CrossRef]
- Peraturan Pemerintah, “Peraturan Pemerintah (PP) Republik Indonesia No. 22 Tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup”. 2021. Available online: https://peraturan.bpk.go.id/Home/Details/161852/pp-no-22-tahun-2021 (accessed on 21 November 2021).
Definitions | Units | Symbols | Values | Sources |
---|---|---|---|---|
Metal concentration | mg/m3 for ADDinhalation, and mg.kg−1 for ADDoral and ADDdermal | C | Site-specific | |
Ingestion rate | mg.day−1 | 200, children 100, adults | [5,28] | |
Inhalation rate | m3.day−1 | 7.6, children 20, adults | [29] | |
Exposure duration | year | ED | Site-specific | |
Exposure frequency | days/year | EF | 350 | [29] |
Conversion factor | kg.mg−1 | CF | 1 × 10−6 | [28] |
Body weight | kg | BW | Site-specific | |
Averaging time | days | AT | ED × 365 days | Site-specific |
Particulate emission factor | m3/kg | PEF | 1.36 × 109 | [29] |
Dermal absorption factor | ABS | 0.001 | [28,29] | |
Skin surface area | cm2 | SA | Site-specific | |
Skin adherence factor | mg.cm−2 h | SL | 0.07, adults 0.2, children | [29] |
Metals | Dermal RfD | Ingestion RfD | Inhalation RfC | Ingestion CSF | Dermal CSF | Inhalation CSF | Sources |
---|---|---|---|---|---|---|---|
Al | 1.00 × 10−1 | 4.00 × 10−4 | 5.00 × 10−3 | - | - | - | [30,31] |
As | 3.00 × 10−4 | 3.00 × 10−4 | 3.00 × 10−4 | 1.50 × 10−3 | 1.5 × 10−3 | 1.5 × 10−3 | [32] |
Cr | 6.00 × 10−5 | 3.00 × 10−3 | 8.00 × 10−6 | 5.00 × 10−1 | 4.2 × 10−1 | 41 | [33,34] |
Cu | 12 | 40 | 1.20 × 10−4 | - | - | - | [31,35] |
Ni | 5.4 | 20 | 1.40 × 10−2 | - | - | - | [31,34] |
Pb | 5.20 × 10−4 | 3.50 × 10−3 | 5.20 × 10−4 | 8.50 × 10−3 | 4.2 × 10−1 | 4.2 × 10−2 | [34,36] |
Zn | 60 | 3.00 × 10−1 | 3.60 × 10−4 | - | - | - | [37,38] |
TSP | Al | As | Cr | Cu | Ni | Pb | Zn | ||
---|---|---|---|---|---|---|---|---|---|
Wet season | Aver | 51.75 | 2558.5 | 1.61 | 11.88 | 4.68 | 1.80 | 6.90 | 9844.5 |
Min | 6.39 | 6098.8 | 1.45 | 10.71 | 2.72 | 1.44 | 5.54 | 7956.7 | |
Max | 133.24 | 11,678.8 | 2.08 | 13.95 | 7.04 | 2.13 | 8.11 | 14,632.5 | |
Std | 43.8 | 2558.5 | 0.24 | 1.25 | 1.64 | 0.30 | 0.90 | 2587.8 | |
Dry season | Aver | 156.86 | 844.50 | 91.63 | 81.17 | 78.97 | BDL | 746.78 | 23247.1 |
Min | 8.07 | 58.6 | 51.94 | 8.21 | 4.74 | BDL | 130.33 | 15,139.4 | |
Max | 94.24 | 1446.66 | 136.81 | 187.8 | 243.7 | BDL | 1968.1 | 30,600.1 | |
Std | 33.9 | 33.63 | 27.93 | 81.46 | 99.07 | BDL | 918.8 | 7468.7 | |
Standard | |||||||||
Indonesian [44] | 230 μg/m3 (24 h) 90 μg/m3 (annually) | - | - | - | - | - | 2 μg/m3 (24 h) 1 μg/m3 (annually) | - | |
WHO [45] | 150–230 μg/m3 (24 h) 60–90 μg/m3 (annually) | - | 6.6 ng/m3 | 0.001 μg/m3 | - | 25 ng/m3 | 0.5 μg/m3 | - |
Al | As | Cr | Cu | Ni | Pb | Zn | HI | ||
---|---|---|---|---|---|---|---|---|---|
Adults | HQInh | 3.88 × 10−4 | 3.55 × 10−4 | 1.32 × 10−2 | 7.96 × 10−4 | 2.93 × 10−7 | 3.61 × 10−8 | 1.05 × 10−1 | 0.64 |
HQIng | 1.27 × 10−3 | 2.41 × 10−1 | 2.40 × 10−2 | 1.62 × 10−6 | 1.39 × 10−7 | 1.67 × 10−1 | 8.56 × 10−2 | ||
HQDerm | 5.85 × 10−5 | 4.33 × 10−10 | 4.80 × 10−3 | 2.16 × 10−8 | 2.06 × 10−9 | 4.49 × 10−3 | 1.70 × 10−6 | ||
Children | HQInh | 2.93 × 10−4 | 2.61 × 10−4 | 9.78 × 10−3 | 5.86 × 10−4 | 2.16 × 10−7 | 2.66 × 10−8 | 7.73 × 10−2 | 2.12 |
HQIng | 4.94 × 10−3 | 9.36 × 10−1 | 9.34 × 10−2 | 6.29 × 10−6 | 5.42 × 10−7 | 6.48 × 10−1 | 3.32 × 10−1 | ||
HQDerm | 1.41 × 10−4 | 2.62 × 10−3 | 1.01 × 10−2 | 5.87 × 10−8 | 5.62 × 10−9 | 1.22 × 10−2 | 4.65 × 10−6 |
Routes | As | Pb | Cr | TCR | |
---|---|---|---|---|---|
Adults | CRInh | 1.55 × 10−10 | 3.52 × 10−8 | 4.24 × 10−8 | 3.11 × 10−5 |
CRIng | 1.05 × 10−7 | 2.08 × 10−6 | 2.89 × 10−5 | ||
CRDerm | 2.41 × 10−11 | 5.46 × 10−8 | 6.58 × 10−9 | ||
Children | CRInh | 1.14 × 10−10 | 2.60 × 10−8 | 3.14 × 10−8 | 1.32 × 10−4 |
CRIng | 4.11 × 10−7 | 1.89 × 10−5 | 1.12 × 10−4 | ||
CRDerm | 1.66 × 10−10 | 3.77 × 10−7 | 4.55 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauf, A.U.; Mallongi, A.; Lee, K.; Daud, A.; Hatta, M.; Al Madhoun, W.; Astuti, R.D.P. Potentially Toxic Element Levels in Atmospheric Particulates and Health Risk Estimation around Industrial Areas of Maros, Indonesia. Toxics 2021, 9, 328. https://doi.org/10.3390/toxics9120328
Rauf AU, Mallongi A, Lee K, Daud A, Hatta M, Al Madhoun W, Astuti RDP. Potentially Toxic Element Levels in Atmospheric Particulates and Health Risk Estimation around Industrial Areas of Maros, Indonesia. Toxics. 2021; 9(12):328. https://doi.org/10.3390/toxics9120328
Chicago/Turabian StyleRauf, Annisa Utami, Anwar Mallongi, Kiyoung Lee, Anwar Daud, Muhammad Hatta, Wesam Al Madhoun, and Ratna Dwi Puji Astuti. 2021. "Potentially Toxic Element Levels in Atmospheric Particulates and Health Risk Estimation around Industrial Areas of Maros, Indonesia" Toxics 9, no. 12: 328. https://doi.org/10.3390/toxics9120328
APA StyleRauf, A. U., Mallongi, A., Lee, K., Daud, A., Hatta, M., Al Madhoun, W., & Astuti, R. D. P. (2021). Potentially Toxic Element Levels in Atmospheric Particulates and Health Risk Estimation around Industrial Areas of Maros, Indonesia. Toxics, 9(12), 328. https://doi.org/10.3390/toxics9120328