Evaluation of Soil and Ambient Air Pollution Around Un-reclaimed Mining Bodies in Nižná Slaná (Slovakia) Post-Mining Area
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hazardous Element Content in Soil Samples
3.2. Contamination Factor, Degree of Contamination and Pollution Load Index
3.3. Enrichment Factor Values in the Soil Samples
3.4. Hazardous Element in the Ambient Air of Nižná Slaná
3.5. BAF Evaluation
3.6. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bech, J.; Roca, N.; Tume, P.; Ramos-Miras, J.; Gil, C.; Boluda, R. Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. Catena 2016, 136, 66–73. [Google Scholar] [CrossRef]
- Singovszká, E.; Bálintová, M.; Holub, M. Heavy metal contamination and its indexing approach for sediment in Smolnik creek (Slovakia). Clean Technol. Environ. 2016, 18, 305–313. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y. Mercury Contamination from Historic Gold Mining to Water Bodies and Soils in Zhaoyuan, Shandong, Eastern China. Nat. Environ. Pollut. Technol. 2016, 15, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Dudek, M.; Tajduś, K.; Misa, R.; Sroka, A. Predicting of land surface uplift caused by the flooding of underground coal mines—A case study. Int. J. Rock Mech. Min. Sci. 2020, 132, 104377. [Google Scholar] [CrossRef]
- Combes, A.; Franchineau, G. Fine particle environmental pollution and cardiovascular diseases. Metabolism 2019, 100, 153944. [Google Scholar] [CrossRef]
- Pošiváková, T.; Hromada, R.; Laktičová, K.V.; Vargová, M.; Korytár, Ľ.; Svajlenka, J.; Húska, M.; Hatalová, E.; Pošivák, L.; Klein, R. Concentrations of selected toxic elements in ewe living near an environmentally loaded area of eastern Slovakia. Ann. Agric. Environ. Med. 2017, 24, 667–670. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi Jahromi, N.S.; Jonoubi, P.; Majd, A.; Dehghani, M. Root structural changes of two remediator plants as the first defective barrier against industrial pollution, and their hyperaccumulation ability. Environ. Monit. Assess. 2019, 191, 148. [Google Scholar] [CrossRef]
- Xiong, L.; Xu, Z.; Wang, H.; Liu, Z.; Xie, D.; Wang, A.; Kong, F. The association between ambient air pollution and birth defects in four cities in Hunan province, China, from 2014 to 2016. Medicine 2019, 98, e14253. [Google Scholar] [CrossRef]
- Enviroportal Environmental Burden Information System of Slovak Republic. 2019. Available online: https://envirozataze.enviroportal.sk/ (accessed on 12 October 2020).
- Tajduś, K. The nature of mining-induced horizontal displacement of surface on the example of several coal mines. Arch. Min. Sci. 2014, 59, 971–986. [Google Scholar] [CrossRef] [Green Version]
- Pandey, B.; Agrawal, M.; Singh, S.J. Ecological risk assessment of soil contamination by trace elements around coal mining area. Soils Sediments 2016, 16, 159. [Google Scholar] [CrossRef]
- Jiang, Y.; Misa, R.; Tajduś, K.; Sroka, A.; Jiang, Y. A new prediction model of surface subsidence with Cauchy distribution in the coal mine of thick topsoil condition. Arch. Min. Sci. 2020, 65, 147–158. [Google Scholar]
- Dai, S.; Li, Y.; Zhou, T.; Zhao, Y. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: Removal of Cd, Cu, and Zn, and soil fertility improvement. Environ. Sci. Pollut. Res. 2017, 24, 15260. [Google Scholar] [CrossRef] [PubMed]
- Aničić-Urošević, M.; Milićević, T. Moss Bag Biomonitoring of Airborne Pollutants as an Ecosustainable Tool for Air Protection Management: Urban and Agricultural Scenario. In Environmental Concerns and Sustainable Development; Shukla, V., Kumar, N., Eds.; Springer: Singapore, 2020; pp. 29–62. [Google Scholar]
- Zhao, L.; Zhang, C.; Jia, S.; Liu, Q.; Chen, Q.; Li, X.; Liu, X.; Wu, Q.; Zhao, L.; Liu, H. Element bioaccumulation in lichens transplanted along two roads: The source and integration time of elements. Ecol. Indic. 2019, 99, 101–107. [Google Scholar] [CrossRef]
- Vingiani, S.; De Nicola, F.; Purvis, W.O.; Cocha-Grana, E.; Muniatequi-Lorenzo, S.; López-Mahía, P.; Giordano, S.; Adamo, P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: A Case Study in the Cities of Naples and London. Water Air Soil Pollut. 2015, 226, 240. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Bobuľská, L.; Hauptvogl, M.; Michalko, M. Activity of the soil enzymes and moss and lichen biomonitoring method used for the evaluation of soil and air pollution from tailing pond in Nižná Slaná (Slovakia). J. Environ. Sci. Health A 2019, 54, 485–497. [Google Scholar] [CrossRef]
- Tretiach, M.; Adamo, P.; Bargagli, R.; Baruffo, L.; Carletti, L.; Crisafulli, P.; Giordano, S.; Modenesi, P.; Orlando, S.; Pittao, E. Lichen and moss bags as monitoring devices in urban areas. Part I: Influence of exposure on vitality. Environ. Pollut. 2007, 146, 380–391. [Google Scholar] [CrossRef]
- Aničić, M.; Tasić, M.; Frontasyeva, M.V.; Tomašević, M.; Rajšić, S.; Strelkova, L.P.; Popović, A.; Steinnes, E. Active biomonitoring with wet and dry moss: A case study in an urban area. Environ. Chem. Lett. 2009, 7, 55–60. [Google Scholar] [CrossRef]
- Bobuľská, L.; Demková, L.; Čerevková, M.; Renčo, M. Invasive Goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 2020, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Bobuľská, L.; Kožej, J.; Demková, L. Determination of soil enzymatic activity by risk elements in environmentally loaded areas in Slovakia. Studia Oecologica 2018, 12, 37–44. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, M.; Chen, W. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 2015, 139, 604–608. [Google Scholar] [CrossRef]
- Demková, L.; Oboňa, J.; Árvay, J.; Michalková, J.; Lošák, T. Biomonitoring of road dust pollution along the streets with various traffic density. Pol. J. Environ. Stud. 2019, 28, 3687–3696. [Google Scholar] [CrossRef]
- Kottek, M.; Greiser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 529–563. [Google Scholar] [CrossRef]
- Brehuv, J.; Špaldon, T.; Šestinová, O.; Slančo, P.; Hančul’ák, J.; Bobro, M. Contamination of the Water and Sediment Load from the Drainage Basin of the Slaná River by Influence of Former and Present Mining Activities. Acta Fac. Ecol. 2007, 16, 91–100. [Google Scholar]
- Icsó, J.; Szöllösová, M.; Sorahan, T. Lung cancer among iron ore miners in east Slovakia: A case-control study. Occup. Environ. Med. 1994, 51, 642–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Italy, Rome, 2015. [Google Scholar]
- Demková, L.; Árvay, J.; Bobuľská, L.; Tomáš, J.; Stanovič, R.; Lošák, T.; Harangozo, Ľ.; Vollmannová, A.; Bystrická, J.; Musilová, J.; et al. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ore mining and smelting area (Slovakia). J. Environ. Sci. Health A 2017, 52, 479–490. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Bobuľská, L.; Hauptvogl, M.; Hrstková, M. Open mining pits and heaps of waste material as the source of undesirable substances: Biomonitoring of air and soil pollution in former mining area (Dubnik, Slovakia). Environ. Sci. Pollut. Res. 2019, 26, 35227–35239. [Google Scholar] [CrossRef]
- Khaziev, F.K. Soil Enzyme Activity; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Grejtovsky, A. Effects of Improvement Practices on Enzymatic Activities of Heavy-textured Alluvial Soil. Rostl. Výroba 1991, 1, 299–307. [Google Scholar]
- Green, V.S.; Stott, D.E.; Diack, M. Assay for Fluorescein Diacetate Hydrolytic Activity: Optimization for Soil Samples. Soil Biol. Biochem. 2006, 38, 693–701. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and Galactosidases in Soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentol. Approach Water Res. 1980, 14, 975–1001. [Google Scholar]
- Čurlík, J.; Šefčík, P. Geochemical Atlas of the Slovak Republic. Part. V: Soils; Ministry of the Environment: Bratislava, Slovakia, 1991; (In Slovak).
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press Taylor & Francis Group: New York, NY, USA, 2011. [Google Scholar]
- Wang, X.; He, M.; Xie, J.; Xi, J.; Lu, X. Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). J. Soils Sediments 2010, 10, 827–837. [Google Scholar] [CrossRef]
- WHO. Evaluation of Certain Contaminants in Food: Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives. 2011 (WHO Technical Report Series; No. 959). Available online: https://apps.who.int/iris/bitstream/handle/10665/44514/WHO_TRS_959_eng.pdf;jsessionid=414A27E824AF85BD65BAB51130C680DF?sequence=1 (accessed on 27 October 2020).
- WHO. Evaluation of Certain Food Additives and Contaminants: Seventy-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives. 2013 (WHO Technical Report Series; No. 983). Available online: https://apps.who.int/iris/bitstream/handle/10665/98388/9789241209830_eng.pdf?sequence=1 (accessed on 27 October 2020).
- Statistical Organization of Slovak Republic. Food Consumption in the SR in 2018. 2019. Available online: www.statistics.sk (accessed on 27 October 2020).
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- OSM (OpenStreetMap). 2016. Available online: https://www.openstreetmap.org/#map=4/50.18/-1.41 (accessed on 10 December 2019).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Musilová, J.; Árvay, J.; Vollmannová, A.; Tóth, T.; Tomáš, J. Environmental Contamination by heavy metals in region with previous mining activity. Bull. Environ. Contam. Toxicol. 2016, 97, 569. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and Excluders Strategies in Response of Plants to Heavy Metals. J. Plant. Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Hronec, O.; Vilček, J.; Tomáš, J.; Adamišin, P.; Huttmanová, E. Environmental Components Quality in Problem Areas in Slovaki; Mendel University in Brno: Brno, Czech Republic, 2010. [Google Scholar]
- Act of the National Council of the Slovak Republic No. 220/2004 Coll. Available online: http://www.podnemapy.sk/portal/verejnost/konsolidacia/z_220_2004.pdf (accessed on 27 October 2020).
- Zobeck, T.M.; Van Pelt, R.S. Wind-induced dust generation and transport mechanics on a bare agricultural field. J. Hazard. Mater. 2006, 132, 26–38. [Google Scholar] [CrossRef]
- Csavina, J.; Landázuri, A.; Wonaschutz, A.; Rine, K.; Rheinheimer, P.; Barbaris, B.; Conant, W.; Sáez, A.E.; Betterton, E.A. Metal and metalloid contaminants in atmospheric aerosols from mining operations. Water Air Soil Pollut. 2011, 221, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, C.L. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Tolosa, C.A.; Tack, F.M.G.; Verloo, M.G. Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Arch. Environ. Contam. Toxicol. 2000, 38, 428–438. [Google Scholar] [CrossRef] [PubMed]
- ECMWF—European Center for Medium Range Weather Forecast. Advancing Global NWP through International Collaboration. Available online: http://www.ecmwf.int/ (accessed on 27 October 2020).
- Duan, C.; Fang, L.; Yang, C.; Chen, W.; Cui, Y.; Li, S. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf. 2018, 158, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Martinez, F.; Cuevas, C.; Walter, T.; Iglesias, I. Urban organic wastes effects on soil chemical properties in degraded semiarid ecosystem. In Proceedings of the Seventeenth WCSS, Bangkok, Thailand, 14–21 August 2002; pp. 1–9. [Google Scholar]
- Karaca, A.; Cetin, S.C.; Turgay, O.C.; Kizilkaya, R. Effects of Heavy Metals on Soil Enzyme Activities. In Soil Heavy Metals. Soil Biology; Sherameti, I., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Speir, T.W.; Kettles, H.A.; Parshotam, A.; Searle, P.L.; Vlaar, L.N.C. Simple kinetic approach to determine the toxicity of As[V] to soil biological properties. Soil Biol. Biochem. 1999, 31, 705–713. [Google Scholar] [CrossRef]
- Dou, F.; Wright, A.L.; Mylavarapu, E.S.; Jiang, X.; Matocha, J.E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 2016, 26, 618–628. [Google Scholar] [CrossRef]
- Baldrian, P.; Snajdr, V.; Mehautová, V.; Dobiášová, P.; Cajthaml, T.; Valášková, V. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 2012, 56, 60–68. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Tabatabai, M.A. Arylamidase activity in soils: Effect of trace elements and relationships to soil properties and activities of amidohyrolases. Soil Biol. Biochem. 2001, 33, 17–23. [Google Scholar] [CrossRef]
- Parkpain, S.; Sirisukhodom, A.A. Carbonell-Barrachina Heavy metals and nutrients chemistry in sewage sludge amended Thai soils. J. Environ. Sci. Health A 1998, 33, 573–597. [Google Scholar] [CrossRef]
- Cecconi, E.; Incerti, G.; Capozzi, F.; Adamo, P.; Bargagli, R.; Benesperi, R.; Carniel, F.C.; Favero-Longo, S.E.; Giordano, S.; Puntillo, D.; et al. Background element content of the lichen Pseudevernia furfuracea: A supra-national state of art implemented by novel field data from Italy. Sci. Total Environ. 2018, 622–623, 282–292. [Google Scholar] [CrossRef]
- Adamo, P.; Bargagli, R.; Giordano, S.; Modenesi, P.; Monaci, F.; Pittao, E.; Spagnuolo, V.; Tretiach, M. Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Environ. Pollut. 2008, 152, 11–19. [Google Scholar] [CrossRef]
- Shao, J.; Liu, C.; Zhang, Q.; Fu, J.; Yang, R.; Shi, J.; Cai, Y. Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau. Jiang, G. Environ. Geochem Health 2017, 39, 475. [Google Scholar] [CrossRef]
- Bargagli, R.; Monaci, F.; Borghini, F.; Agnorelli, C. Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ. Pollut. 2002, 116, 279–287. [Google Scholar] [CrossRef]
- Loppi, S.; Bonini, I. Lichens and mosses as biomonitors of trace elements in area with thermal springs and fumarole activity (Mt. Amiata central Italy). Chemosphere 2000, 41, 1333–1336. [Google Scholar] [CrossRef]
- Kłos, A.; Ziembik, Z.; Rajfur, M.; Dołhańczuk-Śródka, A.; Bochenek, Z.; Bjerke, J.W.; Tømmervik, H.; Zagajewski, B.; Ziółkowski, D.; Jerz, D.; et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci. Total Environ. 2018, 627, 438–449. [Google Scholar] [CrossRef]
- Jarzyńska, G.; Falandysz, J. Trace elements profile of Slate Bolete (Leccinum duriusculum) mushroom and associated upper soil horizon. J. Geochem. Explor. 2012, 121, 69–75. [Google Scholar] [CrossRef]
- Mędyk, M.; Loganathan, B.; Bielawski, L.; Falandysz, J. Inorganic elemental concentrations in birch bolete mushroom (Leccinum scabrum) and topsoil: Contamination profiles, bioconcentation and annual variations. J. Environ. Sci. Health Part B 2018, 53, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Drewnowska, M. Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: Accumulation, loss in cooking and dietary intake. Ecotoxicol. Environ. Saf. 2015, 115, 9–54. [Google Scholar] [CrossRef]
- Falandysz, J.; Kunito, T.; Kubota, R.; Bielawski, L.; Mazur, A.; Falandysz, J.J.; Tanabe, S. Selected elements in Brown Birch Scaber Stalk Leccinum scabrum. J. Environ. Sci. Health A 2007, 42, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J. Mineral constituents in Leccinum scabrum from lowland locations in the central Europe and their relation to concentration in forest topsoil. J. Environ. Sci. Health B 2018, 53, 546–560. [Google Scholar] [CrossRef]
- Krasińska, G.; Falandysz, J. Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: Bioconcentration by mushroom and probable dietary intake by consumers. Environ. Sci. Pollut. Res. 2016, 23, 860–869. [Google Scholar] [CrossRef] [Green Version]
Elements | As | Cd | Co | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Sb | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[mg kg−1 DW (dry weight)] | |||||||||||||
min | 26.2 | 3.17 | 1.35 | 4.58 | 14.2 | 16,330 | 0.71 | 675 | 3.33 | 12.9 | 2.62 | 0.01 | 16.3 |
max | 1834 | 53.3 | 56.5 | 52.6 | 301 | 133,196 | 20.6 | 11,510 | 177 | 223 | 109 | 7.38 | 95.9 |
avg | 203 | 14.8 | 15.7 | 21.2 | 76.4 | 47,352 | 4.73 | 3797 | 37.8 | 62.5 | 15.9 | 1.00 | 57.2 |
med | 85.5 | 9.23 | 13.2 | 22.3 | 56.9 | 35,999 | 2.73 | 2986 | 24.8 | 42.9 | 10.1 | 0.21 | 55.3 |
stdev | 329 | 12.1 | 11.4 | 10.5 | 57.8 | 26,913 | 4.91 | 2836 | 36.1 | 57.0 | 19.8 | 1.52 | 20.7 |
LV | 25.0 | 0.70 | 15.0 | 70.0 | 60.0 | 550 | 0.50 | 550 | 50.0 | 70.0 | 0.70 | 0.40 | 150 |
BV | 7.20 | 0.30 | 0.30 | 60.0 | 19.0 | 530 | 0.08 | 20.0 | 25.0 | 25.0 | 1.04 | 0.10 | 65.0 |
Cf | As | Cd | Co | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Sb | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min | 3.64 | 10.6 | 4.49 | 0.08 | 0.75 | 30.8 | 8.87 | 33.8 | 0.13 | 0.52 | 2.52 | 0.01 | 0.25 |
max | 25.0 | 178 | 188 | 0.88 | 15.9 | 251 | 257 | 575 | 7.09 | 8.93 | 105 | 73.8 | 1.48 |
avg | 28.3 | 496 | 52.4 | 0.35 | 4.02 | 89.3 | 59.1 | 189 | 1.51 | 2.49 | 15.3 | 9.95 | 0.88 |
med | 11.9 | 30.8 | 43.9 | 0.37 | 2.99 | 67.9 | 34.1 | 149 | 0.99 | 1.72 | 9.71 | 2.12 | 0.85 |
stdev | 45.8 | 40.5 | 38.1 | 0.18 | 3.04 | 50.8 | 61.4 | 141 | 1.44 | 2.28 | 19.0 | 15.2 | 0.32 |
Cd | 847 | 1488 | 1571 | 10.6 | 120 | 2680 | 26.4 | 1774 | 5696 | 45.3 | 74.9 | 457 | 8.49 |
Element | U | Z | p-Value | |
---|---|---|---|---|
As | Between taxa | 408 | −0.61 | 0.53 |
Cd | 148 | −4.46 | 0.001 ** | |
Co | 276 | −2.55 | 0.011 * | |
Cr | 158 | −4.33 | 0.001 ** | |
Cu | 449 | −0.01 | 0.99 | |
Fe | 300 | −2.21 | 0.03 * | |
Hg | 204 | −3.62 | 0.001 ** | |
Ni | 389 | −0.89 | 0.37 | |
Mn | 82 | −5.43 | 0.001 ** | |
Pb | 138 | −4.60 | 0.001 ** | |
Sb | 337 | −1.66 | 0.09 | |
Se | 403 | −0.68 | 0.49 | |
Zn | 224 | −3.34 | 0.001 ** |
Element Content | As | Cd | Co | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Sb | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cmushroom | 2.77 | 1.66 | 0.02 | 0.12 | 19.2 | 46.6 | 5.77 | 17.4 | 1.32 | 0.25 | 0.84 | 2.66 | 73.3 |
Ctopsoil | 107 | 4.88 | 11.7 | 22.6 | 44.9 | 49,517 | 4.35 | 3811 | 27.4 | 48.8 | 5.73 | 2.91 | 79.1 |
BAF | 0.03 | 0.34 | 0.00 | 0.01 | 0.43 | 0.00 | 1.33 | 0.00 | 0.05 | 0.01 | 0.15 | 0.92 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demková, L.; Árvay, J.; Bobuľská, L.; Hauptvogl, M.; Michalko, M.; Michalková, J.; Jančo, I. Evaluation of Soil and Ambient Air Pollution Around Un-reclaimed Mining Bodies in Nižná Slaná (Slovakia) Post-Mining Area. Toxics 2020, 8, 96. https://doi.org/10.3390/toxics8040096
Demková L, Árvay J, Bobuľská L, Hauptvogl M, Michalko M, Michalková J, Jančo I. Evaluation of Soil and Ambient Air Pollution Around Un-reclaimed Mining Bodies in Nižná Slaná (Slovakia) Post-Mining Area. Toxics. 2020; 8(4):96. https://doi.org/10.3390/toxics8040096
Chicago/Turabian StyleDemková, Lenka, Július Árvay, Lenka Bobuľská, Martin Hauptvogl, Miloslav Michalko, Jana Michalková, and Ivona Jančo. 2020. "Evaluation of Soil and Ambient Air Pollution Around Un-reclaimed Mining Bodies in Nižná Slaná (Slovakia) Post-Mining Area" Toxics 8, no. 4: 96. https://doi.org/10.3390/toxics8040096
APA StyleDemková, L., Árvay, J., Bobuľská, L., Hauptvogl, M., Michalko, M., Michalková, J., & Jančo, I. (2020). Evaluation of Soil and Ambient Air Pollution Around Un-reclaimed Mining Bodies in Nižná Slaná (Slovakia) Post-Mining Area. Toxics, 8(4), 96. https://doi.org/10.3390/toxics8040096