Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs
Abstract
:1. Introduction
2. Cadmium (Cd)
2.1. Toxicity of Cadmium in Female Reproductive Organs
2.2. Toxicity of Cadmium in Male Reproductive Organs
3. Lead (Pb)
3.1. Toxicity of Lead in Female Reproductive Organs
3.2. Toxicity of Lead in Male Reproductive Organs
4. Mercury (Hg)
4.1. Toxicity of Mercury in Female Reproductive Organs
4.2. Toxicity of Mercury in Male Reproductive Organs
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Cd | Cadmium |
Pb | Lead |
Hg | Mercury |
17β-HSD | 17β-hydroxysteroid dehydrogenase |
ALP | Alkaline phosphatase |
AMH | Anti-Mullerian hormone |
CAT | Catalase |
CL | Corpus luteum |
ERK1/2 | Extracellular signal-regulated kinases 1 and 2 |
FSH | Follicular stimulating hormone |
GPx | Glutathione peroxidase |
IGF-I | Insulin-like growth factor 1 |
LDH | Lactate dehydrogenase |
LH | Luteinizing hormone |
MAPK | Mitogen-activated protein kinases |
MDA | Malondialdehyde |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
PCOS | Polycystic ovary syndrome |
PGF2-α | Prostaglandin F2-alpha |
PGE2 | Prostaglandin E2 |
ROS | Reactive oxygen species |
RWPE1, PWR1E | Non-malignant prostate epithelial cells |
SOD | Superoxide dismutase |
TAS | Total antioxidant status |
TEM | Transmission electron microscopy |
WHO | World Health Organization |
References
- Roychoudhury, S.; Massányi, P. Introduction to Male Reproduction and Toxicity; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2014; p. 30. [Google Scholar]
- Lukáč, N.; Massányi, P.; Kročková, J.; Naď, P.; Slamečka, J.; Ondruška, L.; Formicki, G.; Trandžík, J. Relationship between trace element concentrations and spermatozoa quality in rabbit semen. Slovak J. Anim. Sci. 2009, 42, 46–50. [Google Scholar]
- Satarug, S.; Gobe, G.C.; Vesey, D.A.; Phelps, K.R. Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics 2020, 8, 86. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Orisakwe, O.E. Current mechanistic perspectives on male reproductive toxicity induced by heavy metals. J. Environ. Sci. Health Part C Toxicol. Carcinog. 2020, 38, 204–244. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.M.S.; Moreira, A.C.; Sousa, M.; Mathur, P.P.; Oliveira, P.F.; Alves, M.G. Sertoli cell as a model in male reproductive toxicology: Advantages and disadvantages. J. Appl. Toxicol. 2015, 35, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Tomczyk, K.; Rzymski, P.; Poniedziałek, B.; Opala, T.; Wilczak, M. Impact of heavy metals on the female reproductive system. Ann. Agric. Environ. Med. 2015, 22, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Dai, J.-B.; Wang, Z.-X. The hazardous effects of tobacco smoking on male fertility. Asian J. Androl. 2015, 17, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xu, X.; Boezen, H.M.; Huo, X. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere 2016, 148, 408–415. [Google Scholar] [CrossRef]
- Ramos-Treviño, J.; Bassol-Mayagoitia, S.; Hernández-Ibarra, J.A.; Ruiz-Flores, P.; Nava-Hernández, M.P. Toxic effect of cadmium, lead, and arsenic on the Sertoli cell: Mechanisms of damage involved. DNA Cell Biol. 2018, 37, 600–608. [Google Scholar] [CrossRef]
- Bonde, J.P. Male reproductive organs are at risk from environmental hazards. Asian J. Androl. 2010, 12, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Bonde, J.P.E.; Ernst, E.; Jensen, T.K.; Hjollund, N.H.I.; Kolstad, H.A.; Scheike, T.H.; Giwercman, A.; Skakkebæk, N.E.; Henriksen, T.B.; Olsen, J. Relation between semen quality and fertility: A population-based study of 430 first-pregnancy planners. Lancet 1998, 352, 1172–1177. [Google Scholar] [CrossRef]
- Kolesárová, A.; Capcarová, M.; Roychoudhury, S. Metal Induced Ovarian Signaling; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2010; p. 135. ISBN 978-80-552-0456-7. [Google Scholar]
- Massányi, P.; Cigánková, V.; Fabiš, M.; Kováčik, J.; Massányiová, K.; Toman, R. Reproductive Toxicology (in Slovak); Slovak University of Agriculture in Nitra: Nitra, Slovakia, 1999; p. 144. [Google Scholar]
- Massányi, P.; Bárdos, L.; Roychoudhury, S.; Stawarz, R. Foreword. J. Environ. Sci. Health A Toxic Hazard Subst. Environ. Eng. 2012, 47, 1201. [Google Scholar] [CrossRef]
- Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, Environmental Exposure, and Health Outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Aaron, S.E.; Aaron, J.-J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. Int. 2020, 27, 29927–29942. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S. Dietary Cadmium intake and its effects on kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Janicka, M.; Binkowski, Ł.J.; Błaszczyk, M.; Paluch, J.; Wojtaś, W.; Massanyi, P.; Stawarz, R. Cadmium, lead and mercury concentrations and their influence on morphological parameters in blood donors from different age groups from southern Poland. J. Trace Elem. Med. Biol. 2015, 29, 342–346. [Google Scholar] [CrossRef]
- Capcarová, M.; Harangozó, L.; Árvay, J.; Tóth, T.; Gabríny, L.; Binkowski, Ł.J.; Palšová, L.; Skalická, M.; de la Luz Garcia Pardo, M.; Stawarz, R.; et al. Essential and xenobiotic elements in cottage cheese from the Slovak market with a consumer risk assessment. J. Environ. Sci. Health Part B 2020, 55, 677–686. [Google Scholar] [CrossRef]
- Schwarz, P.; Lukáčová, A.; Formicki, G.; Massányi, P.; Golian, J.; Kiss, Z. Heavy metals in Slovakian meat and milk samples. Hungarian Vet. J. 2013, 135, 565–571. [Google Scholar]
- Stawarz, R.; Formicki, G.; Massanyi, P. Daily fluctuations and distribution of xenobiotics, nutritional and biogenic elements in human milk in Southern Poland. J. Environ. Sci. Health Part A 2007, 42, 1169–1175. [Google Scholar] [CrossRef]
- Satarug, S.; Gobe, G.C.; Ujjin, P.; Vesey, D. A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead. Toxics 2020, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Satarug, S.; Boonprasert, K.; Gobe, G.C.; Ruenweerayut, R.; Johnson, D.W.; Na-Bangchang, K.; Vesey, D. Chronic exposure to cadmium is associated with a marked reduction in glomerular filtration rate. Clin. Kidney J. 2018, 12, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Gašparík, J.; Binkowski, Ł.J.; Jahnátek, A.; Šmehýl, P.; Dobiaš, M.; Lukac, N.; Błaszczyk, M.; Semla, M.; Massanyi, P. Levels of Metals in Kidney, Liver, and Muscle Tissue and their Influence on the Fitness for the Consumption of Wild Boar from Western Slovakia. Biol. Trace Elem. Res. 2017, 177, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramárová, M.; Massanyi, P.; Slamecka, J.; Tataruch, F.; Jancová, A.; Gasparik, J.; Fabis, M.; Kovacik, J.; Toman, R.; Galová, J.; et al. Distribution of Cadmium and Lead in Liver and Kidney of Some Wild Animals in Slovakia. J. Environ. Sci. Health Part A Toxic Hazard Subst. Environ. Eng. 2005, 40, 593–600. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, X.; Ge, R.-S. Toxicological Effects of Cadmium on Mammalian Testis. Front. Genet. 2020, 11, 527. [Google Scholar] [CrossRef]
- Jenardhanan, P.; Panneerselvam, M.; Mathur, P.P. Effect of environmental contaminants on spermatogenesis. Semin. Cell Dev. Biol. 2016, 59, 126–140. [Google Scholar] [CrossRef]
- Kar, A.B.; Das, R.P.; Karkun, J.N. Ovarian changes in prepuberal rats after treatment with cadmium chloride. Acta Biol. Med. Ger. 1959, 3, 372–399. [Google Scholar]
- Pařízek, J.; Ošťádalová, I.; Benes, I.; Pitha, J. The effect of a subcutaneous injection of cadmium salts on the ovaries of adult rats in persistent oestrus. J. Reprod. Fertil. 1968, 17, 559. [Google Scholar] [CrossRef] [Green Version]
- Massanyi, P.; Bárdos, L.; Oppel, K.; Hluchý, S.; Kovácik, J.; Csicsai, G.; Toman, R. Distribution of cadmium in selected organs of mice: Effects of cadmium on organ contents of retinoids and beta-carotene. Acta Physiol. Hung. 1999, 86, 99–104. [Google Scholar]
- Massanyi, P.; Toman, R.; Valent, M.; Cupka, P. Evaluation of selected parameters of a metabolic profile and levels of cadmium in reproductive organs of rabbits after an experimental administration. Acta Physiol. Hung. 1995, 83, 267–273. [Google Scholar]
- Massányi, P.; Uhrín, V. Histological changes in the ovaries of rabbits after an administration of cadmium. Reprod. Dom. Anim. 1996, 31, 4–5, 629–632. [Google Scholar]
- Massanyi, P.; Uhrín, V.; Valent, M. Correlation relationship between cadmium accumulation and histological structures of ovary and uterus in rabbits. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1997, 32, 1621–1635. [Google Scholar] [CrossRef]
- Massanyi, P.; Lukac, N.; Uhrin, V.; Toman, R.; Pivko, J.; Rafay, J.; Forgács, Z.; Somosy, Z. Female reproductive toxicology of cadmium. Acta Biol. Hung. 2007, 58, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Massanyi, P.; Lukac, N.; Massanyi, M.; Stawarz, R.; Formicki, G.; Danko, J. Effects of Xenobiotics on Animal Reproduction in Vivo: Microscopical Examination. Microsc. Microanal. 2020, 26, 63. [Google Scholar] [CrossRef]
- Naď, P.; Massanyi, P.; Skalicka, M.; Koréneková, B.; Cigankova, V.; Almášiová, V. The effect of cadmium in combination with zinc and selenium on ovarian structure in Japanese quails. J. Environ. Sci. Health Part A 2007, 42, 2017–2022. [Google Scholar] [CrossRef]
- Ruslee, S.S.; Zaid, S.S.M.; Bakrin, I.H.; Goh, Y.M.; Mustapha, N.M. Protective effect of Tualang honey against cadmium-induced morphological abnormalities and oxidative stress in the ovary of rats. BMC Complement. Med. Ther. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Nasiadek, M.; Danilewicz, M.; Klimczak, M.; Stragierowicz, J.; Kilanowicz, A. Subchronic Exposure to Cadmium Causes Persistent Changes in the Reproductive System in Female Wistar Rats. Oxidative Med. Cell. Longev. 2019, 2019, 6490820. [Google Scholar] [CrossRef]
- Nna, V.U.; Usman, U.Z.; Ofutet, E.O.; Owu, D.U. Quercetin exerts preventive, ameliorative and prophylactic effects on cadmium chloride—Induced oxidative stress in the uterus and ovaries of female Wistar rats. Food Chem. Toxicol. 2017, 102, 143–155. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, Y.; Fan, R.; Qiu, C.; Zhong, S.; Wei, L.; Luo, D. Effect of Cadmium on Cellular Ultrastructure in Mouse Ovary. Ultrastruct. Pathol. 2015, 39, 324–328. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, X.; Luo, X.; Li, L.; Ma, M.; Zhu, Y.; Zhao, L.; Li, R. The effects of long-term exposure to low doses of cadmium on the health of the next generation of mice. Chem. Interact. 2019, 312, 108792. [Google Scholar] [CrossRef]
- Lee, Y.M.; Chung, H.W.; Jeong, K.; Sung, Y.-A.; Lee, H.; Ye, S.; Ha, E. Association between cadmium and anti-Mullerian hormone in premenopausal women at particular ages. Ann. Occup. Environ. Med. 2018, 30, 44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pang, F.; Huang, Y.; Yan, P.; Lin, W. Cadmium exerts toxic effects on ovarian steroid hormone release in rats. Toxicol. Lett. 2008, 182, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, M.; Yoshihara, S. New aspects of cadmium as endocrine disruptor. Environ. Sci. Int. J. Environ. Physiol. Toxicol. 2006, 13, 107–116. [Google Scholar]
- Chen, L.; Liu, L.; Huang, S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic. Biol. Med. 2008, 45, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Z.; He, J.; Li, J.; Zhang, J.; Xing, H.; Xu, S. Ovarian toxicity induced by dietary cadmium in hen. Biol. Trace Elem. Res. 2012, 148, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Paksy, K.; Varga, B.; Náray, M.; Olajos, F.; Folly, G. Altered ovarian progesterone secretion induced by cadmium fails to interfere with embryo transport in the oviduct of the rat. Reprod. Toxicol. 1992, 6, 77–83. [Google Scholar] [CrossRef]
- Massányi, P.; Toman, R.; Najmik, F. Concentrations of cadmium in ovary, oviductus, uterus, testis and tunica albuginea of testis in cattle. J. Environ. Sci. Health A Toxic Hazard Subst. Environ. Eng. 1995, 30, 1685–1692. [Google Scholar]
- Massányi, P.; Najmik, F.; Renon, P. Concentrazione del cadmio in organi riproduttivi di bovino. Arch. Vet. Ital. 1995, 46, 62–66. [Google Scholar]
- Lubo-Palma, A.; Nava-Leal, C.; Villasmil, V. Efectos del cadmio sobre el parénquima ovarico en ratones albinos suizos [Effects of cadmium on the ovarian parenchyma in Swiss albino mice]. Investig. Clin. 2006, 47, 219–231. [Google Scholar]
- Sarkar, A.K.; Maitra, S.K.; Midya, T. Histological, histochemical and biochemical effects of cadmium chloride in female koel (Eudynamys scolopacea). Acta Histochem. 1976, 57, 205–211. [Google Scholar] [CrossRef]
- Åkesson, A.; Julin, B.; Wolk, A.; Locke, J.A.; Guns, E.S.; Lubik, A.A.; Adomat, H.; Hendy, S.C.; Wood, C.A.; Ettinger, S.L.; et al. Long-term Dietary Cadmium Intake and Postmenopausal Endometrial Cancer Incidence: A Population-Based Prospective Cohort Study. Cancer Res. 2008, 68, 6435–6441. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; Kenney, N.; Stoica, A.; Hilakivi-Clarke, L.; Singh, B.; Chepko, G.; Clarke, R.; Sholler, P.F.; Lirio, A.A.; Foss, C.; et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat. Med. 2003, 9, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Nasiadek, M.; Danilewicz, M.; Sitarek, K.; Świątkowska, E.; Daragó, A.; Stragierowicz, J.; Kilanowicz, A. The effect of repeated cadmium oral exposure on the level of sex hormones, estrous cyclicity, and endometrium morphometry in female rats. Environ. Sci. Pollut. Res. Int. 2018, 25, 28025–28038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saroj, V.K.; Nakade, U.P.; Sharma, A.; Choudhury, S.; Hajare, S.W.; Garg, S.K. Dose-Dependent Differential Effects of In Vivo Exposure of Cadmium on Myometrial Activity in Rats: Involvement of VDCC and Ca2+-Mimicking Pathways. Biol. Trace Elem. Res. 2017, 181, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Sapmaz-Metin, M.; Topcu-Tarladacalisir, Y.; Kurt-Omurlu, I.; Weller, B.K.; Unsal-Atan, S. A morphological study of uterine alterations in mice due to exposure to cadmium. Biotech. Histochem. 2017, 92, 264–273. [Google Scholar] [CrossRef]
- Nasiadek, M.; Krawczyk, T.; Sapota, A. Tissue levels of cadmium and trace elements in patients with myoma and uterine cancer. Hum. Exp. Toxicol. 2005, 24, 623–630. [Google Scholar] [CrossRef]
- Liu, D.; Wan, J.; Liu, Z.; Zhao, Z.; Zhang, G.; Leng, Y. Determination of cadmium induced acute and chronic reproductive toxicity with Raman spectroscopy. Lasers Med. Sci. 2020, 1–8. [Google Scholar] [CrossRef]
- Rajendar, B.; Bharavi, K.; Rao, G.S.; Kishore, P.V.S.; Kumar, P.R.; Kumar, C.S.V.S.; Kumar, D.S. Protective effect of alpha-tocopheral on biochemical and histological alterations induced by cadmium in rat testes. Indian J. Physiol. Pharmacol. 2012, 55, 213–220. [Google Scholar]
- Mouro, V.G.S.; Martins, A.L.P.; Silva, J.; Menezes, T.P.; Gomes, M.L.M.; Oliveira, J.A.; De Melo, F.C.S.A.; Da Matta, S.L.P. Subacute Testicular Toxicity to Cadmium Exposure Intraperitoneally and Orally. Oxidative Med. Cell. Longev. 2019, 2019, 3429635. [Google Scholar] [CrossRef] [Green Version]
- Mouro, V.G.S.; Siman, V.A.; Da Silva, J.; Dias, F.C.R.; Damasceno, E.M.; Cupertino, M.D.C.; De Melo, F.C.S.A.; Da Matta, S.L.P. Cadmium-Induced Testicular Toxicity in Mice: Subacute and Subchronic Route-Dependent Effects. Biol. Trace Elem. Res. 2019, 193, 466–482. [Google Scholar] [CrossRef]
- Momeni, H.R.; Eskandari, N. Curcumin protects the testis against cadmium-induced histopathological damages and oxidative stress in mice. Hum. Exp. Toxicol. 2020, 39, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Shao, W.; Zuo, L.; Zhao, W.; Qin, H.; Hua, Y.; Lu, D.; Mi, C.; Zeng, S.; Zu, L. Mechanism of cadmium poisoning on testicular injury in mice. Oncol. Lett. 2019, 18, 1035–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamkovičová, M.; Toman, R.; Cabaj, M.; Massanyi, P.; Martiniaková, M.; Omelka, R.; Krajcovicova, V.; Duranova, H. Effects of Subchronic Exposure to Cadmium and Diazinon on Testis and Epididymis in Rats. Sci. World J. 2014, 2014, 632581. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Zhu, Y.; Yang, Z.; Fu, S.; Zhang, W.; Liu, C. Protective effect of Polygonatum sibiricum against cadmium-induced testicular injury in mice through inhibiting oxidative stress and mitochondria-mediated apoptosis. J. Ethnopharmacol. 2020, 261, 113060. [Google Scholar] [CrossRef] [PubMed]
- Olaniyi, K.S.; Amusa, O.A.; Oniyide, A.A.; Ajadi, I.O.; Akinnagbe, N.T.; Babatunde, S.S. Protective role of glutamine against cadmium-induced testicular dysfunction in Wistar rats: Involvement of G6PD activity. Life Sci. 2020, 242, 117250. [Google Scholar] [CrossRef]
- Toman, R.; Massányi, P.; Uhrín, V. Changes in the testis and epididymis of rabbits after an intraperitoneal and peroral administration of cadmium. Trace Elem. Electrol. 2002, 19, 114–117. [Google Scholar]
- Dasgupta, P.; Kulkarni, P.; Bhat, N.S.; Majid, S.; Shiina, M.; Shahryari, V.; Yamamura, S.; Tanaka, Y.; Gupta, R.K.; Dahiya, R.; et al. Activation of the Erk/MAPK signaling pathway is a driver for cadmium induced prostate cancer. Toxicol. Appl. Pharmacol. 2020, 401, 115102. [Google Scholar] [CrossRef]
- Kolluru, V.; Tyagi, A.; Chandrasekaran, B.; Ankem, M.; Damodaran, C. Induction of endoplasmic reticulum stress might be responsible for defective autophagy in cadmium-induced prostate carcinogenesis. Toxicol. Appl. Pharmacol. 2019, 373, 62–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Cheng, Q.; Li, X.; Li, Z. Removal of Toxic Heavy Metal Ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from Waste Batteries or Lithium Cells Using Nanosized Metal Oxides: A Review. J. Nanosci. Nanotechnol. 2020, 20, 7231–7254. [Google Scholar] [CrossRef]
- Kabamba, M.; Tuakuila, J. Toxic metal (Cd, Hg, Mn, Pb) partition in the maternal/foetal unit: A systematic mini—Review of recent epidemiological studies. Toxicol. Lett. 2020, 332, 20–26. [Google Scholar] [CrossRef]
- Nkwunonwo, U.; Odika, P.O.; Onyia, N.I. A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. Sci. World J. 2020, 2020, 6594109. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.E.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charkiewicz, A.E.; Backstrand, J.R. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef]
- Kumar, A.; M.M.S., C.-P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; Khan, S.A.; et al. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [Green Version]
- Binkowski, Ł.J.; Błaszczyk, M.; Przystupińska, A.; Ożgo, M.; Massanyi, P. Metal concentrations in archaeological and contemporary mussel shells (Unionidae): Reconstruction of past environmental conditions and the present state. Chemosphere 2019, 228, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Massanyi, P.; Stawarz, R.; Halo, M.; Formicki, G.; Lukac, N.; Cupka, P.; Schwarcz, P.; Kovacik, A.; Tušimová, E.; Kováčik, J. Blood concentration of copper, cadmium, zinc and lead in horses and its relation to hematological and biochemical parameters. J. Environ. Sci. Health Part A 2014, 49, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Eck, G.J.V.-V.; Meigs, J.W. Changes in the Ovary of the Rhesus Monkey After Chronic Lead Intoxication. Fertil. Steril. 1960, 11, 223–234. [Google Scholar] [CrossRef]
- Hilderbrand, D.C.; Der, R.; Griffin, W.T.; Fahim, M.S. Effect of lead acetate on reproduction. Am. J. Obstet. Gynecol. 1973, 115, 1058–1065. [Google Scholar] [CrossRef]
- Kumar, S. Occupational and Environmental Exposure to Lead and Reproductive Health Impairment: An Overview. Indian J. Occup. Environ. Med. 2018, 22, 128–137. [Google Scholar] [PubMed]
- Winder, C. Lead, reproduction and development. NeuroToxicology 1993, 14, 303–317. [Google Scholar]
- Xuezhi, J.; Youxin, L.; Yilan, W. Studies of lead exposure on reproductive system: A review of work in China. Biomed. Environ. Sci. 1992, 5, 266–275. [Google Scholar] [PubMed]
- Doumouchtsis, K.K.; Doumouchtsis, S.K.; Doumouchtsis, E.K.; Perrea, D.N. The effect of lead intoxication on endocrine functions. J. Endocrinol. Investig. 2009, 32, 175–183. [Google Scholar] [CrossRef]
- Tang, N.; Zhu, Z.Q. Adverse reproductive effects in female workers of lead battery plants. Int. J. Occup. Med. Environ. Health 2003, 16, 359–361. [Google Scholar] [PubMed]
- Pollack, A.Z.; Schisterman, E.F.; Goldman, L.R.; Mumford, S.L.; Albert, P.S.; Jones, R.L.; Wactawski-Wende, J. Cadmium, Lead, and Mercury in Relation to Reproductive Hormones and Anovulation in Premenopausal Women. Environ. Health Perspect. 2011, 119, 1156–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieg, E.F., Jr.; Feng, H.A. The relationships between blood lead levels and serum follicle stimulating hormone and luteinizing hormone in the National Health and Nutrition Examination Survey 1999–2002. Reprod. Toxicol. 2011, 32, 277–285. [Google Scholar] [CrossRef]
- Naicker, N.; Norris, S.A.; Mathee, A.; Becker, P.; Richter, L. Lead exposure is associated with a delay in the onset of puberty in South African adolescent females: Findings from the Birth to Twenty cohort. Sci. Total. Environ. 2010, 408, 4949–4954. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, P.; Richter, L.M.; Kagura, J.; Mathee, A.; Naicker, N.; Norris, S.A. Environmental lead exposure and pubertal trajectory classes in South African adolescent males and females. Sci. Total. Environ. 2018, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz, E.K.R.; Waissmann, W. Occupational exposure and effects on the male reproductive system. Cadernos de Saúde Pública 2006, 22, 485–493. [Google Scholar] [CrossRef]
- Taupeau, C.; Poupon, J.; Nomé, F.; Lefèvre, B. Lead accumulation in the mouse ovary after treatment-induced follicular atresia. Reprod. Toxicol. 2001, 15, 385–391. [Google Scholar] [CrossRef]
- Waseem, N.; Butt, S.A.; Hamid, S. Amelioration of lead induced changes in ovary of mice, by garlic extract. J. Pak. Med. Assoc. 2014, 64, 798–801. [Google Scholar]
- Dhir, V.; Dhand, P. Toxicological Approach in Chronic Exposure to Lead on Reproductive Functions in Female Rats (Rattus norvegicus). Toxicol. Int. Former. Indian J. Toxicol. 2010, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, E.; Chiurciu, V.; Muselin, F.; Popescu, R.; Brezovan, D.; Cristina, R.T. Effects of long-term exposure of female rats to low levels of lead: Ovary and uterus histological architecture changes. Turk. J. Biol. 2015, 39, 284–289. [Google Scholar] [CrossRef]
- Canaz, E.; Kilinc, M.; Sayar, H.; Kiran, G.; Ozyurek, E. Lead, selenium and nickel concentrations in epithelial ovarian cancer, borderline ovarian tumor and healthy ovarian tissues. J. Trace Elements Med. Biol. 2017, 43, 217–223. [Google Scholar] [CrossRef]
- Bloom, M.S.; Kim, K.; Kruger, P.C. Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes. J. Assist. Reprod. Genet. 2012, 29, 1369–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallini, A.; Lippolis, C.; Vacca, M.; Nardelli, C.; Castegna, A.; Arnesano, F.; Carella, N.; DePalo, R. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction. PLoS ONE 2016, 11, e0152181. [Google Scholar] [CrossRef] [PubMed]
- Kirmizi, D.A.; Baser, E.; Turksoy, V.A.; Kara, M.; Yalvac, E.S.; Gocmen, A.Y. Are heavy metal eposure and trace element levels related to metabolic and endocrine poblems in polycystic ovary syndrome? Biol. Trace Elem. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Uchewa, O.O.; Ezugworie, O.J.; Obinna, U.O.; Joseph, E.O. Countering the effects of lead as an environmental toxicant on the microanatomy of female reproductive system of adult wistar rats using aqueous extract of Ficus vogelii. J. Trace Elem. Med. Biol. 2019, 52, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Kolesarova, A.; Roychoudhury, S.; Slivkova, J.; Sirotkin, A.; Capcarová, M.; Massanyi, P. In vitro study on the effects of lead and mercury on porcine ovarian granulosa cells. J. Environ. Sci. Health Part A 2010, 45, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Capcarová, M.; Kolesarova, A.; Lukac, N.; Sirotkin, A.; Roychoudhury, S. Antioxidant status and selected biochemical parameters of porcine ovarian granulosa cells exposed to leadin vitro. J. Environ. Sci. Health Part A 2009, 44, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Nampoothiri, L.; Gupta, S. Simultaneous effect of lead and cadmium on granulosa cells: A cellular model for ovarian toxicity. Reprod. Toxicol. 2006, 21, 179–185. [Google Scholar] [CrossRef]
- Albishtue, A.A.; Yimer, N.; Zakaria, Z.A.; Haron, A.W.; Babji, A.S.; Abubakar, A.A.; Baiee, F.H.; Almhanna, H.K.; Almhanawi, B.H. The role of edible bird’s nest and mechanism of averting lead acetate toxicity effect on rat uterus. Veter. World 2019, 12, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigeh, M.; Smith, D.R.; Hsu, P.-C. How does lead induce male infertility? Iran. J. Reprod. Med. 2011, 9, 1–8. [Google Scholar] [PubMed]
- Gandhi, J.; Hernandez, R.J.; Chen, A.; Smith, N.L.; Sheynkin, Y.R.; Joshi, G.; Khan, S.A. Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 2017, 25, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Pizent, A.; Tariba, B.; Živković, T. Reproductive Toxicity of Metals in Men. Arch. Ind. Hyg. Toxicol. 2012, 63, 35–46. [Google Scholar] [CrossRef]
- Apostoli, P.; Kiss, P.; Porru, S.; Bonde, J.P.; Vanhoorne, M. Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occup. Environ. Med. 1998, 55, 364–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, B.H.; Checkoway, H.; Faustman, E.M.; van Netten, C.; Muller, C.H.; Ewers, T.G. Contrasting associations of blood and semen lead concentrations with semen quality among lead smelter workers. Am. J. Ind. Med. 1998, 34, 464–469. [Google Scholar] [CrossRef]
- Hosni, H.; Selim, O.; Abbas, M.; Fathy, A. Semen quality and reproductive endocrinal function related to blood lead levels in infertile painters. Andrologia 2013, 45, 120–127. [Google Scholar] [CrossRef]
- Elsheikh, N.A.H.; Omer, N.A.; Yi-Ru, W.; Mei-Qian, K.; Ilyas, A.; Abdurahim, Y.; Wang, G. Protective effect of betaine against lead-induced testicular toxicity in male mice. Andrologia 2020, 52, e13600. [Google Scholar] [CrossRef]
- Oyeyemi, W.; Princely, A.C.; Oluwadamilare, A.A.; Oore-Oluwapo, D.O.; Blessing, A.O.; Alfred, E.F. Clomiphene citrate ameliorated lead acetate-induced reproductive toxicity in male Wistar rats. JBRA Assist. Reprod. 2019, 23, 336–343. [Google Scholar] [CrossRef]
- Kelainy, E.G.; Laila, I.M.I.; Ibrahim, S.R. The effect of ferulic acid against lead-induced oxidative stress and DNA damage in kidney and testes of rats. Environ. Sci. Pollut. Res. Int. 2019, 26, 31675–31684. [Google Scholar] [CrossRef]
- Ezejiofor, A.N.; Orisakwe, O.E. The protective effect of Costus afer Ker Gawl aqueous leaf extract on lead-induced reproductive changes in male albino Wistar rats. JBRA Assist. Reprod. 2019, 23, 215–224. [Google Scholar] [CrossRef]
- Sudjarwo, S.A.; Sudjarwo, G.W.K. Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Res. Pharm. Sci. 2017, 12, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.; El-Neweshy, M.S.; Hassan, M.; Noreldin, A.E. Thymoquinone attenuates testicular and spermotoxicity following subchronic lead exposure in male rats: Possible mechanisms are involved. Life Sci. 2019, 230, 132–140. [Google Scholar] [CrossRef]
- Santhoshkumar, R. Protective effect of Abutilon indicum against lead-induced reproductive toxicity in male Wistar rats. J. Cell. Biochem. 2019, 120, 11196–11205. [Google Scholar] [CrossRef]
- Massanyi, P.; Lukac, N.; Makarevich, A.V.; Chrenek, P.; Forgacs, Z.; Zakrzewski, M.; Stawarz, R.; Toman, R.; Lazor, P.; Flesarova, S. Lead-induced alterations in rat kidneys and testesin vivo. J. Environ. Sci. Health Part A 2007, 42, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, M.; Toporcerova, S.; Popelkova, M.; Semla, M.; Tvrda, E.; Lukac, N.; Massanyi, P.; Stawarz, R.; Binkowski, L. Semen metal profile, spermatozoa morphology and semen biochemical parameters in subfertile men with different lifestyle habits. J. Elem. 2019, 24, 603–614. [Google Scholar] [CrossRef]
- Tvrdá, E.; Kňažická, Z.; Lukáčová, J.; Schneidgenová, M.; Goc, Z.; Greń, A.; Szabó, C.; Massányi, P.; Lukáč, N. The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa. J. Environ. Sci. Health Part A 2013, 48, 1292–1300. [Google Scholar] [CrossRef]
- Slivkova, J.; Popelkova, M.; Massanyi, P.; Toporcerová, S.; Stawarz, R.; Formicki, G.; Lukac, N.; Putała, A.; Guzik, M. Concentration of trace elements in human semen and relation to spermatozoa quality. J. Environ. Sci. Health Part A 2009, 44, 370–375. [Google Scholar] [CrossRef]
- Massanyi, P.; Trandzik, J.; Nad, P.; Skalická, M.; Koréneková, B.; Lukac, N.; Fabis, M.; Toman, R. Seminal Concentration of Trace Elements in Fox and Relationships to Spermatozoa Quality. J. Environ. Sci. Health Part A 2005, 40, 1097–1105. [Google Scholar] [CrossRef]
- Massányi, P.; Trandžík, J.; Naď, P. Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa. J. Environ. Sci. Health A Toxic Hazard Subst. Environ. Eng. 2004, 39, 3005–3014. [Google Scholar] [CrossRef]
- Massanyi, P.; Trandzík, J.; Nad, P.; Koréneková, B.; Skalická, M.; Toman, R.; Lukac, N.; Strapák, P.; Halo, M.; Turcan, J. Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality. J. Environ. Sci. Health Part A 2003, 38, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ochoa, I.; García-Vargas, G.; López-Carrillo, L.; Rubio-Andrade, M.; Morán-Martínez, J.; Cebrián, M.E.; Quintanilla-Vega, B. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod. Toxicol. 2005, 20, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Pant, N.; Kumar, G.; Upadhyay, A.D.; Gupta, Y.K.; Chaturvedi, P.K. Correlation between lead and cadmium concentration and semen quality. Andrologia 2015, 47, 887–891. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Ugwuja, E.I. Association of Blood and Seminal Plasma Cadmium and Lead Levels With Semen Quality in Non-Occupationally Exposed Infertile Men in Abakaliki, South East Nigeria. J. Fam. Reprod. Health 2017, 11, 97–103. [Google Scholar]
- U.S. EPA. Basic Information about Mercury 2019. Available online: https://www.epa.gov/mercury/basic-information-about-mercury (accessed on 15 August 2020).
- Bank, M.S. Mercury in the Environment: Pattern and Process; Univ of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Ask, K.; Åkesson, A.; Berglund, M.; Vahter, M. Inorganic mercury and methylmercury in placentas of Swedish women. Environ. Health Perspect. 2002, 110, 523–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saleh, I.; Shinwari, N.; Mashhour, A.; Mohamed, G.E.D.; Rabah, A. Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int. J. Hyg. Environ. Health 2011, 214, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Gasparik, J.; Vladarova, D.; Capcarová, M.; Smehyl, P.; Slamecka, J.; Garaj, P.; Stawarz, R.; Massanyi, P. Concentration of lead, cadmium, mercury and arsenic in leg skeletal muscles of three species of wild birds. J. Environ. Sci. Health Part A 2010, 45, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Kolesarova, A.; Slamecka, J.; Jurcik, R.; Tataruch, F.; Lukac, N.; Kováčik, J.; Capcarová, M.; Valent, M.; Massanyi, P. Environmental levels of cadmium, lead and mercury in brown hares and their relation to blood metabolic parameters. J. Environ. Sci. Health Part A 2008, 43, 646–650. [Google Scholar] [CrossRef]
- Massányi, P.; Tataruch, F.; Slamčeka, J.; Toman, R.; Jurík, R. Accumulation of lead, cadmium, and mercury in liver and kidney of the brown hare (Lepus europaeus) in relation to the season, age, and sex in the West Slovakian Lowland. J. Environ. Sci. Health Part A 2003, 38, 1299–1309. [Google Scholar] [CrossRef]
- Capcarová, M.; Binkowski, L.J.; Stawarz, R.; Schwarczová, L.; Massányi, P. Levels of essential and xenobiotic elements and their relationships in milk available on the Slovak market with the estimation of consumer exposure. Biol. Trace Elem. Res. 2019, 188, 404–411. [Google Scholar] [CrossRef]
- Semla, M.; Schwarcz, P.; Mezey, J.; Binkowski, Ł.J.; Błaszczyk, M.; Semla, M.; Greń, A.; Stawarz, R.; Massanyi, P. Biogenic and Risk Elements in Wines from the Slovak Market with the Estimation of Consumer Exposure. Biol. Trace Elem. Res. 2018, 184, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Massányi, P.; Harangozo, Ľ.; Tóth, T.; Stanovič, R.; Bryndzová, Š.; Bumbalová, M. Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. J. Environ. Sci. Health Part B 2015, 50, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massanyi, P. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J. Environ. Sci. Health Part B 2014, 49, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Habán, M.; Habanova, M.; Otepka, P.; Lukac, N.; Massanyi, P. Concentration of heavy metals in various children’s herbal tea types and their correlations. J. Environ. Sci. Health Part B 2008, 43, 533–538. [Google Scholar] [CrossRef]
- Binkowski, Ł.J.; Rogoziński, P.; Roychoudhury, S.; Bruliński, K.; Kucharzewski, M.; Laciak, T.; Massanyi, P.; Stawarz, R. Accumulation of metals in cancerous and healthy tissues of patients with lung cancer in Southern Poland. J. Environ. Sci. Health Part A 2015, 50, 9–15. [Google Scholar] [CrossRef]
- Mortensen, M.E.; Caudill, S.P.; Caldwell, K.L.; Ward, C.D.; Jones, R.L. Total and methyl mercury in whole blood measured for the first time in the U.S. population: NHANES 2011–2012. Environ. Res. 2014, 134, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Wells, E.M.; Kopylev, L.; Nachman, R.; Radke, E.G.; Segal, D. Seafood, wine, rice, vegetables, and other food items associated with mercury biomarkers among seafood and non-seafood consumers: NHANES 2011–2012. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 504–514. [Google Scholar] [CrossRef]
- Zhu, F.; Chen, C.; Zhang, Y.; Chen, S.; Huang, X.; Li, J.; Wang, Y.; Liu, X.; Deng, G.; Gao, J. Corrigendum to “Elevated blood mercury level has a non-linear association with infertility in U.S. women: Data from the NHANES 2013–2016” [Reprod. Toxicol. 91C (2020) 53–58]. Reprod. Toxicol. 2020, 94, 103. [Google Scholar] [CrossRef]
- Colson, A. On the influence of mercury on the functions of the uterus. Med. Chir. Rev. 1829, 10, 471–472. [Google Scholar]
- De Bellis, L. L’azione della formoguanamina e dei sali di mercurio sulla muscolatura liscia dell’utero isolato di coniglia [Action of formoguanamine and mercury salts on the smooth muscles of the isolated uterus of the rabbit]. Boll. Soc. Ital. Biol. Sper. 1952, 28, 48–50. [Google Scholar]
- Baltrukiewicz, Z. Gromadzenie rteci w narzadach rodnych i płodach w róznych okresach ciazy po dozylnym podaniu neohydryny-Hg-203 [Accumulation of mercury in reproductive organs and fetuses in various periods of pregnancy after intravenous administration of neohydrin-Hg-203]. Acta Physiol. Pol. 1970, 21, 777–783. [Google Scholar] [PubMed]
- Bjørklund, G.; Chirumbolo, S.; Dadar, M.; Pivina, L.; Lindh, U.; Butnariu, M.; Aaseth, J. Mercury exposure and its effects on fertility and pregnancy outcome. Basic Clin. Pharmacol. Toxicol. 2019, 125, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saleh, I.; Shinwari, N.; Al-Amodi, M. Accumulation of Mercury in Ovaries of Mice After the Application of Skin-lightening Creams. Biol. Trace Elem. Res. 2009, 131, 43–54. [Google Scholar] [CrossRef]
- Schuurs, A. Reproductive toxicity of occupational mercury. A review of the literature. J. Dent. 1999, 27, 249–256. [Google Scholar] [CrossRef]
- Henriques, M.C.; Loureiro, S.; Fardilha, M.; Herdeiro, M.T. Exposure to mercury and human reproductive health: A systematic review. Reprod. Toxicol. 2019, 85, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Kim, D.H.; Ryu, J.Y. The effects of exposure to lead, cadmium and mercury on follicle-stimulating hormone levels in men and postmenopausal women: Data from the Second Korean National Environmental Health Survey (2012–2014). Ann. Occup. Environ. Med. 2019, 31, e21. [Google Scholar] [CrossRef]
- Chen, Y.W.; Huang, C.F.; Tsai, K.S.; Yang, R.S.; Yen, C.C.; Yang, C.Y.; Lin-Shiau, S.Y.; Liu, S.H. Methylmercury Induces Pancreatic β-Cell Apoptosis and Dysfunction. Chem. Res. Toxicol. 2006, 19, 1080–1085. [Google Scholar] [CrossRef]
- Davis, B.; Price, H.C.; O’Connor, R.W.; Fernando, R.; Rowland, A.S.; Morgan, D.L. Mercury vapor and female reproductive toxicity. Toxicol. Sci. 2001, 59, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.T. Effects of inorganic mercury on reproductive performance of mice. Food Chem. Toxicol. 2004, 42, 571–577. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, M.; Miao, L.; Zhang, X.; Dong, X.; Zou, X.T. Mercuric Chloride Induced Ovarian Oxidative Stress by Suppressing Nrf2-Keap1 Signal Pathway and its Downstream Genes in Laying Hens. Biol. Trace Elem. Res. 2018, 185, 185–196. [Google Scholar] [CrossRef]
- Altunkaynak, B.Z.; Akgül, N.; Yahyazadeh, A.; Türkmen, A.P.; Unal, B. Effect of mercury vapor inhalation on rat ovary: Stereology and histopathology. J. Obstet. Gynaecol. Res. 2016, 42, 410–416. [Google Scholar] [CrossRef]
- Lamperti, A.A.; Printz, R.H. Localization, Accumulation, and Toxic Effects of Mercuric Chloride on the Reproductive Axis of the Female Hamster. Biol. Reprod. 1974, 11, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Merlo, E.; Schereider, I.R.; Simões, M.R.; Vassallo, D.V.; Graceli, J.B. Mercury leads to features of polycystic ovary syndrome in rats. Toxicol. Lett. 2019, 312, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Verschaeve, L.; Leonard, A. Dominant lethal test in female mice treated with methyl mercury chloride. Mutat. Res. Toxicol. 1984, 136, 131–136. [Google Scholar] [CrossRef]
- Shen, W.; Chen, Y.; Li, C.; Ji, Q. [Effect of mercury chloride on the reproductive function and visceral organ of female mouse]. Wei Sheng Yan Jiu 2000, 29, 75–77. [Google Scholar] [PubMed]
- Roychoudhury, S.; Massanyi, P.; Slivkova, J.; Formicki, G.; Lukac, N.; Slamecka, J.; Slama, P.; Kolesarova, A. Effect of mercury on porcine ovarian granulosa cellsin vitro. J. Environ. Sci. Health Part A 2015, 50, 839–845. [Google Scholar] [CrossRef]
- Kňažická, Z.; Lukáč, N.; Forgács, Z.; Tvrdá, E.; Lukáčová, J.; Slivková, J.; Binkowski, L.; Massányi, P. Effects of mercury on the steroidogenesis of human adrenocarcinoma (NCI-H295R) cell line. J. Environ. Sci. Health Part A 2013, 48, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Lamperti, A.A.; Printz, R.H. Effects of mercuric chloride on the reproductive cycle of the female hamster. Biol. Reprod. 1973, 8, 378–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundholm, C. Effects of methyl mercury at different dose regimes on eggshell formation and some biochemical characteristics of the eggshell gland mucosa of the domestic fowl. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1995, 110, 23–28. [Google Scholar] [CrossRef]
- Balachandran, A.; Bhatnagar, M.K.; Geissinger, H.D. Scanning and transmission electron microscopic studies on the oviducts of Pekin ducks fed methyl mercury containing diets. Scanning Electron Microsc. 1985, 1, 311–322. [Google Scholar]
- WHO. Elemental Mercury Andinorganic Mercury Compounds: Human Health Aspects. Available online: https://www.who.int/ipcs/publications/cicad/en/cicad50.pdf?ua=1 (accessed on 15 August 2020).
- Koli, S.; Prakash, A.; Choudhury, S.; Mandil, R.; Garg, S.K. Mercury affects uterine myogenic activity even without producing any apparent toxicity in rats: Involvement of calcium-signaling cascades. J. Trace Elem. Med. Biol. 2020, 57, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Koli, S.; Prakash, A.; Choudhury, S.; Mandil, R.; Garg, S.K. Calcium Channels, Rho-Kinase, Protein Kinase-C, and Phospholipase-C Pathways Mediate Mercury Chloride-Induced Myometrial Contractions in Rats. Biol. Trace Elem. Res. 2019, 187, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Guyot, E.; Solovyova, Y.; Tomkiewicz, C.; Leblanc, A.; Pierre, S.; El Balkhi, S.; Le Frere-Belda, M.-A.; Lecuru, F.; Poupon, J.; Barouki, R.; et al. Determination of Heavy Metal Concentrations in Normal and Pathological Human Endometrial Biopsies and In Vitro Regulation of Gene Expression by Metals in the Ishikawa and Hec-1b Endometrial Cell Line. PLoS ONE 2015, 10, e0142590. [Google Scholar] [CrossRef]
- Nakade, U.P.; Garg, S.K.; Sharma, A.; Choudhury, S.; Yadav, R.S.; Gupta, K.; Sood, N. Lead-induced adverse effects on the reproductive system of rats with particular reference to histopathological changes in uterus. Indian J. Pharmacol. 2015, 47, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, D.A.F.; Teixeira, C.T.; Scarano, W.R.; Favareto, A.P.A.; Fernandez, C.D.; Grotto, D.; Barbosa, F.; Kempinas, W.D.G.; Barbosa, F. Effects of methylmercury on male reproductive functions in Wistar rats. Reprod. Toxicol. 2011, 31, 431–439. [Google Scholar] [CrossRef]
- Boujbiha, M.A.M.; Hamden, K.; Guermazi, F.; Bouslama, A.; Omezzine, A.; El Feki, A. Impairment of Spermatogenesis in Rats by Mercuric Chloride: Involvement of Low 17β-Estradiol Level in Induction of Acute Oxidative Stress. Biol. Trace Elem. Res. 2011, 142, 598–610. [Google Scholar] [CrossRef]
- Martinez, C.S.; Escobar, A.G.; Torres, J.G.D.; Brum, D.S.; Santos, F.W.; Alonso, M.J.; Salaices, M.; Vassallo, D.V.; Peçanha, F.M.; Leivas, F.G.; et al. Chronic Exposure to Low Doses of Mercury Impairs Sperm Quality and Induces Oxidative Stress in Rats. J. Toxicol. Environ. Health Part A 2014, 77, 143–154. [Google Scholar] [CrossRef]
- Adelakun, S.; Ukwenya, V.O.; Akingbade, G.T.; Omotoso, O.D.; Aniah, J.A. Interventions of aqueous extract of Solanum melongena fruits (garden eggs) on mercury chloride induced testicular toxicity in adult male Wistar rats. Biomed. J. 2020, 43, 174–182. [Google Scholar] [CrossRef]
- Almeer, R.S.; Albasher, G.; Kassab, R.B.; Ibrahim, S.R.; Alotibi, F.; Alarifi, S.; Ali, D.; Alkahtani, S.; Moneim, A.E.A. Ziziphus spina-christi leaf extract attenuates mercury chloride-induced testicular dysfunction in rats. Environ. Sci. Pollut. Res. 2020, 27, 3401–3412. [Google Scholar] [CrossRef]
- Kalender, S.; Uzun, F.G.; Demir, F.; Uzunhisarcikli, M.; Aslanturk, A. Mercuric chloride-induced testicular toxicity in rats and the protective role of sodium selenite and vitamin E. Food Chem. Toxicol. 2013, 55, 456–462. [Google Scholar] [CrossRef]
- Moussa, H.; Hachfi, L.; Trimèche, M.; Najjar, M.F.; Sakly, R. Accumulation of mercury and its effects on testicular functions in rats intoxicated orally by methylmercury. Andrologia 2010, 43, 23–27. [Google Scholar] [CrossRef]
- Orisakwe, O.E.; Afonne, O.J.; Nwobodo, E.; Asomugha, L.; Dioka, C.E. Low-dose mercury induces testicular damage protected by zinc in mice. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 95, 92–96. [Google Scholar] [CrossRef]
- Altunkaynak, M.; Akgül, N.; Yahyazadeh, A.; Altunkaynak, B.; Türkmen, A.P.; Akgül, H.; Aksak, S.; Unal, B. A stereological and histopathological study of the effects of exposure of male rat testes to mercury vapor. Biotech. Histochem. 2015, 90, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Fadda, L.M.; Alhusaini, A.M.; Al-Qahtani, Q.H.; Ali, H.M.; Hasan, I.H. Role of α-tocopherol and Lactobacillus plantarum in the alleviation of mercuric chloride-induced testicular atrophy in rat’s model: Implication of molecular mechanisms. J. Biochem. Mol. Toxicol. 2020, 34, e22481. [Google Scholar] [CrossRef]
- Kandemir, F.M.; Caglayan, C.; Aksu, E.H.; Yıldırım, S.; Kucukler, S.; Gur, C.; Eser, G. Protective effect of rutin on mercuric chloride-induced reproductive damage in male rats. Andrologia 2020, 52, e13524. [Google Scholar] [CrossRef]
- Massányi, P.; Lukáč, N.; Slivková, J.; Kováčik, J.; Makarevich, A.V.; Chrenek, P.; Toman, R.; Forgács, Z.; Somosy, Z.; Stawarz, R.; et al. Mercury-induced alterations in rat kidneys and testes in vivo. J. Environ. Sci. Health Part A 2007, 42, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.S.; Torres, J.G.D.; Peçanha, F.M.; Anselmo-Franci, J.A.; Vassallo, D.V.; Salaices, M.; Alonso, M.J.; Wiggers, G.A. 60-Day Chronic Exposure to Low Concentrations of HgCl2 Impairs Sperm Quality: Hormonal Imbalance and Oxidative Stress as Potential Routes for Reproductive Dysfunction in Rats. PLoS ONE 2014, 9, e111202. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.R.; Arora, U. Toxic effect of mercury on testes in different animal species. Indian J. Physiol. Pharmacol. 1982, 26, 246–249. [Google Scholar]
- Slivková, J.; Massányi, P.; Pizzi, F.; Trandžík, J.; Roychoudhury, S.; Lukáč, N.; Danková, M.; Almášiová, V. In vitro toxicity of mercuric chloride on rabbit spermatozoa motility and cell membrane integrity. J. Environ. Sci. Health Part A 2010, 45, 767–774. [Google Scholar] [CrossRef]
Administration/Dose/Species/Form | Changes | References |
---|---|---|
Per os |
| Ruslee et al., 2020 [39] |
5 mg/kg; 6 weeks, daily; 6 weeks | ||
Sprague Dawley rats | ||
CdCl2 | ||
Single i.p. |
| Massanyi et al., 2020 [37] |
1.5 mg/kg; killed after 48 h | ||
Per os | ||
1.0 mg/kg/day; 5 months | ||
Rabbits | ||
CdCl2 | ||
Per os (gavage) |
| Nasiadek et al., 2019 [40] |
0.09–4.5 mg/kg, 90 days | ||
Rat (Wistar) | ||
CdCl2 | ||
Per os |
| Nna et al., 2017 [41] |
5 mg/kg; 14 day | ||
Rat (Wistar) | ||
CdCl2 | ||
Per os |
| Lubo-Palma et al., 2006 [52] |
50, 100 and 150 ppm (in water); 50 days | ||
Swiss albino mice | ||
CdCl2 |
Administration/Dose/Species/Form | Changes | References |
---|---|---|
i.p. |
| Han et al., 2020 [67] |
2.5 mg/kg; 35 days | ||
Kunming mice | ||
CdCl2 | ||
i.p. |
| Liu et al., 2020 [60] |
3 mg/kg; 5 days and 1 mg/kg for 30 days | ||
BALB/c mice | ||
CdCl2 | ||
Per os |
| Olaniyi et al., 2020 [68] |
5 mg/kg, 30 days | ||
Rats (Wistar) | ||
CdCl2 | ||
Per os |
| Ren et al., 2019 [65] |
2, 4, 8 mg/kg, 8 days | ||
Mice (Institute of Cancer Research male specific pathogen-free) | ||
CdCl2 | ||
i.p. |
| Toman et al., 2002 [69] |
single dose, 2.25 mg/kg, 48 h | ||
Per os | ||
1.0 mg Cd/kg, 5 months | ||
Rabbit | ||
CdCl2 |
Administration/Dose/Species/Form | Changes | References |
---|---|---|
Per os |
| Uchewa and Ezugworie, 2019 [100] |
1.5 mg/kg daily; 21 days | ||
Wistar rat | ||
Lead acetate | ||
Per os (drinking water) |
| Dumitrescu et al., 2015 [95] |
0.050–0.150 mg/L; 12 months | ||
Wistar female rats | ||
Lead acetate | ||
Per os (gavage) |
| Waseem et al., 2014 [93] |
30 mg/kg/day; two months | ||
mice BALBc | ||
Lead acetate | ||
Per os |
| Dhir and Dhand, 2010 [94] |
60 mg/kg; 90 days | ||
rats (Disease-free albino rats) | ||
Not specified | ||
i.p. |
| Taupeau et al., 2001 [92] |
acute 10 mg/kg; 15 days; chronic 10 mg/kg; 15 weeks | ||
Mice, C57 Bl × CBA | ||
Pb(NO3) |
Administration/Dose/Species/Form | Changes | References |
---|---|---|
Per os |
| Elsheikh et al., 2020 [111] |
100 mg/kg; 3 weeks | ||
Kunming mice | ||
Lead acetate | ||
Per os |
| Kelainy et al., 2019 [113] |
20 mg/kg; daily for 10 days | ||
Albino rats | ||
Lead acetate | ||
Per os |
| Ezejiofor and Orisakwe, 2019 [114] |
50 g of lead acetate dissolved in 12 mL of 1N HCl; 4 weeks | ||
Albino Wistar rats | ||
Lead acetate | ||
Per os |
| Hassan et al., 2019 [116] |
20 mg/kg, 56 days | ||
Albino rats | ||
Lead acetate | ||
Per os |
| Santhoshkumar and Asha Devi, 2019 [117] |
Wistar rats | ||
0.15%; 45 days | ||
Lead acetate |
Administration/Species/Form | Changes | References |
---|---|---|
i.m. |
| Merlo et al., 2019 [158] |
4.6 μg/kg + subsequent dose 0.07 μg/kg; 30 days | ||
Wistar rats | ||
Mercuric chloride | ||
inhalation |
| Davis et al., 2001 [153] |
1–4 mg/m3 Hg°; 11 days | ||
Sprague–Dawley rats | ||
Hg° vapor | ||
s.c. |
| Lamperti et al., 1973 [163] |
1 mg per day; each day of the 4-day cycle, | ||
Golden hamsters | ||
Mercuric chloride | ||
s.c. |
| Lamperti and Printz, 1974 [157] |
1–4 mg | ||
Golden hamster | ||
Mercuric chloride |
Administration/Species/Form | Changes | References |
---|---|---|
Per os (gastric gavage) |
| Adelakun et al., 2020 [174] |
40 mg/kg; once a day; 28 consecutive days | ||
Wistar rats | ||
Mercuric chloride | ||
s.c. |
| Fadda et al., 2020 [180] |
5 mg/kg; 5 days | ||
Wistar rats | ||
Mercury chloride | ||
i.p. |
| Kandemir et al., 2020 [179] |
1.23 mg/kg; 7 days | ||
Sprague Dawley rats | ||
Mercuric chloride | ||
Per os |
| Almeer et al., 2020 [181] |
0.4 mg/kg; 28 days | ||
Wistar rats | ||
Mercuric chloride | ||
i.p. (single) |
| Massányi et al., 2007 [182] |
5–20 mg/kg | ||
Rats | ||
Mercuric chloride |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massányi, P.; Massányi, M.; Madeddu, R.; Stawarz, R.; Lukáč, N. Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. Toxics 2020, 8, 94. https://doi.org/10.3390/toxics8040094
Massányi P, Massányi M, Madeddu R, Stawarz R, Lukáč N. Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. Toxics. 2020; 8(4):94. https://doi.org/10.3390/toxics8040094
Chicago/Turabian StyleMassányi, Peter, Martin Massányi, Roberto Madeddu, Robert Stawarz, and Norbert Lukáč. 2020. "Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs" Toxics 8, no. 4: 94. https://doi.org/10.3390/toxics8040094
APA StyleMassányi, P., Massányi, M., Madeddu, R., Stawarz, R., & Lukáč, N. (2020). Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. Toxics, 8(4), 94. https://doi.org/10.3390/toxics8040094